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Abstract
A gene regulatory network can be described at a high level by a directed graph with
signed edges, and at a more detailed level by a system of ordinary differential equations
(ODEs). The former qualitatively models the causal regulatory interactions between
ordered pairs of genes, while the latter quantitatively models the time-varying
concentrations of mRNA and proteins. This paper clarifies the connection between the
two types of models.

We propose a property, called the constant sign property, for a general class of ODE
models. The constant sign property characterizes the set of conditions (system
parameters, external signals, or internal states) under which an ODE model is
consistent with a signed, directed graph. If the constant sign property for an ODE
model holds globally for all conditions, then the ODE model has a single signed,
directed graph. If the constant sign property for an ODE model only holds locally,
which may be more typical, then the ODE model corresponds to different graphs under
different sets of conditions. In addition, two versions of constant sign property are given
and a relationship between them is proved.

As an example, the ODE models that capture the effect of cis-regulatory elements
involving protein complex binding, based on the model in the GeneNetWeaver source
code, are described in detail and shown to satisfy the global constant sign property with
a unique consistent gene regulatory graph. Even a single gene regulatory graph is shown
to have many ODE models of GeneNetWeaver type consistent with it due to
combinatorial complexity and continuous parameters.

Finally the question of how closely data generated by one ODE model can be fit by
another ODE model is explored. It is observed that the fit is better if the two models
come from the same graph.

1 Introduction
A gene regulatory network is a collection of molecular classes such that each molecular
class interacts with a small number of other molecular classes, creating a sparse graph
structure [1]. A goal of systems biology is to understand gene regulatory networks and
infer them from data [2,3]. A directed graph with vertices representing genes and signed
edges representing gene-to-gene interactions, also known as a circuit model [4] or a
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logical model [5], is a model with a high level of abstraction (see Appendix S1). The
vertices of such graph models often only consist of the genes but not the properties of
the derived proteins because the latter information is usually not available. An ordinary
differential equation (ODE) model is far more detailed than a graph model: they
quantitatively describe the dynamics of the time-varying mRNA and protein
concentrations of the genes, and can be used to capture complex effects, including
protein–protein interaction, post-translational modification, environmental signals,
diffusion of proteins in different parts of the cell, and various time constants. As a
result, ascribing a directed graph to a biologically plausible gene regulatory network can
miss important biological details and dynamics because of the abstraction. However, it
is significantly more challenging to ascribe a particular ODE model to a gene regulatory
network than to ascribe a directed graph because an ODE model requires much finer
classification with possibly orders of magnitude more amount of data. As one example,
the work [6] is notable for successful identification of an ODE model that captures the
gene regulatory network underlying the dynamics of the circadian clock. The ODE
model in [6] is based on a number of previous empirical and modeling studies, and it is
shown that parameters for the model can be selected to give a good match to the data.
In general, however, without such prior knowledge, the relation between the graph
models and the ODE models is unclear. The purpose of this paper is to explore the
connections between the two types of models.

We propose a property of the ODE models, called the constant sign property (CSP),
such that an ODE model corresponds to a single graph model under a set of conditions
if and only if the ODE model satisfies CSP under that set of conditions. An ODE
model is said to satisfy global constant sign property (GCSP) if it satisfies CSP under
all conditions, in which case the ODE model corresponds to a single graph model.
Typically, an ODE model corresponds to different graph models under different
conditions characterizing the context-dependent and time-varying nature of biological
systems [7, 8]. An ODE model that does not satisfy GCSP is illustrated in Fig 1.
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Fig 1. Network reconstruction for an ODE model in the study [9] without
global CSP. The ODE model f governs the dynamics of all parts of the plant, and
expression data collected from different parts of a plant (flower vs. leaf) can correspond
to different graph models.

One particularly rich class of ODE models that satisfy GCSP are based on
GeneNetWeaver [10,11], the software used to generate expression data in DREAM
challenges 3–5 [11–13] and recently applied to single-cell analysis [14, 15]. In these ODE
models a layer of intermediate elements called modules are constructed with
transcription factors (TFs) as their input and target genes their output. The activity
level of a module depends on its input and its type, and determines the production rate
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of its output. The modules model the binding of protein complexes to DNA in
transcriptional regulation. TFs can regulate the target gene through one or multiple
modules. Assuming for each TF and each target gene there is only one module that
takes the TF as an input and the target gene as an output, we show that CSP is
satisfied, so each GeneNetWeaver ODE model has a well-defined graph model associated
with it. The combinatorial nature of the number of possible module configurations (i.e.,
the number of the modules and their input and output) and the continuous value
parameters make the GeneNetWeaver ODE models extremely rich.

The organization of this paper is as follows. In Section 2.1, we describe the ODE
models and the graph models, and propose two notions of CSP. In Section 2.2, we
describe ODE models based on GeneNetWeaver. The Results section has three
subsections. In Section 3.1, a relation of the two notions of CSP is provided. In
Section 3.2, the GeneNetWeaver ODE models are shown to satisfy the constant sign
property, and their complexity is investigated. In Section 3.3, a case study of a core
soybean flowering network based on the literature is presented to demonstrate the use of
the GeneNetWeaver ODE models. First it is illustrated that a single signed, directed
graph model has a large space of consistent ODE models. Second, to study how
different the GeneNetWeaver ODE models are, we explore the problem of numerically
fitting parameters of one ODE model to synthetic expression data generated from
another. The generalization, implication and limitation of CSP are discussed before the
concluding remarks.

2 Materials and methods

2.1 ODE model and constant sign property
In this section we define the constant sign property, a property under which ODE
models are consistent with signed directed graphs. Roughly speaking, CSP holds when
unilaterally increasing the expression level of one gene causes the expression level of
another gene to move in one direction. In other words, the effect of one regulator gene
has a constant sign on a target gene. In rare cases, CSP may hold globally, regardless of
the expression levels of all the genes and the concentrations of any other molecular
classes. More generally, CSP may hold only for a set of expression levels and system
parameters, leading to a local definition. We present the precise definition of CSP in
this section.

Let x1(t), x2(t), . . . , xn(t) be the mRNA abundances for the n genes (the
observables) at time t. Let xn+1(t), xn+2(t), . . . , xn+m(t) be the protein concentrations
(the unobservables) at time t, which may include derived (protein complexes and
modifications like protein phosphorylation) and localized (e.g., cytoplasmic and nuclear)
proteins. Let xn+m+1(t), xn+m+2(t), . . . , xn+m+l(t) be the strengths of the chemical
and environmental signals (the controllables, e.g., temperature and photoperiod) at time
t. Let x(t) = (xi(t) : i ∈ [n+m+ l]) be the system state at time t, where [n] denotes
the set of integers {1, 2, . . . , n}. Let λ ∈ Rs be the parameters of the ODE model and
let fi : Rn+m+l × Rs → R be the time derivative of xi as a function of the
(n+m+ l)-dimensional system state and the parameters for i ∈ [n+m]. Note the
domain of fi is assumed to be the entire Euclidean space rather than a subset of it
without loss of generality because one can always restrict fi to a subset of states that x
takes. Examples of f for the single-input case (n+m+ l = 1) include the
Michaelis–Menten kinetics and the more general Hill kinetics. Examples of f for the
multi-input case (n+m+ l ≥ 2) include the Shea–Ackers model [16,17], which is the
average production rate based on a Gibbs measure of the control states, and the
GeneNetWeaver model to be discussed later in this paper, which models the additive

June 13, 2020 3/28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.01.22.916114doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.916114
http://creativecommons.org/licenses/by-nc-nd/4.0/


effect of multiple intermediate Shea–Ackers type modules. Both the Shea–Ackers model
and the GeneNetWeaver model generalize the Hill kinetics to multi-input scenarios in
their own ways and are, among many other sophisticated ODE models, within the
framework of ODE models in this paper.

