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Abstract 1 

Cell surface transmembrane, extracellular, and secreted proteins are high value targets 2 

for immunophenotyping, drug development, and studies related to intercellular communication 3 

in health and disease. As the number of specific and validated affinity reagents that target this 4 

subproteome are limited, mass spectrometry (MS)-based approaches will continue to play a 5 

critical role in enabling discovery and quantitation of these molecules. Given the technical 6 

considerations that make MS-based cell surface proteome studies uniquely challenging, it can 7 

be difficult to select an appropriate experimental approach. To this end, we have integrated 8 

multiple prediction strategies and annotations into a single online resource, Compiled Interactive 9 

Resource for Extracellular and Surface Studies (CIRFESS). CIRFESS enables rapid 10 

interrogation of the human proteome to reveal the cell surface proteome theoretically detectable 11 

by current approaches and highlights where current prediction strategies provide concordant 12 

and discordant information. We applied CIRFESS to identify the percentage of various subsets 13 

of the proteome which are expected to be captured by targeted enrichment strategies, including 14 

two established methods and one that is possible but not yet demonstrated. These results will 15 

inform the selection of available proteomic strategies and development of new strategies to 16 

enhance coverage of the cell surface and extracellular proteome. CIRFESS is available at 17 

www.cellsurfer.net/cirfess.  18 

  19 
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Introduction 1 

The emergence of proteomics as a major discipline within the life science has been in no 2 

small part due to the development and eager adoption of computational strategies to enable the 3 

rapid analysis of mass spectrometry (MS) data files and inferred biological results. Since 1994, 4 

when the Yates laboratory introduced SEQUEST1, the first computational tool for fully 5 

automated database searching, continued developments in database construction, algorithm 6 

design, and software development have propelled the evolution of MS-based proteomics2–9. All 7 

aspects of MS-based proteomics, including interpretation of raw spectra and database 8 

searching, visualization of results, and subsequent biological inferences benefit from advances 9 

in bioinformatics. Beyond the analysis of experimental data, data science tools that integrate 10 

machine-learning or ontological resources have become increasingly popular for prediction and 11 

classification of protein-level information, a subject of recent review10. Such approaches rely on 12 

experimental data to train or inform predictions and annotations, and in turn, the prediction 13 

strategies can benefit experimental design.  14 

To scientists at the bench, perhaps the most exciting and impactful bioinformatic tools 15 

are those that can inform the next experiment. To this end, web-based formats have become 16 

increasingly popular resources as they often require less setup (e.g. installation), avoid 17 

operating system compatibility issues, and can be used in a familiar framework. Hundreds of 18 

web-based bioinformatics tools are now available for proteomics (e.g. 19 

www.expasy.org/proteomics). Current tools span a broad range of utility, including systems-20 

level distribution of proteins based on experimental observations, visualization of experimental 21 

results, and prediction and cataloging of specific post-translational modifications, interactomes, 22 

and subcellular proteomes. Despite the increase in availability of web-based proteomics tools, 23 

there are currently relatively few resources designed to specifically assist in experimental design 24 

and analysis of the cell surface proteome.  25 
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The cell surface and extracellular space contain proteins which play key roles in a wide 1 

range of biological processes and can be utilized as valuable markers for immunophenotyping 2 

and drug targets. Despite their importance, the cell surface proteome remains relatively poorly 3 

characterized compared to the depth that most intracellular proteomes have been described. 4 

Given the relative low abundance, presence of hydrophobic transmembrane spanning regions, 5 

and dynamic nature of the cell surface proteome owing to continuous cycling of proteins due to 6 

internalization, secretion, and stimulus-triggered recruitment to the plasma membrane, 7 

specialized techniques are typically required to enhance the detection of cell surface proteins by 8 

