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Abstract 

Every day, we are faced with the conflict between the temptation to cheat for financial gains 

and maintaining a positive image of ourselves as being a ‘good person’. While it has been proposed that 

cognitive control is needed to mediate this conflict between reward and our moral self-image, the exact 

role of cognitive control in (dis)honesty remains elusive. Here, we identify this role, by investigating the 

neural mechanism underlying cheating. We developed a novel task which allows for inconspicuously 

measuring spontaneous cheating on a trial-by-trial basis in the MRI scanner. We found that activity in 

the Nucleus Accumbens promotes cheating, particularly for individuals who cheat a lot, while a network 

consisting of Posterior Cingulate Cortex, Temporoparietal Junction and Medial Prefrontal Cortex 

promotes honesty, particularly in individuals who are generally honest. Finally, activity in areas 

associated with Cognitive Control (Anterior Cingulate Cortex and Inferior Frontal Gyrus) helped 

dishonest participants to be honest, whereas it promoted cheating for honest participants. Thus, our 

results suggest that cognitive control is not needed to be honest or dishonest per se, but that it depends 

on an individual’s moral default. 
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Introduction 

 

Imagine a friend sends you a link to a website where you can illegally stream recently 

released movies for free. Would you decide to stream the movie which you otherwise would have 

paid for? If so, how many movies would you stream? On a daily basis we are faced with the conflict 

between the temptation to violate moral standards to serve our self-interest and to uphold these 

moral standards, but how the brain resolves this conflict remains elusive. 

When exposed to the opportunity to cheat, clearly the (financial) rewards play a crucial 

role in the decision-making process: the higher the reward, the more attractive the decision to cheat 

(Becker 1968; Allingham and Sandmo 1972). As the renowned British novelist Jonathan Gash so 

eloquently stated: ‘Fraud is the daughter of greed’ (Gash, 1992). In line with this sentiment, 

research has demonstrated that greedy people are more inclined to withhold information from 

others in negotiation settings (Steinel and DeDreu, 2004); they also find a variety of moral 

transgressions more acceptable and have engaged in such transgressions more often as compared 

to less greedy people (Seuntjens et al., 2019). More greedy people are also more likely to take 

bribes and prefer higher bribes (Seuntjens et al., 2019). Further, it has been found that neural 

responses in anticipation of reward, reflected in activity in the nucleus accumbens (NAcc), predict 

cheating behavior in a subsequent task (Abe & Greene, 2014). Collectively, these findings 

emphasize that higher rewards and stronger sensitivity to reward increase the likelihood of 

dishonesty. 

Accumulating evidence from psychology, economics and neuroscience has demonstrated, 

however, that people care about more than only maximizing their own monetary payoff, which is 

reflected in the high prevalence of prosocial behaviors such as altruism and reciprocity. Through 

socialization, people internalize the social norms society imposes on them and use these as an 

internal benchmark against which they compare their behavior (Campbell 1964; Henrich et al. 

2001). In the context of dishonesty, the way we view ourselves, our self-concept (Aronson 1969; 

Baumeister 1998; Bem 1972), may prevent us from cheating. People highly value honesty in others 
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and also have strong beliefs in their own moral standards (Dhar & Wertenbroch, 2012). Violating 

one’s own moral standards will require a negative update of one’s self-concept which is highly 

aversive (Berthoz et al., 2006). As a consequence, people are motivated to uphold their self-

concept even if it comes at the cost of potential monetary gains (Mazar, Amir, & Ariely, 2008). 

Hence, when given the opportunity to cheat, people are torn between the conflicting motivations 

to obtain a desirable monetary reward versus the long-term goal of maintaining a positive self-

image.  

Several lines of research have proposed that cognitive control is needed to resolve this 

tension between reward and self-concept (Abe & Greene, 2014; Gino, Schweitzer, Mead, & 

Ariely, 2011; Greene & Paxton, 2009; Maréchal, Cohn, Ugazio, & Ruff, 2017; Mead, Baumeister, 

Gino, Schweitzer, & Ariely, 2009). It has been found that this conflict is often settled with a 

compromise in which participants behave dishonestly enough to profit from the opportunity to 

cheat, but honestly enough to maintain a positive self-image (Mazar et al., 2008). While it is 

evident that cognitive control plays a crucial role in resolving this conflict, the precise nature of 

the role of cognitive control in moral decisions remains controversial. Two competing theories 

have been proposed: the ‘Will’ and the ‘Grace’ hypothesis (Greene & Paxton, 2009).  

The ‘Will’ hypothesis puts forward that people are per default selfish and dishonest and 

that in order to be honest, deliberate cognitive control needs to be exerted. Thus, honesty is a result 

of the effortful resistance of temptation, similar to the cognitive control processes that allow 

individual to delay gratification (McClure, Laibson, Loewenstein, & Cohen, 2004). This 

hypothesis is supported by behavioral studies that have shown that participants who are cognitively 

depleted by demanding tasks are more prone to dishonest behavior (Gino et al., 2011; Mead et al., 

2009). These authors argue that once our cognitive resources are taxed by prior efforts it becomes 

harder to resist the temptation to cheat. Similarly, sleep deprived individuals were more likely to 

engage in dishonest behavior not only in laboratory experiments but also in the workplace (Barnes, 

Schaubroeck, Huth, & Ghumman, 2011). Moreover, restraining participants from deliberate 

thinking through cognitive load (Welsh & Ordonez, 2014) or time pressure (Shalvi, Eldar, & 

Bereby-Meyer, 2012) increases cheating behavior. Collectively, these studies suggest that people 

automatically serve their self-interest and require cognitive control to resist the temptation to cheat 

in order to maintain a positive self-image. 
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In contrast, the ‘Grace’ hypothesis proposes that people are basically honest and require 

cognitive control to override their dominant honest impulses to occasionally profit from an 

opportunity to cheat. This is in line with the social intuitionist theory that argues that honesty is 

driven by moral intuitions, shaped by culture and social norms, and does not require deliberate 

cognitive control processes (Haidt, 2001). The hypothesis that cheating rather than honesty is a 

complex cognitive function demanding cognitive effort, is supported by research showing that 

people react faster when asked to tell the truth as compared to lying (for meta-analyses, see 

Suchotzki, Verschuere, Van Bockstaele, Ben-Shakhar, & Crombez, 2017; Verschuere, Köbis, 

Bereby-Meyer, Rand, & Shalvi, 2018). Cheating requiring cognitive capacity is also supported by 

findings that people cheat less when taxed by a cognitively demanding memory task as compared 

to a less taxing task (van’t Veer, Stel, & Van Beest, 2014). Moreover, people are less likely to 

deceive their opponents in an economic game when under time pressure (Carparo, 2017). In sum, 

these findings suggest that honesty is intuitive and cogntive control is required to override this 

default intuition in order to benefit from an opportunity to cheat. 

In light of these evidently contradictory findings, this study aims at investigating how 

cognitive control resolves the conflict between external financial reward and one’s self concept 

and how this decision process unfolds in the brain. A better understanding about the function of 

cognitive control in the decision to cheat may thus help reconcile the controversy between the Will 

and Grace hypothesis. 