Formally, given the numbers of molecular classes (i.e., n classes of mRNAs, m classes
of proteins, and l classes of molecular signals), the dynamics of an ODE model are
characterized by the collection of time derivatives for the uncontrollable variables
f = (fi : i ∈ [n+m]). In the rest of the paper an ODE model refers to the collection of
the functions f . The trajectories of the mRNA and protein concentrations evolving with
time depend on (x0, x̃, λ), where x0 =

(
x0i : i ∈ [n+m]

)
are the initial conditions of the

mRNAs and proteins at time 0, x̃ = (x̃i(t) : n+m+ 1 ≤ i ≤ n+m+ l, t ≥ 0) are the
predefined external signal strengths for all time, and λ ∈ Rs are the parameters. The
trajectories can then be obtained by solving the following initial value problem.

xi(0) = x0i , i ∈ [n+m],

xi(t) = x̃i(t), n+m+ 1 ≤ i ≤ n+m+ l, t ≥ 0,

dxi(t)

dt
= fi(x(t), λ), i ∈ [n+m].

Note the signals (xi : n+m+ 1 ≤ i ≤ n+m+ l) are exogenously controlled and not
solved via the equations. In this paper we assume existence and uniqueness of the
solution on the entire positive time horizon for ease of exposition. The concept of CSP
can be easily generalized to ODE models where only local solutions exist.

2.1.1 Infinitesimal monotonicity

We first define a version of monotonicity called infinitesimal monotonicity such that CSP
using this definition of monotonicity can be applied to a broad class of ODE models.

Roughly speaking, infinitesimal monotonicity characterizes the monotone influence
of one observed variable on another over a sufficiently short period of time. Such
monotonicity depends on the current system state. For each regulator–target pair, to
avoid external and indirect influence, we clamp the exogenous signals as well as the
observed variables other than the target to their initial values, so only the unobserved
variables and the target observed variable are allowed to change with time. The
clamped value of the regulator can be perturbed. A change in the constant value of the
regulator can cause a change in the target observed variable in continuous time, possibly
through one or multiple unobserved variables. The system with the input at the
regulator observable and output at the target observable is thus treated as a black box
in the sense that one does not need to know its internal states (the unobservables) to
determine the infinitesimal monotonicity of the system. This assumes that the initial
internal states are fixed.

Given the ODE model f , and given a state x ∈ Rn+m+l and parameters λ ∈ Rs, let
j be the target gene and let the dynamics of the clamped ODE model be driven by

f̂
(j)
k =

{
fk if k ∈ {j} ∪ [n+ 1 : n+m],

0 otherwise,

for any k ∈ [n+m+ l]. Here [a : b] denotes the set of integers {a, a+ 1, . . . , b}. Then
f̂ (j) =

(
f̂
(j)
k : k ∈ [n+m+ l]

)
determines the dynamics of a system where the mRNA

abundances and exogenous signals remain constant across time except for the mRNA
abundance of gene j. Fix a potential regulator gene i 6= j and let(
η(j)(t, h, x, λ) ∈ Rn+m+l : t ≥ 0

)
be the solution of the initial value problem with initial
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condition (xi + h, x−i), dynamics f̂ (j), parameters λ. Note here η(j) also includes the
clamped exogenous signals. Also note that for any t we have

η
(j)
k (t, h, x, λ) ≡ xk for k ∈ [n]\{i, j} and k > n+m,

η
(j)
i (t, h, x, λ) ≡ xi + h,

and
η
(j)
j (0, h, x, λ) = xj .

The following definition gives a precise characterization of the target gene expression to
be strictly increasing or decreasing with respect to the regulator gene expression in a
small future time period.

Definition 1 (Infinitesimal monotonicity). For an ODE model f at state x with
parameters λ and (i, j) ∈ [n]2 with i 6= j, the infinitesimal monotonicity for i on j is
given by

Binf(i, j, x, λ) =



∅ if ∀h and ∀t, η(j)j (t, h, x, λ) = η
(j)
j (t, 0, x, λ),

{1} if ∃ε > 0 such that ∀t ∈ (0, ε) and ∀h ∈ (−ε, 0) ∪ (0, ε),
η
(j)
j (t,h,x,λ)−η(j)j (t,0,x,λ)

h > 0,

{−1} if ∃ε > 0 such that ∀t ∈ (0, ε) and ∀h ∈ (−ε, 0) ∪ (0, ε),
η
(j)
j (t,h,x,λ)−η(j)j (t,0,x,λ)

h < 0,

{1,−1} otherwise.

Equivalently, in less mathematical terms, Binf(i, j, x, λ) = ∅ indicates gene i does not
affect gene j at state x and parameters λ. The cases with Binf(i, j, x, λ) = {1} and
{−1} indicate gene i activates or represses gene j, respectively, at state x and
parameters λ in a small time period with small perturbation. The case with
Binf(i, j, x, λ) = {1,−1} indicates gene i does not affect gene j in a monotone way.

Remark 1. Note the case Binf(i, j, x, λ) = {1,−1} can happen when the expression level
of the target gene j reaches the maximum with respect to xi, so that a change of xi in
either direction will cause the solution η(j)j (t, h, x, λ) to decrease for small t, in which
case the monotonicity is indeterminate (neither increasing nor decreasing).

In practice the values of x and λ may be unknown, so we are interested in how Binf

varies with x and λ. Usually we expect some level of continuity of Binf with respect to
x and λ, so the infinitesimal monotonicity of the ODE model may be consistent in a
small set of (x, λ) pairs, denoted by S. In the case when S equals the entire
state–parameter space, the infinitesimal monotonicity is consistent globally. The
following definition generalizes Definition 1 by checking the consistency of infinitesimal
monotonicity over a set S, and defines an associated graph.

Definition 2 (Infinitesimal gene regulatory graph). The infinitesimal gene regulatory
graph of an ODE model f over S ⊆ Rn+m+l × Rs is given by a graph
([n], Einf(S), Binf(S)), where the set of edge labels
Binf(S) =

(
Binf(i, j, S) : (i, j) ∈ [n]2, i 6= j

)
is defined by

Binf(i, j, S) =
⋃

(x,λ)∈S

Binf(i, j, x, λ)

and the set of edges is

Einf(S) = {(i, j) : Binf(i, j, S) 6= ∅} .
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Equivalently, in less mathematical terms, Binf(i, j, S) = ∅ indicates gene i does not
affect gene j when (x, λ) is in S. The case with Binf(i, j, S) = {1} indicates gene i can
increase gene j for some (x, λ) in S, but cannot decrease gene j for any (x, λ) in S. The
case with Binf(i, j, S) = {−1} indicates gene i can decrease gene j for some (x, λ) in S,
but cannot increase gene j for any (x, λ) in S. The case with Binf(i, j, S) = {1,−1}
indicates the monotonicity is indeterminate over S.

Definition 3 (Infinitesimal constant sign property). An ODE model f satisfies the
infinitesimal constant sign property over S ⊆ Rn+m+l × Rs if
∀(i, j) ∈ Einf(S), Binf(i, j, S) = {1} or Binf(i, j, S) = {−1}. In other words, the ODE
model satisfies infinitesimal constant sign property on S if no pair of (i, j) has
indeterminate monotonicity on S.

Remark 2. The set S represents the set of states where the infinitesimal CSP holds. If
S is the entire state space then we say the infinitesimal CSP holds globally. Complex
biological systems usually do not satisfy CSP globally, but may satisfy CSP locally over
the set S where the system states reside. For example, in Fig 1, the gene expressions in
the flowers may be contained in set S1 where the infinitesimal CSP is satisfied with a
gene regulatory graph G1, while the gene expressions in the leaves may be contained in
set S2 that does not intersect with S1, and the infinitesimal CSP is satisfied with a
different gene regulatory graph G2.

2.1.2 Sum–product monotonicity

Infinitesimal monotonicity gives a natural notion of monotonicity, but it is expressed in
terms of the solutions of the differential equations, and solving the differential equations
can be analytically challenging and numerically unstable. Hence, in this section we
focus on ODE models with a smooth f and propose another notion of monotonicity that
does not require solving the system of ODEs.