MS. Such proteomic approaches include enrichment strategies which exploit the biophysical 9 

properties of membranes - such as density gradient flotation, differential centrifugation, or silica-10 

bead capture11–15 - or affinity-based approaches that use proximity labels16–18, lectins19, 11 

metabolic20–22 or chemical labels23–27 to enrich cell surface proteins. Application of these 12 

approaches have supported efforts to catalog the cell surface and secretome and have led to 13 

large scale efforts in experimentation28 and collation29. As with most proteomic methods, 14 

currently available strategies to probe the cell surface and secreted proteome are biased 15 

towards proteins that contain specific features (e.g. presence of an N-glycosylation site or lysine 16 

within an extracellular region of the protein that will generate a detectable peptide after trypsin 17 

digestion). Also, the implementation of these approaches can be inconsistent among users, 18 

resulting in variability in the specificity (i.e. cell surface versus non-cell surface) of enrichment 19 

observed. Hence, the integration of bioinformatic predictions with experimental data provides 20 

orthogonal means to interpret and filter results. Relevant predictions for surface and 21 

extracellular proteins include the presence of signal peptides30–36 and transmembrane 22 

domains30,31,37–39. Other approaches have applied manual curation, ontological annotations, or 23 

machine learning approaches to predict the subset of proteins that are localized to the cell 24 

surface and extracellular regions40–43. However, not all cell surface proteins contain canonical 25 

signal peptides44. Also, GPI-anchored and extracellular matrix or secreted proteins do not 26 
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contain transmembrane domains, and gene ontology annotations may be insufficiently specific 1 

(e.g. cell surface versus membrane). Thus, filtering a proteomic dataset by these constraints 2 

often does not provide the complete picture of the cell surface proteome for a specific cell type.  3 

Based on these limitations, in theory, it remains necessary to rely on experimental data 4 

to precisely define the proteins localized to the cell surface in a specific cell type. This leads to 5 

the question: Which experimental approach is the best to use? No doubt, the answer will be 6 

context dependent. If a specific monoclonal antibody is available, flow cytometry can be an 7 

effective approach for determining the surface localization of a protein. If antibodies are not 8 

available, the MS-based proteomic method of choice will depend on whether a cell surface 9 

proteome-wide screen or detection of a particular protein or subclass of proteins is desired. It 10 

will depend on the type and availability of the source material (e.g. metabolic labeling 11 

approaches cannot be used routinely for the analysis of primary human cells). Given the 12 

numerous technical considerations that make cell surface proteome studies uniquely 13 

challenging, it can be difficult to decide which approach to use. Currently, there is no single 14 

bioinformatic tool that can assist the investigator in determining which MS-based method is 15 

likely to be the most suitable approach for surface proteome studies.  16 

To address this, we constructed a resource that integrates multiple prediction strategies 17 

and annotations relevant for the analysis of cell surface and extracellular proteins by MS and 18 

applied it to interrogate the human proteome. The results from these resources were compiled 19 

into a single interface and are accessible via a web-application termed Compiled Interactive 20 

Resource for Extracellular and Surface Studies (CIRFESS), accessible at 21 

www.cellsurfer.net/cirfess. By bringing together key resources used to interrogate the surface 22 

and extracellular space, CIRFESS helps to prevent duplication of efforts and continued pinging 23 

of separate prediction servers for the same set of proteins. We expect CIRFESS will be 24 
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informative for a broad range of future applications and will inform the selection or development 1 

of proteomic strategies to enhance coverage of the cell surface and extracellular proteome.  2 

Methods 3 

Database and prediction server access 4 

The human reference proteome was downloaded from UniProt (canonical only, 20416 entries, 5 

accessed Sept 13, 2019). The proteome was filtered and split to meet the requirements of the 6 

individual prediction servers (e.g. length of proteins, number of entries). Default scoring settings 7 

were applied, and the outputs were collected as specified: TMHMM– ‘one line per protein’, 8 

Phobius – ‘Short’, PrediSi, – ‘Text’, Signal P – ‘Short output’. For analysis involving the protein-9 

level evidence, the “Protein existence” field for each accession number was retrieved from 10 

UniProt. To aid in interpretation, a summary of the different categories is provided in the Table 1 11 

(adapted from https://www.uniprot.org/help/protein_existence). 12 

Assigned Bin UniProt “Protein existence” 
value(s) UniProt Definition 

Protein-level 
evidence 

Experimental evidence at 
protein level 

There is clear experimental evidence for the existence of 
the protein. The criteria include partial or complete Edman 
sequencing, clear identification by mass spectrometry, X-

ray or NMR structure, good quality protein-protein 
interaction or detection of the protein by antibodies. 

Transcript-level 
evidence 

Experimental evidence at 
transcript level 

The existence of a protein has not been strictly proven but 
that expression data (such as existence of cDNA(s), RT-

PCR or Northern blots) indicate the existence of a 
transcript. 