In order to study how reward, self-concept and cognitive control influce cheating on a trial 

by trial basis, we developed an innovative task, based on the paradigm proposed by Gai and 

Puntoni (2017), in which participants could cheat repeatedly, deliberately and voluntarily inside 

the MRI scanner without suspicion of the real purpose of the task. Specifically, the advantage of 

this task, termed the Spot-The-Difference task, is that it allows to directly track on which trials the 

participants cheated, enabling us to study within subject variation in moral decisions and its neural 

underpinnings. Previous neuroimaging studies on cheating behavior have not been able to answer 

these questions as they used tasks such as the coin-flip task (Greene & Paxton, 2009; Abe & 

Greene, 2014), where cheating is inferred from the aggregate behavior at the end of the task thus 

eliminating the possibility to study trial-by-trial variation in behavior. Importantly, participants 

believed that the experimenter did not know that they were cheating, which is critical as 
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participants are found to cheat less if participants believe experimenters can observe the true 

outcome (Gneezy, Kajackaite, & Sobel, 2018). The Spot-the-Difference paradigm is therefore the 

first behavioural paradigm to assess cheating behaviour inconspicuously on a trial-by-trial basis 

enabling us to study individual differences in neurocognitive processes underlying cheating 

behaviour while also being sensitive to within subject variation.  

In our analysis, we first conducted an exploratory whole brain analysis to identify the brain 

networks underlying the decision to cheat or to be honest. We first identified the brain networks 

engaged when exposed to the opportunity to cheat and when making the decision to cheat or to be 

honest. To reduce the reverse inference problem (Poldrack, 2006), we then assessed the neural 

overlap between our results and meta-analytically derived maps associated with, respectively, 

reward, self-concept and cognitive control from Neurosynth (Yarkoni et al., 2011). Subsequently, 

we used the ROIs obtained from this conjunction analysis to conduct a trial-by-trial analysis to 

study the neural mechanisms underlying within-subject variation in cheating behavior and also to 

explore functional connectivity between the resulting networks of regions. To test the 

generalizability and replicability of our results, we then used cross-validation to explore whether 

we can use neural activation to predict unseen trials, and functional connectivity patterns to 

distinguish between cheaters and honest participants. 
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Method 

Participants 

The reported analyses are based on 40 participants (30 females; age 18-35 years; M = 23.7 SD = 

3.2) recruited from an online community for university students, where students can sign up for 

experiments. An intial screening interview ensured that all participants were right-handed with 

normal or corrected to normal vision, spoke English fluently, were not on any psychoactive 

medication influencing cognitive function and had no record of neurological or psychiatric illness. 

The study was approved by the university Ethics Committees and was conducted according to the 

Declaration of Helsinki. 

 

Task and Stimuli 

Spot-The-Difference Task 

In the Spot-The-Difference task, participants were presented with pairs of images and were told 

that there were always three differences between the image pairs. Differences consisted of 

objects that were added to or removed from an image, or objects that differed in colour between 

images. However, images could actually contain one, two, or three differences. Participants were 

asked to find three differences between the images. Because reward (see below) was contingent 

on participants reporting that they had found all three differences, without having to point them 

out, this design encouraged cheating behavior (i.e., reporting having found all three, even when 

objectively fewer than three differences were present in the images).  

Participants were told that the purpose of the study was to investigate the underlying 

neural mechanisms of visual search for marketing purposes such as searching for a product in an 

assortment or information on a webpage. In order to increase credibility of this cover story a 

simple visual search task was added at the beginning of the experiment (see Appendix 1), which 

was also performed in the scanner while participants were undergoing localizer scans. Further, 

participants were instructed that the neurocognitive effect of motivation, elicited by monetary 

reward, on speed and accuracy of visual search was investigated. Although participants were told 

that there were three differences in all trials, in 25% of the trials there were only two differences 
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and in 25% there was only one difference. All stimuli were standardized in size and were 

presented on a white background on a computer screen. The ratio of 50% - 50% (three 

differences vs less than three differences) was chosen based on the results of pilot studies that 

indicated this ratio to be optimal in reducing suspicion that the pairs did not always contain three 

differences.  

Trials were further categorized into normal (50%), hard (25%) and very hard trials 

(25%), for which participants could receive 5cts, 20cts, and 40cts, respectively. All of the trials 

with three differences (the filler trials) were categorized as normal trials, whereas trials with less 

than three differences (the trials of interest) were randomly categorized as hard or very hard 

trials. Consequently, the reward was independent of the number of differences in the image pair 

for the trials of interest, which is important in order to be able to disentangle the effects of 

reward and cheating magnitude (the actual number of differences) on cheating behavior. The 

different levels of difficulty were added to reduce suspicion about the real purpose of task. It was 

assumed that if trials are labeled as hard or very hard it would be more credible to the participant 

that the image pair actually contained three differences, but they were just too hard to spot. In 

addition, levels of difficulty were introduced to eliminate possible demand effects: we wanted 

participants to cheat for monetary reward and not to prevent seeming incompetent, which may be 

associated with different underlying neural mechanisms and consequently confound the analysis. 

To further reduce suspicion about the purpose of the study, approximately 10% of all 

trials were point-and-click trials. In these trials, participants had to click on the location in the 

images where they spotted the differences using a joy-stick. As a consequence, cheating was not 

possible on the point-and-click trials. Participants always knew prior to the start of a trial 

whether it was a point-and-click trial indicated by a screen requesting participants to click on the 

image. This ensured that participants would not refrain from cheating on all other trials, while 

still reducing the suspicion about the real purpose of the study. Participants were told that only 

10% of trials were point-and-click trials because it would take too much time to point out the 

differences for every pair. Further, participants were instructed that excessive movement by 

manipulating the joystick would interfere with the brain signal. In sum, there were 144 regular 

trials (of which 72 cheatable trials) and 12 point-and-click trials. The maximum amount of 

money earned, in case a participant cheated on all cheatable trials was approximately 35 Euros, 
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whereas in case a participant would not cheat at all he or she would earn approximately 7.50 

Euros. To be fair to all participants, after completion of the full study, participants were 

debriefed and they were all paid out the maximum amount, irrespective of their actual cheating 

behavior.  

Each trial started with a fixation cross which was presented for a variable amount of time 

between 1-3s (see Figure 1). Subsequently, the Level of Difficulty screen was presented for 2 

seconds informing the participants about the level of difficulty of the upcoming trial. This screen 

also displayed how much money could be earned on that trial. As a result, participants were 

constantly aware of the potential gains of cheating. Next, an image pair was presented for 6s, a 

length determined by the behavioral pilots, and participants engaged in the visual search. 

Afterwards, the participants were asked whether they spotted all three differences (yes/no 

response). On this decision phase screen, again the potential reward for this trial was presented, 

in order to make the reward more salient and increase cheating behavior. After 3s, the response 

phase started in which participants’ responses were recorded. In the decision phase and the 

response phase the current balance was also shown, which was done to demonstrate to the 

participants that if they stated that they had found the three differences, their current balance 

increased immediately. It was assumed that this direct noticeable effect of behavior on the 

increase of the current balance, would further motivate participants to cheat.  

The decision phase and response phase were separated to isolate the decision from motor 

responses. This was important for the fMRI analysis as we wanted to isolate the neural 

mechanisms underlying decision making from possible neural confounds related to button 

presses. Besides that, the buttons corresponding to “Yes” and “No” were switched across trials to 

further reduce confounding effects and to reduce the response bias for the dominant hand. Once 

the participants responded, the choice was highlighted by a blue box for 500ms to indicate that 

the response was recorded and the trial ended. If no response was made, the trial ended after 3s. 

In addition, there were five practice trials, in which participants could get acquainted with the 

task. Stimulus presentation and data acquisition was performed using Presentation® software 

(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).  

The main advantage of our experimental design is that it allowed tracking on which trials 

the participants cheated. As we knew how many differences there are in each image pair, we 
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knew precisely whether the participants cheated or not. Further, by varying the number of 

differences, this design enabled us to assess the magnitude of cheating (i.e, cheating when only 1 

vs 2 differences were found). It is therefore the first behavioural paradigm that allowed to assess 

cheating behaviour inconspicuously on a trial-by-trial basis in the scanner.  

   

Figure 1. One trial of the Spot-The-Differences paradigm. Participants view a screen indicating 

the difficulty and value of the trial, then the image pair appears for six seconds and then 

participants have to indicate whether or not they spotted all three differences. 