Definition 4 (Molecular graph). The molecular graph of an ODE model is a graph
whose vertices are the internal molecular classes (i.e., the observables and the
unobservables) and whose edges indicate non-constant effects among the internal
molecular classes with signs indicating monotonicity of the effects. Formally, given an
ODE model f , the molecular graph at state x ∈ Rn+m+l with parameters λ ∈ Rs is a
directed graph with vertices [n+m] and edges Emol, where

Emol = {(i, j) ∈ [m+ n]2 : there exists x ∈ Rn+m+l, λ ∈ Rs, and x′i ∈ R such that
fj(x, λ) 6= fj((x

′
i, x−i), λ)}.

In other words (i, j) /∈ Emol if fj does not actually depend on xi. See Fig 2(A) for an
example of a molecular graph. Note in general we could have edges from unobservables
to unobservables (e.g., protein–protein interactions) and from observables to observables
(modeling fast translation where mRNA abundances and protein concentrations are
considered the same).

The molecular graph represents the interactions among all the molecular classes.
However, usually only the mRNA abundances are measured; the proteins and their
derived products are not measured, making the molecular graph only partially observed.
As a result, one often seeks an induced graph on the mRNA classes, which leads to the
following definitions analogous to the clamped systems for infinitesimal monotonicity.

Definition 5 (Unobserved path of length q for q ≥ 1). Given a molecular graph, the set
of unobserved paths from one mRNA to another is the set of paths that do not go
though another mRNA. Formally, given n, m, l, and edges Emol ⊆ [n+m]2 and
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Fig 2. A molecular graph and its corresponding gene regulatory graph for
the single-loop network in the study [18]. (A) The molecular graph for the ODE
model of the single-loop network. Blue edges indicate positive first-order partial
derivatives, and red edges indicate negative first-order partial derivatives. (B) The
corresponding global gene regulatory graph for (A) with blue edges indicating activation
and red edges indicating repression (the constant sign property is satisfied globally
under both notions of CSP by Proposition 1).

i, j ∈ [n] with i 6= j, the set of unobserved paths of length q connecting i and j is

Pqij =

{
(r0, r1, . . . , rq) ∈ [n+m]q+1 : rq = i, r0 = j, and ∀k ∈ [1 : q − 1], rk ∈ [n+ 1 : n+m],

and ∀k ∈ [q], (rk, rk−1) ∈ Emol

}
.

Definition 6 (Molecular distance). The molecular distance from i to j is

q∗ij =

{
min{q : Pqij 6= ∅} if Pqij 6= ∅ for some q,
∞ otherwise.

Definition 7 (Sum–product monotonicity). For genes i and j, state x and parameters λ,
the sum–product monotonicity is defined by

Bsum(i, j, x, λ) =


∅ if q∗ij =∞,
{1} if q∗ij <∞ and ∆(i, j, x, λ) > 0,

{−1} if q∗ij <∞ and ∆(i, j, x, λ) < 0,

{1,−1} if q∗ij <∞ and ∆(i, j, x, λ) = 0,

where ∆(i, j, x, λ) ,
∑
r∈P

q∗
ij

ij

∏q∗ij
l=1 ∂rlfrl−1

(x, λ).

Note Bsum is only based on derivatives of f , not solving the ODEs. It plays a similar
role as Binf . Thus we can define sum–product gene regulatory graph and sum–product
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constant sign property in a similar way as Definitions 2 and 3. A relation between the
infinitesimal monotonicity and the sum–product monotonicity is given in 1 in the
Results section.

2.2 GeneNetWeaver ODE model
We consider a differential equation model such that transcription factors participate in
modules which bind to the promoter regions of a given target gene. This model is based
on the GeneNetWeaver software version 3 [10]. Part of the model of the popular
simulator is described in the studies [12] and [11], but there is no good reference that
precisely describes the model. So in this section we describe the generative model in
GeneNetWeaver based on a given directed graph, and show in the next section that the
CSP is satisfied. Note GeneNetWeaver models are a special class of ODE models with
the molecular graphs being bipartite, resulting in no unobserved paths of length greater
than 2, unlike the general case as illustrated in Fig 2. GeneNetWeaver allows fast
protein–protein interactions though the f function, but does not characterize slow
protein–protein interactions or external signals.

The model in GeneNetWeaver is based on standard modeling assumptions (see [19])
including statistical thermodynamics, as described in the study [20]. The activity level
of the promoter of a gene is controlled by one or more cis-regulatory modules, which for
brevity we refer to as modules. A module can be either an enhancer or a silencer. Each
module has one or more transcription factors as activators, and possibly one or more
TFs as deactivators. For each target gene, a number of modules are associated with its
TFs such that each TF is an input of one of the modules. For simplicity assume that
each module regulates only a single target gene.

Let ([n], E , b) be a directed signed graph with vertices [n], edge set E , and edge signs
b. For target gene j, let Nj , {i ∈ [n] : (i, j) ∈ E} be the set of its TFs and let
Sj ⊆ P(Nj) be a partition of Nj according to the input of the modules. Then the
modules for target gene j can be indexed by the tuple (K, j) (denoted by K : j in the
subscripts), where K ∈ Sj . Note each TF regulates the target gene j only through one
module. The random model for assignment of the TFs to modules and of the
parameters in GeneNetWeaver is summarized in Appendix S2. Let the sets of activators
and deactivators for module K : j be AK:j and DK:j with AK:j ∪DK:j = Nj and
AK:j ∩DK:j = ∅. For a module K : j, let cK:j be the type (1 for enhancer and −1 for
silencer), rK:j the mode (1 for synergistic binding and 0 for independent binding). Note
rK:j only matters for multi-input modules (i.e., those with |K| > 1). Let βK:j ≥ 0 be
the absolute effect of module K : j on gene j in mRNA production rate. Note that by
the construction in Appendix S2, it is guaranteed that
bij = cK:j(1{i∈AK:j} − 1{i∈DK:j}).

Let xi(t) and yi(t) be the mRNA and protein concentrations for gene i at time t. We
ignore t in the remainder of the paper for simplicity. The dynamics are given by

dxi
dt

= fi(y)− δixi

and
dyi
dt

= f
(p)
i (xi)− δ(p)i yi,

where fi(y) is the relative activation rate for gene i (i.e. the mRNA production rate for
gene i for the normalized variables) discussed in the next two subsections,
f
(p)
i (xi) = ρixi is the translation rate of protein i, and δi and δ

(p)
i are the degradation

rates of the mRNA and the protein. Because only x is observed in RNA-seq
experiments, without loss of generality the unit of the unobserved protein concentrations
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can be chosen such that ρi = δ
(p)
i for all i (see nondimensionalization in the study [12]).

Note the GeneNetWeaver model is a special ODE model with m = n and l = 0.

2.2.1 Activity level of a single module

For edge (i, j), the normalized expression level of gene i, νij , is defined by

νij =

(
yi
kij

)hij

,

where kij is the Michaelis–Menten normalizing constant and hij is a small positive
integer, the Hill constant, representing the number of copies of the TF i that need to
bind to the promoter region of gene j to activate the gene. (If gene i is not bound to
the promoter region of gene j, it is like taking the Hill constant equal to zero and thus
normalized expression level equal to one.) The activity level of module K : j denoted by
MK:j , which is the probability that module K : j is active, is given in the following
three cases.
Type 1 modules: Input TFs bind to module independently

In this case, rK:j = 0, and we have

MK:j =

 ∏
i∈AK:j

νij
1 + νij

 ∏
i∈DK:j

1

1 + νij

 .

Interpreting each fraction as the probability that an activator is actively bound (or a
deactivator is not bound), the activation MK:j is the probability that all the inputs of
module K : j are working together to activate the module, i.e., the probability that the
module is active. It is assumed that for a module to be active, all the activators must
be bound and all the deactivators must be unbound, and all the bindings happen
independently.

One can think of module K : j as a system with 2|AK:j |+|DK:j | possible states of the
inputs. Suppose each input j binds with rate νij and unbinds with rate 1 independently.
Then the stationary probability of the state that all the activators are bound and none
of the deactivators is bound is MK:j .

Alternatively, one can assign additive energy of

Eij = − log νij

= −hij log
yi
kij

to each bound input gene i and energy zero to each unbound gene. Then MK:j is the
probability that all activators are bound and none of the deactivators is bound in the
Gibbs measure. In other words, the Type 1 modules are Shea–Ackers models with all
binding states possible and only the one state with all the activators initiating
transcription.
Type 2 modules: TFs are all activators and bind to module as a complex

In this case, DK:j = ∅, rK:j = 1, and we have

MK:j =

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij
.