Oher 

Protein inferred by homology 
The existence of a protein is probable because clear 

orthologs exist in closely related species. 

Protein predicted Entries without evidence at protein, transcript, or 
homology levels. 

Protein uncertain The existence of the protein is unsure. 
Table 1: Summary of UniProt levels of “Protein existence” and the corresponding bins used in 13 
the analysis of levels of evidence for the different subsets of proteins.  14 

 15 

Integrating prediction outputs 16 

The outputs from the independent prediction servers were parsed and integrated using Python 17 

3.7. The source code is made available as a Jupyter Notebook to enable implementation on 18 
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batch predictions from TMHMM, Phobius, PrediSi and SignalP30,36,39,45 for other species with 1 

minimal alteration (https://github.com/GundryLab/cirfess). A schematic of the inputs and the 2 

generated data structure is shown in Figure 1.  3 

Evaluating peptides, motifs, and topology 4 

Protein sequences were digested in silico to generate a list of potential peptides using the 5 

canonical tryptic cleavage site, X[R/K] where X is not P, allowing for up to two missed 6 

cleavages. This list of peptides is subsequently annotated with the following information: (1) 7 

presence of motifs for relevant proteomic capture strategies; N[!P][S/T/C/V] for N-glycan based 8 

capture, C for cysteine-based capture, K for lysine-based capture, (2) topological information – 9 

which residues and motifs are predicted to be intracellular and extracellular, and (3) suitability 10 

for a standard bottom-up proteomic experiment – length > 5, m/z of 2+ or 3+ charge state 11 

peptide < 2000.  12 

CIRFESS Web application 13 

A web application (CIRFESS) for accessing the data structure containing the parsed prediction 14 

outputs was developed in R46 using the Shiny package and is available at 15 

www.cellsurfer.net/cirfess. Source code is available at https://github.com/GundryLab/cirfess. 16 
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 1 

Figure 1: Schematic of the resources used (in purple) and the analyses performed (in green) for 2 
the construction of CIRFESS. 3 

 4 

Statistical Analysis 5 

Chi-square analyses were performed using the chisq.test function in R (version 3.6.2). Students 6 

t-test were performed using the t.test function in Excel. 7 

Results and Discussion 8 

Proteome-wide comparison of prediction strategies 9 

There are multiple sources of information to consider for evidence of surface or extracellular 10 

localization. Here we utilized transmembrane (TM) predictions30,36, signal peptide (SP) 11 

predictions31,39, and the Surface Prediction Consensus (SPC)47 score. To highlight the 12 

complementarity of these measures and justification for inclusion in this resource, we performed 13 

set analysis of the human proteome using the UpSetR48 web application. As shown in Figure 14 

2A, the combination of these measures reveals distinct subsets of proteins. For instance, 15 
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proteins which have a SP, but no TM domain (subsets b,f) are often considered to be the set of1 

secreted proteins. For the set of proteins with predicted TM domains and SP, the SPC score is2 

helpful for distinguishing between organelle membrane proteins (subset d) and cell surface3 

proteins (subset a). Finally, proteins with an SPC score but not TM or SP may contain GPI-4 

anchored proteins or those without a canonical SP (subset g).   5 

 6 

Figure 2: Contrasting views of the human proteome based on prediction strategies relevant for7 
the cell surface proteome. (A) UpSet plot illustrating overlap in human proteins that are8 
classified as containing a SP, TM domain, or SPC > 0. (B) Bar graph depicting the percentage9 
of the human proteome with different levels of evidence, gathered from the “Protein existence”10 
level listed for each accession number in UniProt, that are classified as containing a SP, TM11 
domain, or SPC >0, or none of these features (Null). (C) Relationship between different levels of12 
consensus for SP prediction and SPC score. Here, SP prediction consensus was calculated in a13 
manner analogous to SPC score, where the number of positive SP predictions from SignalP,14 
PrediSI, or Phobius was summed to generate a consensus score ranging from 0 to 3. (D) Plot15 
depicting the log10 ratio of extracellular to intracellular residues predicted by TMHMM and16 
Phobius highlighting that the opposite orientation is predicted for a subset of proteins. 17 