 

Stimuli 

Stimuli for the task consisted of 144 Spot-The-Difference image pairs that were downloaded 

from the Internet. Cartoon images of landscapes containing several objects were selected, to 

make them engaging and challenging enough for the participants. Landscapes were chosen as 

they generally satisfied the necessary criterion of containing several different objects. The 

stimuli consist of pairs of images that are identical apart from a certain number (1-3) of 

differences that were created using Adobe Photoshop. Differences consisted of objects added to 

or removed from the landscape picture or changed colors of objects. Differences were fully 

randomized across all pairs of images, which means that all image pairs could be presented with 

either one, two or three differences. To make sure that participants would be able to find the 

differences between the images in a reasonable amount of time, we ran a pilot study on 

Amazon’s Mechanical Turk (N=205) to test the difficulty to spot the differences between the 

images and to determine the optimal duration of picture presentation (see Appendix 2).  
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Experimental procedure 

Before the experiment started, participants were introduced to the cover story, the tasks and the 

scanner environment and they signed the informed consent form. They were then informed about 

and checked on the safety requirements for MRI scanning and completed practice trials for both 

visual search tasks outside of the scanner. Subsequently they were guided into the scanner and 

completed the simple visual search task (5 min) followed by the Spot-The-Difference task which 

took approximately 45 minutes. After completing the two tasks in the scanner, participants were 

taken to a separate room in absence of the experimenter and filled-in a short questionnaire 

including questions about their thoughts on the purpose of the task.  

 

FMRI acquisition  

The functional magnetic resonance images were collected using a 3T Siemens Verio MRI system. 

Functional scans were acquired by a T2*-weighted gradient-echo, echo-planar pulse sequence in 

descending interleaved order (3.0 mm slice thickness, 3.0 × 3.0 mm in-plane resolution, 64 × 64 

voxels per slice, flip angle = 75°). TE was 30ms and TR was 2030ms. A T1-weighted image was 

acquired for anatomical reference (1.0 × 0.5 × 0.5 mm resolution, 192 sagittal slices, flip angle = 

9°, TE = 2.26ms, TR = 1900ms). 

 

fMRI analysis 

Preprocessing 

The fMRI data was preprocessed using fMRIPrep version 1.0.8, a Nipype based tool 

(Gorgolewski et al., 2011). The reason for choosing fMRIPrep was that it addresses the 

challenge of robust and reproducible preprocessing as it automatically adapts a best-in-breed 

workflow to virtually any dataset, enabling high quality preprocessing without the need of 

manual intervention (Esteban et al., 2019). Each T1w volume was corrected for intensity non-

uniformity (INU) and skull-stripped. Spatial normalization to the ICBM 152 Nonlinear 

Asymmetrical template version 2009c (Esteban et al., 2016) was performed through nonlinear 

registration, using brain-extracted versions of both T1w volume and template. Brain tissue 
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segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 

performed on the brain-extracted T1w. Fieldmap distortion correction was performed by co-

registering the functional image to the same-subject T1w image with intensity inverted 

(Caballero-Gaudes & Reynolds, 2017) constrained with an average fieldmap template (Tustison 

et al., 2010). This was followed by co-registration to the corresponding T1w using boundary 

based registration (Smith, 2002) with 9 degrees of freedom. Motion correcting transformations, 

field distortion correcting warp, BOLD-to-T1w transformation and T1wto-template (MNI) warp 

were concatenated and applied in a single step using Lanczos interpolation. Physiological noise 

regressors were extracted applying CompCor (Cox & Hyde, 1997).  

Principal components were estimated for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). Six tCompCor components were then calculated 

including only the top 5% variable voxels within that subcortical mask. For aCompCor, six 

components were calculated within the intersection of the subcortical mask and the union of CSF 

and WM masks calculated in T1w space, after their projection to the native space of each 

functional run. Frame-wise displacement (Treiber et al., 2016) was calculated for each functional 

run using the implementation of Nipype. For more details of the pipeline see 

https://fmriprep.readthedocs.io/en/latest/workflows.html. 

Statistical analyses 

For each participant we estimated a general linear model (GLM) using regressors for onsets of the 

decision phase for cheated trials, honest trials, cheatable trials (trials with less than three 

differences) and non-cheatable trials (trials with three differences). The duration of the epoch for 

the decision phase was three seconds and the beginning of the decision phase was used as onset 

times. The decision phase was used as it provides all the necessary information to make the 

decision and is free of brain activity related to motor responses. In addition, regressors were added 

for the onsets of the Level of difficulty phase with a separate regressor for each level of reward. 

For the level of difficulty trial the duration was two seconds. This phase was used to test whether 

participants are indeed sensitive to differences in potential gain as it provided information about 

the possible reward without any moral conflict. Besides that, in order to ensure that there were no 

significant differences in engagement or motivation in the Spot-The-Difference task between 

conditions or subjects, regressors were added for the onsets of the visual search phase in which the 
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image pairs were presented on the screen. The duration of the visual search phase was six seconds 

(see Figure 1). Lastly, regressors for the button presses were added. Average background, white 

matter and cerebrospinal fluid (CSF) signal, framewise displacement, six head motion regressors 

and six aCompCor regressors, all obtained from fMRIprep, were entered as regressors of no 

interest. All regressors were convolved with the canonical hemodynamic response function. A 

smoothing kernel of 5 mm (FWHW) was applied. Linear contrasts were computed between honest 

and cheating decisions and between cheatable and non-cheatable trials. These contrasts were then 

subjected to a random effects analysis to compute main effects (one sample t-test), and to 

regression analyses with behavioral data (i.e., total amount of cheating for each participant) as 

regressors.   

 

Cheatable vs. Non-cheatable trials 

To identify the neural correlates associated with the opportunity to cheat, we contrasted the 

neural activation during cheatable trials (trials with less than three differences), against activation 

in non-cheatable trials (trials with three differences) in both directions. Subsequently, using the 

contrast images obtained for each subject, one sample t-tests were conducted on the group level 

to explore the average effect of being exposed to the opportunity to cheat across participants. We 

also added the cheat count, which is a measure how often each participant cheated in total on the 

Spot-The-Difference task, as a group level covariate to explore whether there are individual 

differences in the neural mechanisms when exposed to the opportunity to cheat, between 

individuals who cheat a lot vs. those who rarely cheat. The threshold applied to the group level 

statistical maps was a voxel-wise false discovery rate of p < 0.05 (FDR) to correct for multiple 

comparisons. Clusters of activation resulting from the thresholding were characterized in terms 

of their peak voxels in the MNI coordinate space. 

Honest decisions vs. Cheating 

To explore the neural mechanisms underlying the decision to cheat, we contrasted neural activation 

in the decision phase on trials on which participants cheated against honest trials in both directions. 

For each of these contrasts we then conducted one sample t-tests on the group level to explore the 

average effects of each of these contrasts across participants. In addition, we also entered the total 

cheat count for each participant as covariate on the group level to investigate the correlation 

between behavior and neural activation in the contrasts of interest. Based on the resulting beta 
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images, second-level random-effects group contrast maps were then created in both directions (i.e., 

positive and negative correlation between activation and cheat count). The threshold applied to the 

group level statistical maps was a voxel-wise false discovery rate of p < 0.05 (FDR) to correct for 

multiple comparisons. Clusters of activation resulting from the thresholding were characterized in 

terms of their peak voxels in the MNI coordinate space. Due to the fact that participants engaged 

in spontaneous, voluntary and deliberate cheating, the proportion of cheated and honest trials was 

not balanced for most of the participants. To account for possible confounding statistical effects 

of this imbalance, we under sampled the majority class for each participant to create a perfect 

balance when estimating the contrasts (Liu, Wu, & Zhou, 2008).  