One can think of such a module as a system with only two states: bound by the
activator complex, or unbound. The transition rate from unbound to bound is∏
i∈AK:j

νij , and that from bound to unbound is 1. Then the activation of the module is
the probability of the bound state in the stationary distribution, given by MK:j .
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Alternatively, this corresponds to the Shea–Ackers model as in the previous case,
except all the states other than fully unbound and fully bound are unstable (i.e. have
infinite energy).
Type 3 modules: Some TFs are deactivators and bind to module as a
complex

In this case, DK:j 6= ∅ and rK:j = 1, and we have

MK:j =

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij +
(∏

i∈AK:j
νij

)(∏
i∈DK:j

νij

) . (1)

In this case the system can be in one of three states: unbound, bound by the activator
complex, and bound by the deactivated (activator) complex. The Gibbs measure in the
Shea–Ackers model for Type 3 modules with three stable states (i.e. have finite energy)
assigns probability MK:j to the activated state.

Note if
∏
i∈∅ νij is understood to be 0 then Eq (1) reduces to Type 2 when DK:j = ∅.

However historically
∏
i∈DK:j

νij was understood as 1 in an early version of
GeneNetWeaver and caused a bug of wrong Type 2 modules.

Remark 3. Presumably it is possible for there to be more than three stable states for a
module, so additional types of modules could arise, but for simplicity, following
GeneNetWeaver, we assume at least one of the three cases above holds.

Remark 4. If a module K : j has only one input i (i.e. K = {i}) then the module is
type 1 and MK:j =

νij
1+νij

or MK:j = 1
1+νij

. We will see later in the random model of
GeneNetWeaver that only the former (single activator) is allowed.

GeneNetWeaver software uses the 3 types of modules derived above. In all three
cases the activation MK:j is monotonically increasing in yi for activators i ∈ AK:j , and
monotonically decreasing in yi for deactivators i ∈ DK:j .

2.2.2 Production rate as a function of multiple module activations

The relative activation of gene j as a function of the protein concentrations y is

fj(y) =
∑

s∈{0,1}Sj

αj,s

 ∏
K∈Sj : sK=1

MK:j

 ∏
K∈Sj : sK=0

(1−MK:j)

 , (2)

where αj,s is the relative activation of the promoter under the module configuration s.
Note that α in Eq (2) gives 2|Sj | degrees of freedom, one for every possible subset of the
modules being active. However, following the GeneNetWeaver computer code [10], we
assume that the interaction among the modules is linear, meaning that for some choice
of αj,basal, (cK:j : K ∈ Sj), and (βK:j : K ∈ Sj), we have for any configuration
s ∈ {0, 1}Sj ,

αj,s = αj,basal +
∑

K∈Sj : sK=1

cK:jβK:j , (3)

This reduces the number of degrees of freedom for α to |Sj |+ 1. Then, combining
Eq (2) and Eq (3) yields
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fj(y) = Eαj,S
= αj,basal +

∑
K∈Sj

cK:jβK:j ESK

= αj,basal +
∑
K∈Sj

cK:jβK:jMK:j , (4)

where S is distributed by the product distribution of the Bernoulli distributions with
means (MK:j : K ∈ Sj). So the relative activation, or the mRNA production rate, of a
gene is given by the basal activation plus the inner product of the module effects and
the module activation. We also note that the effect of the modules is not assumed to be
statistically independent: all we need to know to compute the relative activation of a
gene are the marginal probability of activation of the single modules.

Taking into account the three different types of modules described in Section 2.2.1,
Eq (4) yields the following expression for the relative activation of gene j:

fj(y) = αj,basal +
∑

K : rK:j=0

cK:jβK:j

 ∏
i∈AK:j

νij
1 + νij

 ∏
i∈DK:j

1

1 + νij


+

∑
K : rK:j=1
DK:j=∅

cK:jβK:j

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij
(5)

+
∑

K : rK:j=1
DK:j 6=∅

cK:jβK:j

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij +
(∏

i∈AK:j
νij

)(∏
i∈DK:j

νij

) .
As we will see in the Results section, f satisfies the CSP. Note that in the actual
GeneNetWeaver source code every αj,s is truncated to the interval [0, 1]:

αj,s =

αj,basal +
∑

K∈Sj : sK=1

cK:jβK:j

1

0

,

where [x]10 = max{min{x, 1}, 0} is the projection of x to the [0, 1] interval. Then the
relative activation in each state may not be linear in the individual module effects. In
that case one has to resort to Eq (2) instead of Eq (5) for computing the mRNA
production rate. The resulting truncated model does not necessarily satisfy the CSP
because fj may not be monotone in MK:j in Eq (2).

3 Results

3.1 A relation between infinitesimal monotonicity and
sum–product monotonicity

The following result establishes the equivalence of the two notions of monotonicity for
ODE models that satisfy the sum–product CSP. So if the sum–product CSP holds, we
do not need to distinguish between the sum–product CSP and the infinitesimal CSP.
Consequently, given an ODE model, one can easily find the corresponding graph models
for different system parameters, external signals, and internal states by calculating the
sum products of the first-order partial derivatives of the input function f .
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Proposition 1. If f is smooth and satisfies the sum–product CSP over
S ⊆ Rn+m+l × Rs, then it also satisfies the infinitesimal CSP over S, and the
sum–product gene regulatory graph and the infinitesimal gene regulatory graph are the
same.

Proof. It suffices to show Bsum(i, j, x, λ) = Binf(i, j, x, λ) if Bsum(i, j, x, λ) 6= {1,−1} for
any (x, λ) ∈ S. For fixed i, j, x, λ, let η(t, h) , η(j)(t, h, x, λ) be the solution of the
clamped initial value problem at time t with initial condition η(0, h) = (xi + h, x−i).
We are interested in the sign of

g(t, h) , ηj(t, h)− ηj(t, 0).

If q∗ij =∞ then we readily have Bsum(i, j, x, λ) = Binf(i, j, x, λ) = ∅. Suppose
q∗ij = q <∞. Then by Corollary 4.1 in Section 5 of [21] (page 101), f being smooth
implies g is also smooth, and we can show that (see the proof in Appendix S3.)

∂tahbg(0, 0) =

{
∆(i, j, x, λ) if (a, b) = (q, 1),

0 if 0 ≤ a ≤ q − 1 or b = 0.
(6)

Hence by the multivariate Taylor’s theorem (see, e.g., [22])

g(t, h) = g(0, 0) + g′(0, 0)(t, h) +
1

2
g(2)(0, 0)(t, h)2 + . . .

+
1

(q + 1)!
g(q+1)(0, 0)(t, h)q+1 + o(|t|q+1 + |h|q+1)

= 0 + 0 + · · ·+ 0 +
1

(q + 1)!

(
∂q+1g

∂tq+1
(0, 0)tq+1 +

(
q + 1

1

)
∂q+1g

∂tq∂h
(0, 0)tqh

+ · · ·+ ∂q+1g

∂hq+1
(0, 0)hq+1

)
+ o(|t|q+1 + |h|q+1)

=
1

q!
∆(i, j, x, λ)tqh+ o(|t|q+1 + |h|q+1)

as (t, h)→ (0, 0). So g(t, h) has the same sign as ∆(i, j, x, λ)tqh in a sufficiently small
neighborhood of (0, 0). Hence Bsum(i, j, x, λ) = Binf(i, j, x, λ).

Remark 5. If multiple ODE models satisfy CSP with the same gene regulatory graph,
then they can be combined into a single ODE model with different parameterization so
that the combined ODE model still satisfies CSP with the same gene regulatory graph.
For example, ODE models for different environmental temperatures can be either
considered different models or a single unified model with different temperature
parameter. Then the temperature-specific models satisfy CSP with the same gene
regulatory graph if and only if the unified model satisfies CSP for all temperatures.
Remark 6. The effect of a gene on itself can be either autoregulation or degradation.
The two effects can be distinguished with the molecular graph: a self-loop with negative
derivative indicates degradation, and a loop of multiple hops indicates autoregulation.
The infinitesimal monotonicity does not distinguish the two effects.