 18 

To assess the level of experimental data that currently exists for cell surface proteins, we19 

considered the “Protein existence” annotation within UniProt. For these and further analyses, we20 
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compared proteins with positive SP predictions, positive TM predictions, or those with SPC 1 

scores > 0, with proteins that were negative for all three analysis – which we term the ‘Null set’ 2 

of proteins (shown visually in Figure 2B). Compared to the Null set, all three classes of proteins 3 

have a lower percentage of members with protein-level evidence, 79% for Null proteins 4 

compared to 71%, 69%, and 71% for SP, TM, and SPC proteins, respectively (Figure 2B). The 5 

difference between the observed frequencies of the different levels of evidence were significant 6 

between Null and each other subset of proteins (SP, TM, and SPC), as revealed by Chi-square 7 

testing (with p-values of <2.2 x 10-16 for each test). Though mass spectrometry is not the only 8 

source of protein-level evidence for UniProt (see Methods), a potential explanation for this 9 

discrepancy is a statistical difference in the number of MS-suitable peptides between these 10 

subsets, as revealed by Student’s t-test summarized in Table 2. Nevertheless, this analysis 11 

highlights the need for further experimental investigation of the cell surface proteome as this 12 

class is less well-represented by experimental evidence than other subproteomes.  13 

 Null SP TM SPC 
Missed 

Cleavages 
0 ≤ 1 ≤ 2 0 ≤ 1 ≤ 2 0 ≤ 1 ≤ 2 0 ≤ 1 ≤ 2 

Mean # of 
Peptides / 

protein 
33.1 87.5 146.4 28.3 70.5 112.3 26.2 65.0 103.4 28.1 69.8 111.0 

Median # of 
Peptides / 

protein 
25 66 109 20 50 79 19 48 76 20 50 79 

t-test  
p-value 

(compared 
to Null-set) 

- - - 6x10-23 1x10-41 2x10-58 2x10-47 8x10-75 1x10-97 2x10-23 4x10-42 4x10-59 

Table 2: Summary of the average number of peptides per protein that are “ok for MS” in 14 
different subsets of proteins. The t-test p-values were calculated by comparing the distribution to 15 
the Null-set of numbers of peptides (with the corresponding amount of numbers of missed 16 
cleavages). 17 

 18 

Another benefit of integrating these disparate predictions into a single analysis is 19 

revealed by looking at examples for which they do and do not agree. For example, stratifying 20 

proteins with positive SP predictions (6026 proteins) by the number of algorithms for which it 21 

was positive reveals that slightly over half (3192, 53%) are predicted by all 3 algorithms. Here, 22 
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SP prediction consensus was calculated in manner analogous to SPC score, where the number 1 

of positive SP predictions from SignalP, PrediSI, or Phobius was summed to generate a 2 

consensus score ranging from 0 to 3. Plotting the number of positive SP predictions against 3 

SPC score reveals a positive relationship between SPC score and number of positive SP 4 

predictions for proteins with SPC score >0 (Figure 2C). However, it also reveals that the majority 5 

of proteins with three positive SP predictions has an SPC score of 0 (1648 of 3192, 51.6%). 6 

This suggests that secreted proteins may contain signal peptide sequences that are easier to 7 

recognize by prediction algorithms than proteins translocated through the membrane.  8 

Focusing on TM proteins, TMHMM and Phobius predict 5353 and 5471 proteins with TM 9 

domains, respectively, with 4846 proteins in common and 1132 proteins unique to a single 10 

prediction strategy (507 and 625 in TMHMM and Phobius, respectively). While overall there is 11 

strong consensus between the two algorithms for predicting which proteins contain TM 12 

domains, the number of TM domains predicted differs for 1306 out of the 4846 commonly 13 

predicted proteins. Furthermore, the opposite membrane orientation was predicted for a subset 14 

of proteins, visualized by plotting the log10 ratio of the predicted extracellular to intracellular 15 

residues (Figure 2D). Altogether, these analyses demonstrate the value of integrating data from 16 

multiple sources and reveal that no single feature is sufficient to comprehensively predict the set 17 

of cell surface and extracellular proteins. 18 

Motif coverage of extracellular and surface predicted proteins 19 

As prediction strategies alone are insufficient to define the set of proteins localized to the cell 20 

surface and extracellular space, experimentation is required. To aid in the selection of proteomic 21 

strategies that are likely to produce the desired coverage of the cell surface proteome, the SP, 22 

TM, and SPC analyses described above were integrated with in silico analyses designed to 23 

predict which proteins would generate tryptic peptides likely to be detectable by electrospray 24 