 

Single trial activation estimation 

An important contribution of our task is that it allows us to assess cheating behavior on a trial-by 

trial-basis. That is, we are able to assess why a person who is generally honest, decides to cheat on 

some trials, and why a cheater might refrain from cheating on some occasions. To explore which 

neural mechanisms underlie this within subject variability we extracted the neural activation from 

the ROIs identified in the analyses described above during decision making for each trial for each 

subject. These trial-by-trial activations could then be fed into multilevel models to explore which 

neural mechanisms may explain within subject variability.  

To obtain single trial neural activations for the trial-by-trial multilevel models, individual 

time series were modeled using a double γ hemodynamic response function in a single trial GLM 

design using FSL’s FEAT. Specifically, one GLM fitted a hemodynamic response function (HRF) 

for each trial, following the Least-Squares all (LSA) approach (Mumford, Turner, Ashby, & 

Poldrack, 2012), using the decision phase and level of difficulty phase of each trial, resulting in 

parameter estimates of sustained activations for each trial for each participant. The resulting β-

values were converted to t-values (Misaki, Kim, Bandettini, & Kriegeskorte, 2010), resulting in a 

whole-brain map of t-values for each trial. The duration of the epoch for the decision phase was 3 

seconds and 2 seconds for the level of difficulty phase. As for the previous analyses, average 

background, white matter and CSF signal, framewise displacement, six head motion regressors 

and six aCompCor regressors, all obtained from fMRIprep, were entered as regressors of no 

interest. All regressors were convolved with the canonical hemodynamic response function. 
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Mulilevel modelling was conducted with custom R scripts in combination with the ‘lme4’ package 

for linear mixed-effects models (Bates et al., 2015) and the ‘glmmlasso’ package for variable 

selection for generalized linear mixed models by L1-penalized estimation (Groll & Tutz, 2014). 

fMRI analyses were conducted using custom Python scripts, which will be made publicly 

available. 

Beta-series correlations 

In order to further explore how the different areas resulting from the different contrasts described 

above interact with each other during decisions to cheat, we investigated the functional 

connectivity between these areas during the decision phase of the Spot-The-Difference Task. To 

avoid the problem of activation-induced correlations we implemented beta-series correlations 

(Rissman, Gazzaley, & D'Esposito, 2004). We used the single trial activations obtained as 

explained above by fitting a model that includes a separate regressor for each trial. We then 

correlated the parameter estimates from these regressors (the “beta series”) for honest decisions 

and cheated decisions separately between all the regions found to be significantly related to our 

contrast of interest, in order to examine the degree to which they show similar trial-by-trial 

activations, as is expected when these regions were functionally connected. The beta-series model 

is particularly useful in event-related fMRI studies where the spacing between trials is relatively 

long (more than 8-10 seconds), which is the case in our paradigm (Poldrack, Mumford, & Nichols, 

2011). After obtaining the correlation matrix for each of the participants for honest and cheated 

decisions, we then also correlated the functional connectivity between each of the regions with the 

cheat count (individual differences in total cheating) in order to examine how functional 

connectivity differed for cheaters and more honest participants. To compare functional 

connectivity between honest and cheated decisions, correlations were transformed to z-values 

using the Fisher r-to-z transformation. Significance was estimated by means of permutation testing 

where the cheat count was randomly shuffled at each iteration (N=5000). The resulting empirical 

p-values were then corrected for multiple comparisons at FDR < 0.05. 
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Results 

Behavioral results 

 Large individual differences in the total amount of cheating were observed (Mean= 25%, 

Median=14%, SD=26%; see Figure 2): some participants cheated only on one or two trials (20% 

of participants), whereas others only missed one or two opportunities to cheat (5 %). To assess 

suspicion about the real purpose of the study participants were asked what the goal of the 

experiment was. Participants mentioned marketing research, consumer decision-making, 

neuromarketing and visual search as our general cover story suggested that visual search is 

important for quickly locating one’s favorite brand or product in a supermarket. Importantly, 

none of the participants mentioned dishonesty, moral decision making or related concepts, which 

indicates that none of the participants were suspicious of the real goal of the study. 

 

Figure 2. Individual differences in proportion of cheating (%) on the Spot-The-Difference task. 

N = 40. 
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We also explored how the task characteristics of the Spot-The-Difference task influenced 

cheating behavior. Given the nested structure of our data (trials within different number of 

differences and rewards within participants), we conducted a multilevel analysis for our behavioral 

data. This analysis was conducted for the cheatable trials only, so all trials with three differences 

between the images were removed. The dependent variable was the binary response (cheating vs. 

honest) with a logit link (cheating = 1, honest = 0). The number of differences and level of reward 

served as trial level predictors. The model allowed for random intercepts and random slopes within 

participants. This analysis revealed a significant effect of the number of differences (excluding 

three differences trials) on cheating behavior (b=2.20, SE=0.46, z=4.744, p<0.001). This shows 

that participants cheated more when the crime is smaller (that is, they indicated to have found three 

differences more often when they had actually found two differences as compared to when they 

found only one). Specifically, when there were two differences, participants cheated on 35% of 

the trials, whereas participants only cheated on 15% of trials with only one difference (t=3.25, 

p=0.002). No effect of reward magnitude on cheating behavior was observed, and no significant 

interaction effects between number of differences and reward were found. We also tested for 

possible fatigue or habituation effects by using trial number as a trial level predictor to see whether 

cheating behavior increased or decreased over the course of the experiment. No time effects were 

found.      

Neural mechanisms associated with the opportunity to cheat 

Whole-brain analysis. As a first step of our fMRI analysis we explored the neural activation in 

response to the opportunity to cheat. In order to do so, we contrasted neural activity during trials 

in which participants had the opportunity to cheat against trials in which they did not have this 

opportunity (see Methods for details). To explore whether there are individual differences in the 

neural response to this opportunity, participants’ cheat count was added as a group level covariate. 

The whole brain analysis revealed that more honest participants (compared to those who cheated 

more) exhibited greater activation in the posterior cingulate cortex (PCC), the medial prefrontal 

cortex (MPFC) and the bilateral temporoparietal junction (TPJ) when exposed to the opportunity 

to cheat (pFDR<0.05; see Figure 3A and Appendix 4 for table with clusters).  

As the activated network in our group-level results highly resembled the self-referential 

thinking network, we conducted a conjunction analysis with a meta-analytically derived self-
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referential thinking mask obtained from Neurosynth, FDR corrected for multiple comparisons at 

p<0.01 (using the term “self referential”; Wager, Nichols, Van Essen, Poldrack, & Yarkoni, 2011, 

See Figure 3B and Appendix 3) to test whether there is indeed neural overlap. Neural overlap was 

found in the PCC (overlap (mm3) = 4600), in the MPFC (overlap (mm3) = 4072), in the right TPJ 

(overlap (mm3) = 869) and the left TPJ (overlap (mm3) = 608), see Figure 3C. 
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Figure 3. Honest participants engage their self-referential thinking network more strongly than 

cheaters when exposed to the opportunity to cheat. (A) More honest participants exhibit great 

activation in the PCC, MPFC and bilateral TPJs when exposed to the opportunity to cheat. (B) 

Self-referential thinking mask obtained from Neurosynth. (C) Neural overlap between group 

level results for cheatable vs. non-cheatable trials correlated with cheat count and the self-

referential thinking mask obtained from Neurosynth (D) The correlation between the level of 

honesty (reversed cheat count) and neural activation when participants were exposed to the 

opportunity to cheat as contrasted to no opportunity trials, for the PCC, bilateral TPJs and the 

MPFC, respectively (using ROIs obtained from the conjunction analysis). 