The following is an example of an ODE model that does not satisfy CSP globally,
based on the interactions among FT, TFL1, FD, and LFY genes in the study [9].
Example 1. Consider a four-gene ODE model with the following dynamics for gene 4.

ẋ4 = f4(x1, x2, x3)

,
x1x3

λ1 + x1x3

λ2
λ2 + x2x3

,
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where we use x for both the mRNA and protein concentrations. The biological meaning
could be genes 1 and 3 form a protein complex that activates gene 4, while genes 2 and
3 form a protein complex that represses gene 4. Then it can be checked that the effect
of gene 3 on gene 4 does not satisfy the CSP globally. Indeed, one can check that

∂3f4 =
x1λ2

(λ1 + x1x3)2(λ2 + x2x3)2
(λ1λ2 − x1x2x23).

So gene 3 activates gene 4 if λ1λ2 > x1x2x
2
3, and represses gene 4 if λ1λ2 < x1x2x

2
3.

Here is an example of a molecular graph having a shorter unobserved path
dominating a longer unobserved path with the opposite sign, taken from part of the
gene regulatory network in the study [23], achieving CSP with the sign of the shorter
path (see Fig 3).

ELF4

GI

ELF4m ELF4p

EC c

LUX p

(A) (B)

GI m

Fig 3. Molecular graph and gene regulatory graph of the ELF4–GI regulation in the
study [23]. (A) The molecular graph with blue edges indicating positive partial
derivatives and red edges indicating negative partial derivatives. (B) The gene
regulatory graph.

Example 2. The mRNA ELF4m is transcribed into the protein ELF4 p, which then
forms the complex EC c with the protein LUX p. The complex EC c induces the
transcription of the mRNA GIm. Then there is a 3-hop path
(ELF4m–ELF4 p–EC c–GIm) and a 4-hop path (ELF4m–ELF4 p–LUX p–EC c–GIm)
from ELF4m to GIm with opposite signs. The ODE model of the molecular graph
satisfies CSP with ELF4 activating GI in the gene regulatory graph.

3.2 GeneNetWeaver: CSP and complexity
In this section GeneNetWeaver models (without the truncation of the α terms in the
implementation) are shown to satisfy the CSP globally, regardless of the parameters and
the system states, and thus correspond to the signed directed graphs that were used to
generate the models. Moreover, when data is generated through multifactorial
perturbation for the DREAM challenge (primarily for generation of stationary
expression levels, rather than trajectories), each ensemble of networks produced is also
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associated with the same directed signed graph. This is in contrast to the Shea–Ackers
model, which is shown to be able to generate non-monotone behavior [17]. Formally we
have the following result.

Proposition 2. Given any directed signed graph, the ensemble of the GeneNetWeaver
models satisfy CSP over (0,∞)2n and the gene regulatory graphs coincide with the given
graph.

Proof. Fix any model of the ensemble of GeneNetWeaver models for the given graph.
For any target gene j and its regulator i ∈ Nj , there exists a unique module, indexed by
K : j, whose input K ∈ Sj includes i. Then for any of the three module types,

∂νijMK:j

{
> 0 if i ∈ AK:j ,

< 0 if i ∈ DK:j .

Then by Eq (4),

∂yifj = cK:jβK:j∂νijMK:jhij
y
hij−1
i

k
hij

ij

and
∂xif

(p)
i = ρi.

Because only cK:j and ∂νijMK:j can be negative in ∂yifj∂xi
f
(p)
k , the sum–product of

the first-order partial derivatives of the path from xi to xj has the same sign as
cK:j∂νijMK:j , which is consistent with the sign bij in the given graph by the
construction in Appendix S2. Hence by Proposition 1 the fixed ODE model satisfies
CSP over all positive state vectors with gene regulatory graph equal to the given graph.
Repeat this for all ODE models in the ensemble and the proposition is proved.

We now discuss the complexity of GeneNetWeaver ODE models for a given gene
regulatory graph. The complexity comes from both the large number of parameters and
the combinatorial nature of the module configurations. The complexity indicates that
ODE models are both much more detailed and considerably harder to infer compared to
the graphical models.

For each gene i there are 5 non-negative real parameters (αi,basal, xi(0), yi(0), δ(m)
i ,

δ
(p)
i ). For each edge (i, j) there is a non-negative real parameter (kij) and an integer
parameter (hij). For each module K : i there is a positive real parameter (βK:i) and
two binary parameters (cK:i and rK:i).

The module configuration encodes great combinatorial complexity. Given a gene has
K ≥ 1 input genes, the number of ways to partition the genes into modules is the Kth
Bell number. The first ten Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and
115975. In addition, each input to a given module needs to be classified as an activator
or deactivator.

3.3 Case study: soybean flowering networks
In this section the similarities of the ODE models corresponding to three different graph
models are studied. First the classes of ODE models are listed for the three graph
models. Then, to investigate their similarities, we generate expression data from one
ODE model, and fit another model to the data by optimizing the parameters. The level
of fitness of one class of ODE model to the data generated from another is used as a
metric of similarity. As we will see, ODE models corresponding to the same graph
model tend to have a higher similarity, while those from different graph models tend to
have a lower similarity, as long as the least-squares problem is sufficiently
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overdetermined. The result implies that the graph model corresponding to the ODE
model may be recovered with moderate amount of data, while the amount of data
required for ODE model recovery may be of a much higher order. The simulation code
for the data fitting results is available at [24].

3.3.1 Five-gene graph and ODE models

In this section we explicitly write out the classes of GeneNetWeaver ODE models of
three graph models. The first two graph models are compiled from the literature, with
only the sign of one edge different between them (the difference is discovered in the
study [25]). The third graph model is an arbitrary five-gene repressilator for comparison
purpose.

Flowering network with COL1a activating E1 A graph model of a five-gene
soybean flowering network is shown in Fig 4. The network is based on the flowering
network for Arabidopsis and homologs of Arabidopsis genes found in soybean (see
references in Table 1). The corresponding gene IDs are shown in Table 2.

COL1aE1

FT4 FT2a

AP1a

1 2

3 4

5

xkcd cerulean 
(#0485d1)

xkcd rose 
(#cf6275)

Fig 4. A graph model of the core flowering network for soybean.

regulatory interaction reference

E1 activates COL1a [26]
E1 activates FT4 [27]

COL1a activates E1 [25]
COL1a represses E1 [26]
COL1a activates FT4 [26], [25]
COL1a represses FT2a [26], [25]
FT4 represses AP1a [27]*
FT2a activates AP1a [28]

Table 1. Core flowering genes.
* For FT4 only, not for the interaction with AP1a.

The mRNA and proteins concentrations of the soybean genes E1, COL1a, FT4,
FT2a, and AP1a are denoted by (xi)1≤i≤5 and (yi)1≤i≤5. The differential equations
based on the GeneNetWeaver model are

ẋ1 = α1,basal +
(y2/k21)h21

1 + (y2/k21)h21
β2:1 − δ(m)

1 x1. (7)

ẋ2 = α2,basal +
(y1/k12)h12

1 + (y1/k12)h12
β1:2 − δ(m)

2 x2. (8)
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index gene ID gene name

1 Glyma.06G207800 E1
2 Glyma.08G255200 COL1a
3 Glyma.08G363100 FT4
4 Glyma.16G150700 FT2a
5 Glyma.16G091300 AP1a

Table 2. Core flowering genes.



ẋ3 = α3,basal + (y1/k13)
h13

1+(y1/k13)h13

(y2/k23)
h23

1+(y2/k23)h23
β12:3 − δ(m)

3 x3

(independent binding), or
ẋ3 = α3,basal + (y1/k13)

h13 (y2/k23)
h23

1+(y1/k13)h13 (y2/k23)h23
β12:3 − δ(m)

3 x3

(synergistic binding), or
ẋ3 = α3,basal + (y1/k13)

h13

1+(y1/k13)h13
β1:3 + (y2/k23)

h23

1+(y2/k23)h23
β2:3 − δ(m)

3 x3

(two modules).