MS, and of those, which are expected to be captured by application of commonly used 25 
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biorthogonal enrichment strategies targeting N-glycans and lysines23–25,27,49–54. We also 1 

considered cysteines as they are enriched in surface proteins compared to nonsurface 2 

proteins40 and numerous affinity reagents are available for targeting cysteines55, although this is 3 

not yet a widely described approach for cell surface proteins. Important for the N-glycan 4 

approach, although strategies that specifically enrich peptides from the extracellular space 5 

(glycan biotinylation is performed on cells with intact plasma membranes) provide an additional 6 

level of experimental evidence for surface localization, it is possible to capture N-glycopeptides 7 

from whole cell lysate. In this case, the MS-based evidence for a glycan modifying an 8 

asparagine within the consensus motif for N-glycosylation is proposed to serve as standalone 9 

evidence for surface localization. Canonically, the consensus motif has been described as 10 

NXS/T where X is any amino acid except proline. However, more recently, evidence for N-11 

glycosylation has been put forth at NXC56,57 and NXV58. Here, we investigated the frequency of 12 

the various consensus motifs occurring in SP, TM, SPC and Null (meaning the protein contains 13 

no SP, TM, or SPC) sets of proteins. First, the probability of each motif occurring within the 14 

subset of proteins was calculated with respect to the amino acid frequencies. The expected 15 

frequencies based on amino acid compositions was consistent among the sets of proteins for 16 

each motif (0.26 ± 0.003 %, 0.18 ± 0.009 %, 0.09 ± 0.009 %, and 0.21 ± 0.019 % for NXS, NXT, 17 

NXC, and NXV respectively). Next, the observed frequency of each motif was calculated for 18 

each subset of proteins. The natural log of the odds ratio of observed to expected for each 19 

subset of proteins was calculated and plotted for each motif as well as the canonical (NXS/T) 20 

and complete consensus motifs (NXS/T/C/V) (Figure 3A). The results reveal that the NXS and 21 

NXT occur more frequently than expected and NXC and NXV occur less frequently than 22 

expected for SP, TM, and SPC proteins. Whereas NXS and NXT occur at about the expected 23 

rate for the Null set of proteins, NXC and NXV occur slightly above the expected frequency. 24 

While the complete consensus motif occurs more frequently than expected for SP, TM, and 25 

SPC proteins, the canonical motif demonstrates a much higher odds ratio, especially relative to 26 
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the odds-ratio for the Null set. This analysis suggests that while the mere presence of the 1 

consensus motif provides some evidentiary weight to the localization of a surface protein – (1) it 2 

should not be considered conclusive, and (2) the canonical motif provides more meaningful 3 

information than the complete consensus motif. Based on these analyses, we elected to only 4 

consider the canonical motif as potential targets for N-glycan capture for subsequent analyses.  5 

 6 

By integrating the topology information provided by the TM predictions with the locations of 7 

motifs within proteins, we estimated the coverage that each capture strategy would provide for 8 

each subset of the proteome (Null, SP, TM and SPC). For this analysis, proteins were 9 

categorized based on whether they contained the relevant motif and whether the motif was in a 10 

region determined to be extracellular by one or both TM prediction strategies. The percentage of 11 

proteins for which a predicted extracellular motif was located within an MS-suitable peptide was 12 

recorded (Figure 3B). This analysis revealed that while 72% of Null proteins contain a 13 

consensus motif for N-glycosylation, none of the glycopeptides are predicted to be in the 14 

extracellular domain. In contrast, of the SPC proteins which contain the consensus motif, 86% 15 

of those proteins contain at least one peptide contains the consensus motif within the predicted 16 

extracellular domain. These results were further summarized by calculating the percentage of 17 

each subproteome that is predicted to be covered by each or multiple capture strategies (Figure 18 

3C). Overall, querying the results from this analysis provides a strategy for investigators to 19 

rapidly interrogate the human proteome to determine which experimental strategy is most likely 20 

to be useful to address their biological question. In summary, 66.4 ± 0.4% of SP, TM and SPC 21 

proteins are likely to be captured by any of the three strategies, 17.3 ± 1.8% are detectable by 22 

cysteine or lysine capture, but not detectable by N-glycan strategies, 7.4 ± 1.4% are detectable 23 

by a single strategy, and 5.7 ± 1.2% are not detectable by any of the three strategies considered 24 

here. The identity of the proteins within each classification are provided in Supplemental Table 25 
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1A-C and these results provide actionable data related to high interest targets. For example, of1 

the 825 human G-protein coupled receptors (GPCR), a striking 65.3% lack protein-level2 

evidence within UniProt. Of these, all but one are predicted to be captured by at least one3 

enrichment strategy and 70.9% of them are predicted to be captured by all three strategies.4 