ROI analysis. To test whether the relationship between activity in the self-referential thinking 

network and level of honesty during the opportunity to cheat remains when using the ROIs 

obtained from the conjunction analysis, we extracted the mean activations from the contrast 
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maps obtained above (Cheatable > NonCheatable) from each of the regions identified in the 

conjunction analysis (see Figure 3C). We found a positive correlation between level of honesty 

(reverse cheat count) and the mean activity in the PCC (r=0.62, padj < 0.001; adjusted for 

multiple comparisons using FDR at p<0.05), the MPFC (r=0.48, padj < 0.01), the left TPJ 

(r=0.51, padj < 0.001), the right TPJ (r=0.59, padj < 0.001) and the MPFC (r=0.59, padj < 0.001). 

This illustrates that honest participants engage their self-referential thinking network more 

strongly than less honest participants when exposed to the opportunity to cheat (see Figure 3D). 

Neural mechanisms underlying the decision to cheat 

Whole-brain analysis. Next, we explored which neural mechanisms underlie the decision to cheat 

or not, when given the opportunity. To answer this question, we contrasted the neural activation 

of trials where participants had the opportunity to cheat but decided to be honest, against trials on 

which participants decided to cheat. As before, to explore whether there are individual differences 

in the neural processes underlying honest as compared to dishonest decisions, participants’ cheat 

count was added as a group level covariate.  

We found that participants who overall cheated more, showed higher activity in the anterior 

cingulate cortex (ACC) and the inferior frontal gyrus (IFG) when they made the decision to be 

honest (p<.001, uncorrected; see Figure 4A). Stated differently, cheaters engage their ACC and 

IFG more than honest participants when refraining from cheating. As the activated network in our 

group-level results highly resembled regions within the cognitive control network, we conducted 

a conjunction analysis with a meta-analytically derived cognitive control mask obtained from 

Neurosynth (Wager, Nichols, Van Essen, Poldrack, & Yarkoni, 2011, See Figure 4B and Appendix 

3) to test whether there is indeed neural overlap. Neural overlap was found in the ACC (overlap 

(mm3) = 168) and in the left IFG (overlap (mm3) = 1256), see Figure 4C. 
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Figure 4. Cheaters exhibit higher activation in the ACC and left IFG when deciding to be honest. 

(A) Participants who cheat more, exhibit higher activation in the ACC and left IFG when making 

the decision to be honest. (B) Cognitive Control network derived from Neurosynth.(C) Neural 

overlap between group level results for honest vs. cheated trials correlated with cheat count and 

the cognitive control mask obtained from Neurosynth in the Left IFG and ACC. (D) The 

correlation between cheat count and neural activation when participants decided to be honest as 

contrasted to cheating decision, for the left IFG and the ACC. 

ROI-analysis. To assess whether the association between activity in the cognitive control regions 

and cheatcount during honest decisions remains when using the ROIs resulting from the 

conjunction analysis, an ROI analysis was conducted in which we extracted the mean activation 

from the contrasts maps obtained in the previous analysis (honest>cheat) from each of the 

regions obtained from the conjunction analysis above (see Figure 4C). We found a strong 

positive correlation between cheat count and mean activity in the left IFG (r=0.61, padj < 0.001) 

and the ACC (r=0.49, padj < 0.001). These results confirm findings from the whole brain analysis 

and show that participants who cheat a lot engage their cognitive control network more strongly 

when they decide to be honest than honest participants do. 

Neural correlates of the sensitivity to reward are associated with cheating 

Level-of-Difficulty Phase. Although we did not find any effects of reward on cheating on the 

behavioral level, we did want to test whether the participants responded to the reward on the neural 

level, as previous research has eluded to the relevance of reward anticipation in explaining 

individual differences in cheating (Abe & Greene, 2014, Seuntjes et al., 2019). Here, we 

investigated whether participants were motivated by the possible rewards that could be obtained 

at each trial and whether participants differentiated between the different magnitudes, 5ct, 20ct 

and 40ct, of reward on the neural level. We conducted a parametric modulation analysis where we 

used the onsets of the level of difficulty phase of each trial and added the magnitude of reward at 

each trial as a parametric modulator on the first level. The analysis revealed that the magnitude of 

reward modulated the activity in the bilateral Nacc significantly (pFDR<0.05; see Figure 5A and 

Appendix 6 for table with clusters).  
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As the Nacc is well known for its role in processing the anticipation of reward (Ballard & 

Knutson, 2009; Knutson, Adams, Fong, & Hommer, 2001; Oldham et al., 2018) this suggests that 

the participants were indeed motivated by the potential rewards presented at the beginning of the 

trial. Further, differences between levels of magnitude were reflected in different levels of activity 

in the Nacc, suggesting that participants were indeed differentiating between the different reward 

magnitudes.            

 In addition, significant activation was found in the left cuneus which is involved in basic 

visual processing (Vanni, Tanskanen, Seppä, Uutela, & Hari, 2001). This may reflect neural 

activation in response to the different visual information associated with the different levels of 

reward, such as different colors (green for the normal trials, orange for hard trials and red for very 

hard trials) and text. Alternatively, it may also reflect increased visual attention when the reward 

is higher.            

 As the activated network in our second level results highly resembled the reward 

anticipation network, we conducted a conjunction analysis with a meta-analytically derived reward 

anticipation mask obtained from Neurosynth with false discovery rate (FDR) corrected for 

multilple comparisons at p<0.01 (Wager, Nichols, Van Essen, Poldrack, & Yarkoni, 2011, See 

Figure5B and Appendix 3) to test whether there is indeed neural overlap. Neural overlap was found 

in the right Nacc (overlap (mm3) = 2040) and left Nacc (overlap (mm3) = 840), see Figure 5C. We 

also conducted an additional second level analysis, in which we added the cheat count as a 

covariate, in order to explore whether reward sensitivity in the Level-of-Difficulty phase differed 

between subjects. However, no significant differences were observed, indicating that participants 

were equally sensitive to the rewards, independent of how often they cheated.  

Decision Phase. To explore how the effect of reward anticipation, as represented by activity in 

the Nacc, on cheating differs for cheaters and more honest participants, we then used the ROIs 

derived from the conjunction analysis between our parametric modulation analysis and the 

Neurosynth map for reward (see Figure 5C) and regressed mean Nacc activity per subject during 

the anticipation and decision phase against the cheat count. This analysis revealed that average 

Nacc activity significantly predicted cheat count (b=18.29, SE=7.01, p<0.05, see Figure 5D) 

during the decision phase, whereas no significant effect was found during the anticipation phase 

(b=-8.89, SE=14.2, p=0.54). This suggests that participants are equally sensitive to reward during 

the anticipation phase when there is no moral conflict, however, when making the decision to 
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cheat (or be honest), participants who cheat seem to be driven more strongly by anticipation of 

reward.  
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Figure 5. Cheaters exhibit higher activity in the Nacc when making (dis)honest decisions.        

(A) The left and right nucleus accumbens are parametrically modulated by the magnitude of 

reward. (B) Reward network derived from Neurosynth.(C) Neural Overlap between the 

parametric modulation analysis of the magnitude of reward and the reward anticipation network 

derived from Neurosynth. (D) Mean Nacc activity during the decision phase predicts cheat 

count. 

Investigating within-subject variation in cheating: Trial-by trial analysis 

In order to further explore how self-concept, reward and cognitive control influence decisions to 

cheat, we conducted a trial-by-trial analysis, which allowed us to explore within-subject 

variability. Stated differently, this analysis was aimed at investigating the neural mechanisms 

that determine why the same person may cheat on some occasions and remain honest on others. 