(9)

ẋ4 =

(
α4,basal −

(y2/k24)h24

1 + (y2/k24)h24
β2:4

)+

− δ(m)
4 x4. (10)

ẋ5 = α5,basal + 1
1+(y3/k35)h35

(y4/k45)
h45

1+(y4/k45)h45
β34:5 − δ(m)

5 x5

(independent binding enhancer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35

1
1+(y4/k45)h45

β34:5

)+
− δ(m)

5 x5

(independent binding silencer), or
ẋ5 = α5,basal + (y4/k45)

h45

1+(y4/k45)h45+(y3/k35)h35 (y4/k45)h45
β34:5 − δ(m)

5 x5

(synergistic binding enhancer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35+(y3/k35)h35 (y4/k45)h45
β34:5

)+
− δ(m)

5 x5

(synergistic binding silencer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35
β3:5 + (y4/k45)

h45

1+(y4/k45)h45
β4:5

)+
− δ(m)

5 x5

(two modules).

(11)

ẏ1 = ρ1(x1 − y1). (12)

ẏ2 = ρ2(x2 − y2). (13)

ẏ3 = ρ3(x3 − y3). (14)

ẏ4 = ρ4(x4 − y4). (15)

ẏ5 = ρ5(x5 − y5). (16)

Here (x)+ = max{x, 0}. We apply nondimensionalization by setting
δi = αi,basal +

∑
j βj:i, so that the steady state expression levels are between 0 and 1.

We can see that given the graph, there are 15 configurations of the ODEs (3 for x3
times 5 for x5). We use [i, j] with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 5 to denote the configuration
using the ith equation for x3 and the jth equation for x5, and use the symbol F[i,j],+ to
denote the class of flowering network ODE models with configurations [i, j] (the plus
sign signifies the activation regulation of COL1a on E1 ). The initial conditions, namely
the 5 mRNA abundances x(0)’s and the 5 protein concentrations y(0)’s, are
10-dimensional. In addition, there are 24–26 positive real parameters (depending on the
configuration) and 7 discrete parameters (the Hill coefficients) for the dynamics. For
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example, for configuration [1, 1], the parameters for the dynamics consist of the basal
activations α’s (5), the Michaelis–Menten constants k’s (7), the absolute effect of
modules β’s (7), the translation rate ρ’s (5), summing up to 24 parameters.

Flowering network with COL1a repressing E1 A slight variant of the soybean
flowering graph model in Fig 4 is shown in Fig 5. Note the only difference is the sign of
the edge from COL1a to E1. The symbol F[i,j],− denotes the class of ODE models
Eq (7)–Eq (16) with the ith and the jth configurations in Eq (9) and Eq (11), but with
Eq (7) replaced by

ẋ1 =

(
α1,basal −

(y2/k21)h21

1 + (y2/k21)h21
β2:1

)+

− δ(m)
1 x1. (17)

Here the negative sign in F[i,j],− signifies the repression regulation of COL1a on E1.
The number of parameters is the same as the network in Fig 4.

COL1aE1

FT4 FT2a

AP1a

1 2

3 4

5

xkcd cerulean 
(#0485d1)

xkcd rose 
(#cf6275)

Fig 5. A variant of the graph model of the core flowering network for soybean.

Repressilator An arbitrary repressilator network is shown in Fig 6. The symbol R

21

3 4

5

xkcd cerulean 
(#0485d1)

xkcd rose 
(#cf6275)

Fig 6. A five-gene repressilator graph model.

denotes the class of ODE models for the repressilator, given below.

ẋ1 =

(
α1,basal −

(y3/k31)h31

1 + (y3/k31)h31
β3:1

)+

− δ(m)
1 x1. (18)

ẋ2 =

(
α2,basal −

(y1/k12)h12

1 + (y1/k12)h12
β1:2

)+

− δ(m)
2 x2. (19)
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ẋ3 =

(
α3,basal −

(y4/k43)h43

1 + (y4/k43)h43
β4:3

)+

− δ(m)
3 x3. (20)

ẋ4 =

(
α4,basal −

(y5/k54)h54

1 + (y5/k54)h54
β5:4

)+

− δ(m)
4 x4. (21)

ẋ5 =

(
α5,basal −

(y2/k25)h25

1 + (y2/k25)h25
β2:5

)+

− δ(m)
5 x5. (22)

There is only one possible configuration for each target gene. The dynamics involve 20
parameters.

3.3.2 Data generation

The synthetic expression dataset is generated as follows. For the generated data, we use
F[1,1],+ (the flowering network with configuration [1, 1] and COL1a activating E1 ) with
a fixed set of parameters for the dynamics. For a single set of trajectories (i.e., for a
single plant), we use a set of initial values x(0)’s and y(0)’s generated uniformly at
random between 0 and 1. The entire dataset may consist of only a single set of
trajectories, corresponding to a single plant; or the dataset may consist of multiple sets
of trajectories, corresponding to multiple plants. If multiple sets of trajectories are used,
the initial conditions for each set of trajectories are generated independently, while the
parameters for the dynamics are the same across all sets of trajectories. In other words,
we model distinct plants by assuming distinct initial conditions, while using common
parameters for the dynamics. To produce the data, the x variables are sampled at time
points 0, 1, 2, 3, 4, 5, 6, so that each set of trajectories (i.e., each plant) produces 35
data points. Because each set of trajectories is sampled at different times from the
system with one initial condition representing different stages of a single plant, the
synthetic datasets are of multi-shot sampling, as opposed to one-shot sampling in
practice where each individual is only sampled once [29]. We also generate random
expression datasets with reflected Brownian motions with covariance 0.05, and denote
such a stochastic model by B.

3.3.3 Fitting results

The counts for data points and parameters are summarized in Table 3. Note that with a
single set of trajectories, the number of parameters is close to the number of data points.
As the number of sets of trajectories increases, the number of data points outgrows the
number of parameters because each additional set provides 35 new data points while
only allowing 10 more parameters from the initial conditions (because the dynamic
parameters are shared across all sets of trajectories).

S (number of sets of trajectories) 1 2 5 10
STn (number of data points) 35 70 175 350

F[1,1],+ 34 44 74 124
F[3,5],+ 36 46 76 126
F[1,1],− 34 44 74 124

R 30 40 70 120
Table 3. Number of parameters in different ODE models.

A Basin-hopping algorithm in the Python package LMFIT [30] is used to perform the
global optimization of the curve fitting (see details in the source code of the
simulation [24]). The sample size varies between 35 and 350 depending on the number
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of sets of trajectories. The fit is evaluated by the fitting loss and the coefficients of
determination (R2) shown in Table 4 and Table 5. The fitting loss function for two
S × T × n tensors x and x̂ is defined by

l(x, x̂) =

 1

STn

S∑
i=1

T∑
j=1

n∑
k=1

(xijk − x̂ijk)2

1/2

,

where S is the number of sets of trajectories in the dataset, T the number of time
points, and n the number of genes. Note the time scale of the ODE is assumed to be

S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.0015 0.0015 0.0010 0.0009
fit F[3,5],+ model to F[1,1],+ data 0.0016 0.0021 0.0019 0.0021
fit F[1,1],− model to F[1,1],+ data 0.0032 0.0036 0.0165 0.0208

fit R model to F[1,1],+ data 0.0030 0.0037 0.0148 0.0204
fit F[1,1],+ model to B data 0.1269 0.1125 0.1307 0.1390

Table 4. Fitting losses using different classes of ODE models on different synthetic
datasets.

S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.99996 0.99995 0.99999 0.99999
fit F[3,5],+ model to F[1,1],+ data 0.99995 0.99991 0.99996 0.99995
fit F[1,1],− model to F[1,1],+ data 0.99980 0.99974 0.99702 0.99517

fit R model to F[1,1],+ data 0.99983 0.99972 0.99760 0.99535
fit F[1,1],+ model to B data 0.88639 0.90175 0.87241 0.87517

Table 5. Coefficients of determination using different classes of ODE models on
different synthetic datasets.

known, which restricts how fast the expression levels can change. The time scale thus
acts as a regularizer to prevent overfitting.