Supplementary Table 1D contains the identity of the GPCR proteins and which enrichment5 

strategies are predicted to capture them. 6 

  7 

8 

Figure 3. Results of CIRFESS analysis of the human proteome to assess predicted coverage9 
provided by three common cell surface proteomic enrichment strategies. (A) The natural log of10 
the odds ratio for observed-to-expected frequency of each permutation of the N-glycan11 
consensus motif along with the canonical (S/T) and complete (S/T/C/V) consensus motif. (B)12 
The expected coverage of the different subsets of proteins for each enrichment strategy broken13 
down by which proteins have peptides with predicted extracellular motifs by one or both TM14 
prediction methods. (C) The makeup of SP, TM, and SPC score proteins based on the15 
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overlapping coverage of the three individual enrichment strategies. (D) The set of human 1 
GPCRs based on expected coverage for enrichment strategy and level of evidence in UniProt. 2 

 3 

 4 

 5 

Critical Considerations 6 

Results from the current implementation of CIRFESS are limited to human proteins digested 7 

with trypsin and the resulting peptides are detectable in the 2+ or 3+ charge state. These criteria 8 

were selected based on common implementation of bottom-up proteomic methods. However, all 9 

source files and code are publicly available in the Github repository and a user-specific version 10 

of CIRFESS could be generated, requiring minimum alteration to change the in silico digestion 11 

strategies or criteria for MS-compatible peptide filtering. Implementation on other species would 12 

require submission of proteins to the individual prediction servers, but the source code includes 13 

scripts to parse and integrate the generated output files. Another critical assumption is related to 14 

the N-gycan capture strategy where detection depends on the glycosite being occupied by a 15 

glycan which is sensitive to the oxidation strategy applied (e.g. cis diols for meta-periodate59). 16 

Currently, as it is not possible to predict which sites will be occupied with specific glycan 17 

structures, the peptides predicted to be observable by this strategy should be considered with 18 

this caveat in mind. It is possible that post-translational modifications may interfere with the 19 

digestion, capture, ionization, and identification of peptides in any of the strategies, and 20 

therefore experimental observations may not be fully predictable by this bioinformatics 21 

approach. Among the post-translation modification which may interfere with cysteine-based 22 

capture are disulfide bridges, which were ignored in this analysis, but a reduction step could be 23 

included prior to labeling in such an approach. Moreover, for enrichment strategies which use 24 

cleavable linkers, residual portions of the linker that remain after cleavage will increase the 25 
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mass of the resulting peptide. However, the 2000 m/z range used here for predicting detectable 1 

peptides should accommodate most commonly used reagents. Finally, it may be beneficial to 2 

combine the results from CIRFESS analysis with predictions for peptide detectability60–62 or 3 

proteotypicity63 to better inform the set of peptides which are most likely to be observable or 4 

informative.  5 

Conclusion 6 

CIRFESS is a web-based tool designed to accelerate cell surface proteome studies by 7 

eliminating the need to query each bioinformatics source separately and integrating disparate 8 

features into a single streamlined resource and output. Within the CIRFESSS interface, users 9 

are able to perform single and batch querying of protein accession numbers to extract protein-10 

level and peptide-level annotations as well as information about numbers of motifs and motif-11 

containing peptides. Results may be queried for proteins or protein classes of interest to inform 12 

the design of the next experiment. We anticipate that CIRFESS will be broadly applicable for 13 

multiple applications across a broad range of biology and disease studies. While there still exist 14 

significant technical challenges associated with the implementation of these technologies, 15 

particularly on sample-limited systems, these analyses suggest that acquiring protein-level 16 

evidence for the majority of predicted cell surface proteins is a matter of applying the right 17 

technology to a relevant biological system. Overall, we expect CIRFESS will promote the 18 

rational selection of the most apt cell surface proteomic methods and will inspire continued 19 

method development (e.g. cysteine-targeting) to enable detection of the human proteome not 20 

predicted to be accessible by established surface protein enrichment methods. 21 
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