As a first step, we extracted average trial-by-trial activation from individual regions within the 

reward, cognitive control and self-referential thinking, respectively, where we used the 

conjunction between our second level results and the Neurosynth maps (see Figures 3C, 4C & 

5C), resulting in one data matrix where the rows represent trials and the columns represent the 

regions of interest. Given the nested structure of our data (trials within different number of 

differences and rewards within participants) we then conducted a multilevel analysis for each of 

the networks (self-referential thinking, cognitive control and reward). The dependent variable 

was the binary response with a logit link (cheating = 1,  honest = 0). The averaged activity within 

D 
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the obtained regions of interest served as trial level predictors, whereas the cheat count served as 

a subject level predictor. The models allowed for random intercepts and random slopes within 

participants.  

Assessing the relative importance of the networks  

To investigate which of the networks is most important in predicting cheating on a trial-by-trial 

level, we performed variable selection for generalized linear mixed models by means of L1-

penalized estimation. This was implemented using the ‘glmmlasso’ package in R, which 

implements a gradient ascent that allows to maximize the penalized log-likelihood yielding 

models with reduced complexity (Groll & Tutz, 2014). The lasso regression adds a penalty term 

to the equation which shrinks coefficients in the model to zero and thus reduces complexity of 

the model and multicollinearity of predictors (Tibshirani, 1996). In this way it also selects the 

most important predictors in the model. This analysis revealed that the ACC (b = 0.13, SE=0.06, 

p=0.02), the left IFG (b = 0.42, SE=0.06, p<0.001), the cheat count (b = 1.59, SE=0.07, p<0.001) 

and the interaction effect between the left IFG and the cheat count (b = -0.38, SE=0.06, 

p<0.001), were most important in predicting cheating. These results suggest that the cognitive 

control network is most important in predicting cheating on the trial level. Inspecting the plot of 

the interaction effect (see Figure 6), we see that for participants who cheat a lot (light blue lines), 

higher levels in the left IFG are associated with lower probabilities of cheating, whereas for more 

honest participants (dark blue lines), higher activity in the left IFG is associated with higher 

probability of cheating. These findings suggest that the effect of the left IFG on cheating depends 

on whether a participant has the general tendency to cheat or to be honest. 
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Table 1. Multilevel Logistic Regression Model using the Cognitive Control Network to 

predict Cheating 

 Estimate Std. Error z value Pr(>|z|) 

Intercept -1.582 0.069 -22.793 <0.001 

ACC 0.132 0.06 2.306 0.02 

L IFG 0.422 0.061 6.908 <0.001 

Cheat count 1.60 0.07 23.735 <0.001 

L IFG x Cheat 

count 

-0.382 0.062 -6.192 <0.001 

* The source of anatomical labels: AAL Atlas tools cross referenced with Neurosynth. ACC= 

Anterior Cingulate cortex, IFG= inferior frontal gyrus, R= right; L = left; 

 

 

Figure 6. Interaction effect between cheat count and the left IFG in predicting the probability of 

cheating. The lines that are shown are the fitted values for participants 3SD (lightest blue), 2 SD 
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(light blue) and 1 SD (blue) above the mean of the cheat count and participants 1 SD (dark blue), 

2SD (darker blue) and 3 SD (black) below the mean of the cheat count. 

Testing the predictive accuracy of the model  

As the cognitive control regions were found to be most predictive of cheating, we used these 

predictors to test the prediction accuracy of our model. In order to do this, we used the trial level 

activation level in the ACC and left IFG, excluding the cheat count, obtained from the 

conjunction analysis and trained a multilevel logistic regression model, with random slopes and 

intercepts, on a training set (70% of the data). Subsequently, we tested the model on the left out 

30% of the data. As the dependent variable, cheating, was imbalanced, we used two accuracy 

metrics that were insensitive to the class imbalance, namely the area under the curve (AUC) and 

the F1-score, which is the harmonic mean of the precision and recall. Statistical significance was 

estimated using permutation tests where the dependent variable (cheating) was permuted 5000 

times and the classification metrics were estimated based on random permutations. We found 

that we were able to significantly predict cheating based on unseen data from the cognitive 

control network (AUC=76%, F1=89%, p<0.001). 

Individual differences in functional connectivity during decision-making 

Connectivity within self-referential thinking network: The beta-series correlation analysis revealed 

that functional connectivity within nodes of the self-referential thinking network were more 

strongly connected for honest participants than for cheaters when making honest decisions. 

Specifically, correlations between honesty and functional connectivity were found between the 

PCC and left TPJ (r=0.51, padj<0.05) and between PCC and MPFC (r=0.55, padj<0.05; see Figure 

7). No significant correlations between honesty and functional connectivity were found for cheated 

decisions. In addition, the correlation between honesty and functional connections between PCC 

and left TPJ and between PCC and MPFC during honest decisions were significantly different 

from the correlation during cheated decisions (both comparisons z > 2, padj<0.005). Thus, the nodes 

within the self-referential thinking network, particularly between MPFC, left TPJ and PCC, seem 

to be more intimately connected to promote honesty particularly for honest participants, whereas 

when the connectivity between these nodes breaks down, honest participants tend to cheat.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.907634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.907634
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 

 

Figure 7. Top row: Correlation between level of honesty (reverse cheat count) and functional 

connectivity between PCC and MPFC and PCC and left TPJ. Bottom row:  Connectome showing 

the correlation between level of honesty and the functional connectivity between within self-

referential thinking network during cheated decisions (left) and honest decisions (right). 

Classification of cheaters versus honest participants based on functional connectivity patterns 

To test whether there is sufficient information in the connectivity patterns within the self-

referential thinking network reported above to predict individual differences in honesty, a 

support vector classifier (Cox & Savoy, 2003; Mitchell, 2004) with linear kernel (C=1) was 

trained on the functional connectivity patterns of each participant to determine whether a 

participant was a cheater or an honest participant (categorized by median split). In order to avoid 

overfitting and inflated prediction accuracy (Vul, Harris, Winkielman, & Pashler, 2009) this was 
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done using 8-fold cross validation (see Figure 8). Significance was estimated using permutation 

testing (N=5000). The classification analysis revealed that we could significantly classify an 

unseen participant as a cheater or an honest individual (Accuracy=75%, F1=71%, p<0.05).  

 

Figure 8. Using participants’ connectivity patterns within the self-referential thinking network 

during decision making to classify participants as cheaters or honest participants using support 

vector classifiers implemented with 8-fold cross-validation. 
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Discussion 

In this study we explored how neural mechanisms associated with reward anticipation, self-

referential thinking and cognitive control determine the outcome of (dis)honest decisions. Using 

the newly developed Spot-The-Difference task to study trial-by-trial cheating behavior we found 

that the effect of cognitive control depends on a participant’s inclination to be honest or 

dishonest, in other words, on their moral default.  

We found that more honest participants engaged in more self-referential thinking when 

exposed to the opportunity to cheat. Particularly, participants who were generally honest, 

exhibited higher activity in the self-referential thinking network comprised of the PCC, the 

bilateral TPJs and the MPFC. We confirmed that our results indeed reflect self-referential 

thinking processes by means of a conjunction analysis with Neurosynth data. Exploring the 

functional connectivity within the self-referential thinking network, we also found that more 

honest participants exhibited stronger positive connectivity during honest decisions between all 

nodes in this network, whereas this connectivity within the self-referential network broke down 

during cheated decisions. Collectively, these findings highlight the importance of our self-

concept and related self-referential thinking processes in promoting honesty. 