We make the following observations from Table 4 and Table 5.

1. The implemented optimization algorithm failed to find the optimal parameters in
row 1 (the best fit should be a perfect fit with zero loss), but the relative loss
compared to the average nondimensionalized expression level 0.5 is very small
(less than 0.5%), and the coefficients of determination are close to 1. Both
indicate a near-optimal fit.

2. ODE models from all three graph models (rows 1, 2, 3, and 4) fit the synthetic
flowering network data well when there are only one or two sets of trajectories
(columns 1 and 2). The relative losses are less than 1% and R2 is larger than
0.9997. We can see from Table 3 that the number of data points is close to the
number of parameters in the S = 1 setting, and only moderately larger in the
S = 2 setting. So when S ≤ 2 the three graph models in this case study are nearly
indistinguishable. In other words, one may not be able to infer the graph
structure with very limited data.

3. When fitting the models to 5 or 10 sets of trajectories simultaneously, i.e., when
the system is sufficiently overdetermined, only the models from the correct graph
(rows 1 and 2) fit well. The models from incorrect graphs (rows 3 and 4) suffer a
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roughly 4% relative loss after fitting for 10 sets of trajectories and R2 falls below
0.998. Note that F[1,1],− differs from the ground truth of the data F[1,1],+ only by
the sign of one edge, while the model R shares no edges in common with the
ground truth at all. Yet the fitness of the slight variant of the ground truth graph
is as bad as the completely different repressilator graph.

4. Both F[1,1],+ and F[3,5],+ fit the F[1,1],+ data very well for all numbers of sets of
trajectories (rows 1 and 2). This indicates the classes of ODE models with
different configurations of the same graph model are similar in terms of data
fitting. Consequently, even with data sufficient to infer the correct graph model, it
may be impossible to infer the specific ODE model.

5. The models from the flowering network cannot fit the random dataset (reflected
Brownian motions with covariance 0.05) well. It turns out that the ODE models
with 34 parameters have trouble following the highly variable 35 data points from
the reflected Brownian motions. The low fitness level to the random dataset
shows great redundancy in the parameters in terms of generating data points. It
also indicates the fitting results to the synthetic ODE data are significant
compared to fitting a random dataset.

4 Discussion

4.1 Generalization of CSP to related gene regulatory network
models

The concept of CSP can be applied to many other models. We first explain this for
continuous-state models, and then for discrete-state models.

4.1.1 Continuous-state models

A network model somewhat similar to ODE models is a fixed-point model. The study
by Van den Bulcke et al. [31] uses a fixed-point model for gene regulatory networks.
ODE models based on Michaelis–Menten and Hill kinetics and linear degradation terms
are used to determine the expression level of a given gene as a function of the expression
levels of other genes. Then a fixed point is produced. This can model equilibrium
points, also known as resting points, of ODE models. The concept of constant sign
property can be applied to fixed-point models as well. Van den Bulcke et al. [31] focuses
on models for the network topology, which is not addressed in this paper.

Other continuous-state models have been used for gene regulatory networks. The
study by Mendes et al. [32] simulates gene regulatory networks using a biochemical
simulator called Gepasi [33], which models complex biochemical pathways using ODEs.
For such biochemical systems, constant sign property discussed in this paper can be
used to find the causal dependency among observed variables (e.g., mRNA abundances
in the special case of gene regulatory networks). In order to avoid the difficult
calibration of the parameters in ODEs, Ocone et al. [34] models the promoter by a
binary state process and approximates the transcription–translation network with
stochastic differential equations. Constant sign property can be easily generalized to
such hybrid models by introducing a notion of monotonicity for the stochastic systems.
It is worth mentioning that constant sign property is defined with directionality for
causal relationship among the genes and not suitable for models based on mere
correlation (e.g., graphical Gaussian models [35]).
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4.1.2 Discrete-state models

One common type of discrete models used for gene regulatory networks are Bayesian
networks (see, e.g., Friedman et al. [36]). Boolean networks, as a special case of
Bayesian networks, are used to capture qualitative gene regulation (see, e.g., Liang et
al. [37]), for which constant sign property can be defined based on the monotonicity of
the boolean functions. The study by Husmeier [38] evaluates a dynamic Bayesian
network inference algorithm using simulated data based on an ODE model whose
genetic network model is taken from Zak et al. [39] and whose equations are taken from
chemical kinetics (see Chapter 22 of Atkins and de Paula [40]). Similarly, the study by
Smith et al. [41] also proposes a dynamic Bayesian network algorithm, and evaluates its
performance on sampled and quantized data from a dynamic Bayesian network
simulator that models different regions of the brain of songbirds regulated by their
behaviors. The simulated data is generated with a small step size before being sampled,
and thus resembles an ODE model simulator. For the dynamic Bayesian network gene
expressions are quantized to discrete values. The constant sign property can also be
applied to dynamic Bayesian network models using a partial order of the conditional
distributions (e.g., stochastic dominance) of target genes given the expressions of their
regulators. Husmeier [38] gives an example of a graphical model that is more detailed
than the gene regulatory graph in this paper. Although both the GeneNetWeaver model
and the ODE models in Husmeier [38] are based on chemical kinetic equations, one
difference is that the Michaelis–Menten and the Hill kinetics in GeneNetWeaver arise
from considerations of a faster time scale of the binding of TF to the promoter regions
(see Alon [19]). Nevertheless, both GeneNetWeaver and the ODE models for realistic
simulation in Husmeier [38] fall into the general framework of ODE models in this paper
and hence the constant sign property we have proposed applies to both.

4.2 Implication of GCSP
GCSP of an ODE model generalizes the notion of a linear dynamical system by allowing
the variation of the state vector (i.e., the concentrations of molecular classes) to be
nonlinear in the state vector so long as the overall effect of the most influential
pathways in the molecular graph keeps the same sign (i.e., activation stays activation
and repression stays repression regardless of the expression of the regulator, the target
gene, or any other molecular classes). Biologically, GCSP indicates homogeneity of the
gene regulatory network in the sense that the qualitative properties of gene regulation
are preserved after cellular differentiation and under different external conditions. Lack
of GCSP indicates significant change in regulatory functions after cellular differentiation
and under different external conditions. Note that GCSP is more likely to hold for the
subnetwork of a small number of genes compared to a larger network.

4.3 Limitation of infinitesimal CSP
The definitions of CSP proposed in this paper focus on short time behavior. Over short
time periods, the paths with the smallest number of hops dominate. Often the shortest
paths have the strongest influence, as seen in Example 2. But in some cases the shortest
paths could be weaker than some slightly longer paths, and if the longer paths have an
opposite sign, then the focus on short time and shortest paths can be misleading,
because the longer paths will take over quickly after the brief initial dominance by the
shortest paths. In the extreme case of a complete molecular graph, where every
molecular class has a (possibly tiny) regulatory effect on every other molecular class,
the gene regulatory graph defined in this paper would be determined by only the direct
edges in the molecular graph and all the actual biological pathways would be entirely
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ignored. This also shows the importance of network sparsity.

5 Conclusion
Gene regulatory networks are modeled at different abstraction levels with tradeoff
between accuracy and tractability. Graph models with signed directed edges provide
circuit-like characterization of gene regulation, while ODE models quantify detailed
dynamics for various molecular classes. The constant sign property proposed in this
paper connects the two types of models by identifying a set of conditions under which
ODE models correspond to a single graph model, and provides a deeper understanding
of the context-dependent and time-varying nature of gene regulatory networks. A class
of ODE models for a given graph model based on the source code of a popular software
package GeneNetWeaver is described in detail and shown to satisfy the global constant
sign property. Exploration of data fitting of one ODE model to the data generated from
another shows better fit when two models have the same graph model.

Appendix

S1 Basic model of gene interaction
In molecular biology, DNA is transcribed into mRNAs, which in turn are translated into
proteins. A gene is a region of the DNA that encodes the corresponding mRNAs and
proteins. We say a gene is expressed if it is producing the corresponding proteins, and
its expression level refers to the concentration of those proteins.