In line with previous research (Abe & Greene, 2014; Seuntjens et al., 2019), we found 

that cheaters exhibited stronger sensitivity to reward during decision-making. Our results 

revealed that all participants were anticipating reward and were sensitive to differences in 

magnitude of reward during the initial phase of the trial, where the potential reward for finding 

the differences between the two images is presented without moral conflict. However, cheaters, 

as compared to more honest participants, were more strongly driven by reward when making the 

decision whether to cheat or not. Specifically, cheaters exhibited higher neural activation in the 

Nacc, which is an area that has been consistently linked to reward anticipation (Ballard & 

Knutson, 2009; Knutson, Adams, Fong, & Hommer, 2001; Oldham et al., 2018), during the 

decision phase. Thus, whereas all participants are sensitive to differences in the magnitude of 

reward in the absence of moral conflict, particularly the cheaters are driven by the anticipation of 

reward when making the decisions to cheat.  

Importantly, our study is the first to suggest that the function of cognitive control depends 

on a person’s moral default. Particularly, we found that for honest participants, more cognitive 
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control, as represented by higher activity in the left IFG, was needed to cheat, whereas for 

participants who cheated frequently, response inhibition was needed in order to be honest. While 

honest participants needed cognitive control to overcome their inclination of being honest in 

order to cheat, cheaters had to exert control to override their greedy tendencies to be honest. 

Thus, our analyses indicated that the role of cognitive control depends on a person’s moral 

default. 

In the literature there has been a debate between proponents of the “Will” hypothesis and 

the “Grace” hypothesis. Research supporting the “Will” hypothesis (Gino et al., 2011; Mead et 

al., 2009; Welsh & Ordonez, 2014) suggests cognitive control is needed to be honest. In direct 

opposition to this, another stream of research has accumulated evidence in favor of the “Grace” 

hypothesis (for meta-analyses, see Suchotzki, Verschuere, Van Bockstaele, Ben-Shakhar, & 

Crombez, 2017; Verschuere, Köbis, Bereby-Meyer, Rand, & Shalvi, 2018; Carparo, 2017; 

Spence et al., 2001; Greene & Paxton, 2009) advocating that cognitive control is required for 

dishonesty.  

Our findings help reconcile this conflict as they suggest that people are distributed along 

a continuum from individuals who are generally honest to participants who can be considered 

cheaters. Participants on one side of the spectrum have a default inclination to be honest which is 

associated with more self-referential thinking when given the opportunity to cheat. In contrast, 

individuals on the other side of the spectrum have a default inclination for dishonesty and their 

decisions seem to be driven more strongly by rewards. In order to achieve and maintain a 

subjectively justifiable balance where one can occasionally profit from cheating but still maintain 

a positive self-image, people on both sides of the spectrum sometimes need to overcome their 

initial impulse and default behavior. A generally honest person will need to overcome the default 

of being honest in order to profit from cheating from time to time, whereas a cheater needs to 

inhibit the predominant selfish response in order to be honest and maintain their self-concept. 

Thus, it appears that the effect of cognitive control depends on our moral default. For honest 

people the “Grace” hypothesis applies: honesty results from the absence of temptation and 

response inhibition is needed to cheat. In contrast, for cheaters the predictions of the “Will” 

hypothesis apply and active resistance of temptation in form of inhibition is needed to be honest. 

Extending findings from cognitive psychology (MacLeod, 1991; Eriksen & Eriksen, 1974; 
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Simon & Wolf, 1963) to the social/moral domain, our results suggest that cognitive control 

seems to serve the purpose to override our default behavior. Our study thus contributes to the 

reconciliation of the controversy on the role of cognitive control in moral decision making. 

In addition, our findings also point to the importance of self-referential thinking 

processes and the maintenance of a positive self-concept. Whereas previous neuroimaging 

research has mainly focused on the role of cognitive control and reward sensitivity in cheating 

behavior, our study is the first to find neural evidence in favor of the self-concept maintenance 

theory (Mazar et al., 2008). Our results indicate that besides reward and control processes, self-

referential thinking as represented by activation in the PCC, MPFC and bilateral TPJs, was 

engaged, particularly in honest participants, when they were tempted to cheat. In addition, 

regions in the self-referential thinking network were more strongly activated and functionally 

more strongly connected with each other when making honest decisions. Thus, our neural 

evidence suggests that when exposed to an opportunity to cheat particularly honest people do 

value their moral self-concept and its maintenance enough to forgo potential financial reward.  

To examine the generalizability of our findings, we also tested the predictive power of 

the cognitive control regions on a trial-by-trial basis using cross-validation. We found that we 

could significantly predict with high accuracy on unseen data whether on a given trial 

participants would be honest or would cheat. Moreover, to assess whether connectivity patterns 

between the different networks contained relevant information about individual differences in 

honesty, we used support vector classifiers trained on participants’ connectivity patterns to 

discriminate cheaters from honest participants and found that we could indeed accurately classify 

whether a participant is a cheater or not. From the perspective of scientific rigor, cross-validation 

is a more conservative way to infer the presence of a brain-behavior relationship as compared to 

correlation or regression, as it is designed to protect against overfitting by testing the strength of 

the association in a new sample. This increases the probability of successful replication in future 

studies. Demonstrating this generalizability of our models may be an important first step in the 

development of useful neuroimaging-based biomarkers of dishonesty with real-world 

applicability. 

In order to rule out alternative hypotheses we conducted several control analyses. First, in 

order to test whether neural differences during the decision phase were not driven by differences 
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in levels of engagement with the task, we explored the neural processes during the visual search 

phase of each trial. As expected for a visual search task, we found that participants showed 

increased activation in areas related to visual and cognitive processing, working memory and 

navigation (see Appendix 7). More importantly, no significant differences in neural mechanisms 

during visual search were found between honest participants and cheaters. This eliminates the 

possibility that our neural findings were confounded by processes related to differences in 

engagement or effort during visual search. Second, we also conducted an exploratory factor 

analysis, which revealed that regions of interest used in our trial-by-trial and functional 

connectivity analyses indeed belonged to three separate networks that could be clearly identified 

as the control, reward and self-referential thinking network, respectively (see Appendix 8). 

In reference to previous neuroimaging research on moral decision-making, our findings 

align with the early work using hypothetical moral dilemmas (Greene et al., 2004), instructed 

lying paradigms (Spence et al., 2001, Langleben et al., 2002) and also more recent work using 

the die-roll task (Greene & Paxton, 2009) in highlighting the importance of the cognitive control 

network, including areas such as the ACC and IFG, in moral decision-making. As stated above, 

our findings are also in line with those of Abe and Greene (2014) converging on the conclusion 

that a more sensitive and responsive reward network is associated with higher levels of cheating. 

With regard to neural processes linked to self-referential thinking, an fMRI study by Greene and 

colleagues (2001) found that a network of regions including the MPFC, PCC and bilateral TPJ 

were involved in making judgements about more personal as opposed to abstract hypothetical 

moral dilemmas, which they attributed to general emotional processes. More recently, a meta-

analysis on neuroimaging research on moral decision-making, conducted by Lisofsky and 

colleagues (2014) reported that experimental deception paradigms that involved an identifiable 

victim and consequently perspective taking, were associated with increased activation in the 

right temporal parietal junction and the bilateral temporal pole, which have been associated 

consistently with Theory of Mind (ToM) processes (Bahnemann, Dziobek, Prehn, Wolf, & 

Heekeren, 2009) as compared to less interactive deception and cheating studies. Based on these 

findings, Lisofsky and colleagues argue that particularly in studies involving social interaction 

and an identifiable victim not only control processes but also perspective taking and moral 

reasoning processes are important. Our findings add to their conclusion by demonstrating that 

also in contexts without an identifiable victim, a similar network of regions, involving the TPJ 
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but also the MPFC and PCC, is crucial in determining the outcome of moral decisions. This 

suggest that similar neural mechanisms may underlie self-referential thinking and perspective 

taking processes in the context of moral decision-making.  