We consider the transcriptional regulatory networks, which involve the interaction of
DNA, mRNA and proteins. In this type of regulatory networks, some proteins are
transcription factors (TFs) regulating the transcription of other genes by turning them
on or off. For example, gene X produces protein X, which may be a TF that activates

AGTC

gene X gene Y

protein X protein Y

mRNA X
mRNA Y

regulation

Fig 7. Direct binding of TFs to the promoter region of the target gene.

gene Y by increasing the transcription rate of gene Y (turning it on). Some TFs are
repressors, whose presence decreases the production rate of the genes they regulate
(turning them off). See Figures 7 and 8 for an illustration. This model suggests
summarizing a gene regulatory network by a directed graph with signed edges, such that
the vertices represent genes and the sign on an edge indicates activation or repression.

The gene expression in the transcriptional regulatory networks can be modeled with
various levels of granularity. Some use multiple variables for each gene (see, e.g., [42]
and [12]), while others use a single variable to represent both the mRNA and the
protein concentrations of a single gene (see, e.g., [19]). Some model the interaction
between TFs and the promoter region of the target genes directly [19], while others
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X Y

activation

X Y

repression

X

X Y

Y

X Y

no regulation

X Y

Fig 8. Types of transcriptional regulation.

consider intermediate elements called cis-regulatory modules (CRMs) between the TFs
and the promoters (see [12] and the GeneNetWeaver code [10]).

Furthermore, the transcriptional gene expression can also be affected by
protein–protein interaction. One type of such interaction is signal transduction, which
most commonly consists of the process of protein phosphorylation catalyzed by protein
kinases. The phosphorylated proteins are active TFs, which bind the DNA and regulate
transcription (see Chapter 6.3 in [19] and [43]). Another type of such interaction is
protein complex forming, where multiple proteins can bind and form a protein complex
that act as an active TF.

S2 Random model for production functions used in
GeneNetWeaver

The materials and methods in the main body describes the family of ODE modules for
gene regulatory networks, involving cis-regulatory modules, used in the GeneNetWeaver
code. A main purpose of GeneNetWeaver is to generate random instances of such
networks, which includes selecting how to partition the inputs to a given gene into
modules and selection of parameter values. The probabilistic model of GeneNetWeaver
is summarized in this section.

S2.1 Random module structure
An input to the GeneNetWeaver simulator is a signed, directed graph that specifies for
any target gene i, which other genes are inputs that directly influence it, and the signs
of the influence. The production function for a target gene i is randomly generated as
follows. First, the inputs are partitioned to a random number of modules according to
the following process.

1. Inputs are randomly reordered.

2. Module set A is initialized empty.

3. Each input in order is uniformly added to one of the modules in A or a new
module, all with probability 1

|A|+1 . The module set A is updated if new modules
are created.
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The parameter cK:i determines the type of the module K : i (enhancer or silencer). A
given input gene in module K : i is an activator if the sign of the gene (in the signed,
directed graph) is the same as cK:i, and otherwise the given input gene is a deactivator.
The software ensures that each module has at least one activator for signed graph input,
which means that if for module K : i, all the input genes have the same sign, then the
cK:i should be the same as the sign of the input genes.

S2.2 Random parameter initialization
This section describes the random initialization of the parameters. Note the truncation
is implemented by regenerating i.i.d. random variable until it falls within the desired
region, which effectively scales up the probability density restricted to the region to
form a proper probability distribution.

• The Michaelis–Menten coefficient is generated by kij ∼ Unif([0.01, 1]).

• The Hill coefficient is generated by hij ∼ N (2, 22) truncated to [1, 10].

• The mRNA degradation rate is δ(m)
i = log(2)/T1/2, where T1/2 ∼ N (27.5, (7.5)2)

truncated to [5, 50]. As a result, δ(m)
i ∈ [0.014, 0.14].

• The maximum translation rate and the protein degradation rate are both given by
the same λi = δ

(p)
i = log(2)/T1/2, where T1/2 ∼ N (27.5, (7.5)2) truncated to

[5, 50] is a realization independent with that for the mRNA degradation rate.
Again δ(p)i ∈ [0.014, 0.14].

The basal activation αi,basal and the vector of absolute module effect parameters βK:i

are generated using the following procedure. For target gene i:

1. If Ni = ∅, set αi,basal = 1.

2. Otherwise set βK:i ∼ N (5/8, (1/8)2) truncated to [1/4, 1] for all K ∈ Si.

3. If cK:i = −1 for all K ∈ Si, set αi,basal = 1.

4. If cK:i = 1 for all K ∈ Si, set αi,basal ∼ N (0, (0.05)2) truncated to [0, 1/4].

5. Otherwise αi,basal ∼ N (1/2, (1/12)2) truncated to [1/4, 3/4].

6. If αi,basal +
∑
K : cK:i=1 βK:i < 1, increase the smallest β therein to reach a

maximum activation of 1.

7. If αi,basal +
∑
K : cK:i=−1 βK:i > 0.25, increase the smallest β therein to reach a

random minimum activation of N (0, (0.05)2) truncated to [0, 1/4].

8. Finally, truncate all αi,s to [0, 1].

The resulting αi,s’s have a good coverage of the interval [0, 1].

S3 Proof of (6)

In this section we focus on the clamped system and write f = f̂ for short. If a = 0 or
b = 0, we have ∂tahbg(0, 0) = 0. If a 6= 0 and b 6= 0, we have ∂tahbg(t, h) = ∂tahbηj(t, h).
So it suffices to show

∂tahbηj(0, 0) =

{
∆(i, j, x, λ) if (a, b) = (q, 1),

0 if 1 ≤ a ≤ q − 1 and b ≥ 1.
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In the following we write ηj , ηj(t, h) and fl , fl(ηp(l)(t, h), λ) unless specified
otherwise, where p(l) is the set of indices of the variables that the clamped dynamics
f̂
(j)
l depends on (i.e., the parent set of l). Let POLY(s, u) denote the set of polynomials
of partial derivatives of fl up to order s for all l ∈ {j} ∪ p(j) ∪ · · · ∪ pu(j) (i.e., up to u
generations of parents of j).

Lemma 1. For any t and h,

∂taηj =

{
fj if a = 1,

f ′jf
′
p(j) . . . f

′
pa−2(j)fpa−1(j) + φa if a ≥ 2,

(23)

where

f ′jf
′
p(j) . . . f

′
pa−2(j)fpa−1(j) =

∑
(r0,r1,...,ra)∈[n+m]a+1 :

r0=j,∀l,rl+1∈p(rl)

(
a−2∏
l=0

∂rl+1
frl

)
fra−1

and φa ∈ POLY(a− 1, a− 2) is some polynomial of the partial derivatives of f .

Proof. We use induction on a. It is easy to see that ∂tηj = fj and ∂t2ηj = f ′jfp(j), so
(23) holds for a = 1, 2. Now suppose (23) holds for some a ≥ 2. Then the time
derivative of ψ , f ′jf

′
p(j) . . . f

′
pa−2(j)fpa−1(j) is

∂tψ = ψ1 + f ′jf
′
p(j) . . . f

′
pa−1(j)fpa(j),

for some ψ1 ∈ POLY(2, a− 1). Note ∂tφa ∈ POLY(a, a− 1). So

∂ta+1ηj = f ′jf
′
p(j) . . . f

′
pa−1(j)fpa(j) + ψ1 + ∂tφa

and ψ1 + ∂tφa ∈ POLY(a, a− 1). Induction completes the proof.

It is then easy to see that for a ∈ [q − 1],
∂taηj ∈ POLY(a− 1, a− 1) ⊆ POLY(q − 2, q − 2), which does not depend on h when
t = 0. Hence ∂tahbηj(0, 0) = 0 for any a ∈ [q − 1] and b ≥ 1. For a = q, when t = 0, the
only terms in ∂taηj that depend on h are those in f ′jf ′p(j) . . . f

′
pa−2(j)fpa−1(j) with paths

connecting i to j. So ∂tqhηj(0, 0) =
∑

(r0,r1,...,rq)∈Pq
ij

∏q−1
l=0 ∂rl+1

frl(x, λ).
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