 In contrast to our findings, a study by Garrett and colleagues (2016) showed that 

dishonesty escalates over time and is associated with diminished responsiveness in the amygdala, 

which they interpreted as reflecting reduced aversive emotional response to dishonesty. We did 

not find that dishonest behavior or the underlying brain networks changed over time. Garrett and 

colleagues used a paradigm with an identifiable victim which may explain why dishonesty 

increased with repetition in their study but was not observed in the Spot-the Difference task.  

To conclude, we used a task that is the first to allow measuring cheating on the trial level 

in an fMRI environment. Using this novel task, we found that not only reward sensitivity but also 

the extent to which someone engages self-referential thinking processes determines whether 

someone is a cheater or tends to be honest most of the time. Importantly, we also found that the 

role of cognitive control on (dis)honesty depends on a person’s moral default. These findings 

may prove to be useful for developing interventions targeted at reducing cheating and 

dishonesty. Considering the huge economic losses caused by dishonest behavior, such as tax 

deception, music piracy or business scandals such as the Volkswagen emission fabrications, 

reducing dishonest behavior effectively is of great relevance to our economy and policy makers.  

Taken together, we showed that the neural mechanisms engaged in (dis)honest decisions, 

ranging from neural activation in reward, self-referential thinking and control networks to 

functional connectivity patterns, differ fundamentally between honest and dishonest participants. 

Specifically, we found that cognitive control overrides a person’s moral default. Cognitive 

control allows honest people to cheat at times, whereas it enables cheaters to be honest.  These 

insights contribute to a deeper understanding of neural correlates of individual differences in 

moral decision making. Future research may explore whether neural markers associated with 

dishonesty are also observable in more stable neural measures such as resting state functional 

connectivity or structural brain differences. 
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Appendices 

Appendix 1 – Visual search task 

To further increase the credibility of our cover story on brain processes underlying visual search, 

we also included the visual search task introduced by Treisman and Gelade (1980) at the 

beginning of our experiment.  Specifically, participants were told that the experiment would start 

with a simple visual task and then proceed to visual searches in more complex visual stimuli in 

the second task. In this first task, the goal was to determine whether a specific target was present 

or absent. In each trial participants were presented with colored letters presented in random 

locations on the screen. If the target was present, then participants had to press the left mouse 

button as quickly as possible. If no target was present, then they had to press the right mouse 

button as quickly as possible. For this task, participants had to search for a green T. Participants 

were instructed to answer as quickly as possible while still being as accurate as possible. The 

task took approximately 5 minutes and was also completed in the scanner while localizer scans 

were obtained to ensure that scanning noise was audible, so participants would believe this task 

was indeed part of the study. This task will not be analysed as it was included solely for the 

purpose of increasing the credibility of our cover story. 

 

Figure S1. One trial of the simple visual search task. Participants have to indicate whether a 

green T is among the letters on the screen. 
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Appendix 2 – Validation of the picture set 

 Stimuli for the task consisted of 144 Spot-The-Difference image pairs that were 

downloaded from the Internet. Cartoon images of landscapes containing several objects were 

selected, to make them engaging and challenging enough for the participants. Landscapes were 

chosen as they generally satisfied the necessary criteria of containing several different objects, 

which made the task of spotting differences more challenging and engaging. The stimuli consist 

of pairs of images that are identical apart from a certain number (1-3) of differences that were 

created by the experimenter using Adobe Photoshop. Differences consisted of objects added to or 

removed from the landscape picture or changed colors of objects.  

To make sure that participants would be able to find the differences between the images 

in a reasonable amount of time, we ran a pilot study on Amazon’s Mechanical Turk with 205 

subjects using 180 pictures to test the difficulty to spot the differences between the images and to 

determine the optimal duration of picture presentation. Participants were presented with cartoon 

image pairs, presented horizontally next to each other, containing three differences and were 

asked to click on the differences identified in the image on the right hand side. They were given 

15 seconds to make their response. Using the heatmap function provided by Qualtrics, regions of 

interest were defined around the locations of the differences in the image on the right hand side 

and response times for each of the clicks were recorded. This allowed us to test whether 

participants were able to find all differences in an image pair, which differences were 

particularly difficult to find, and how long it took to identify all differences. Based on the 

responses of these 205 participants, 36 image pairs that took too long or had differences that 

were too difficult or too easy, were removed, resulting in 144 images that took 92% participants 

less than 6s to find all three differences  (M=5.4s, SD =1.5s).  
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Appendix 3 – Regions extracted for ROI analyses 

Depicted here are the tables showing the regions extracted from Neurosynth. 

Table S1. ToM and Cognitive Control masks link for download 

Network Studies Date of  Link to download 

Self 

Referential 

166 03.06.2019 http://neurosynth.org/analyses/terms/self%20referential/ 

Cognitive 

Control 

598 03.06.2019 http://neurosynth.org/analyses/terms/cognitive%20control/ 

 

Appendix 4 – Cluster statistics for the second-level results for cheatable vs non-cheatable 

trials 

Table S2. Regions more activated during cheatable trials as compared to non-

cheatable trials for honest participants as compared to cheaters 

Region cluster_id peak_x peak_y peak_z peak_value volume_mm 

PCC 1 -9 -57 23.79 492.667 10014 

R TPJ 2 45 -60 23.79 445.751 4138 

Hippocampus 3 24 -18 -18.33 440.276 3632 

(v)MPFC 4 -6 54 -4.29 388.299 3538 

Cerebellum 5 0 -54 -60.45 379.483 3222 

MFG 6 -30 24 44.85 407.816 3032 

Cerebellum 7 -27 -48 -25.35 429.123 2811 

Left Frontal Pole 8 -18 39 44.85 421.571 2337 

MPFC 9 -6 30 6.24 39.304 2053 

L TPJ 10 -45 -69 23.79 38.957 1674 

R Postcentral 

Gyrus  11 30 -42 65.91 382.644 1547 

R Supramarginal 

Gyrus 12 66 -30 27.3 448.577 1263 

L Supp motor area  13 0 0 48.36 365.033 1232 

L C 14 -18 -42 -49.92 411.611 1105 

R Cerebelum 4 5 15 12 -45 -11.31 429.168 1105 

R Hippocampus 16 21 -39 6.24 466.645 1105 

L OFC 17 -42 36 -14.82 431.246 1042 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.907634doi: bioRxiv preprint 

http://neurosynth.org/analyses/terms/self%20referential/
https://doi.org/10.1101/2020.01.23.907634
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

Appendix 5 – Cluster statistics for the second-level results for cheated vs honest decisions 

Table S3. Regions more activated during honest decisions as compared to cheated 

decisions for cheaters than for honest participants 

Region cluster_id peak_x peak_y peak_z peak_value volume_mm 

L IFG 1 -46 21 -5 41 4156 

R ACC 2 7 36 21 384 2797 

L ACC 3 -7 41 7 450 1922 

R Insula 4 37 26 -6 387 762 

L Frontal Pole 5 -34 62 5 476 704 

L Supp Motor 

Area 6 -11 23 63 398 639 

L Nacc 7 -14 19 -7 372 326 

L SFG 8 -4 20 43 356 272 

R Cingulate 

Gyrus 9 1 -28 29 330 237 

R Angular 

Gyrus 10 54 -51 45 331 200 

 

Appendix 6 – Cluster statistics for the second-level results of the parametric modulation 

analysis for the level of reward 

Table S4. Regions parametrically modulated by level of reward during the level of 

difficulty phase of the Spot-The-Difference task 

Region cluster_id peak_x peak_y peak_z peak_value volume_mm 

Left Cuneus Cortex 1 -9 -78 16.77 546 1611 

R Nacc 2 12 12 -0.78 493 1232 

L Nacc 3 -21 15 -0.78 47 568 

L Cuneus 4 -6 -96 27.3 414 315 

 

Appendix 7 – Levels of engagement during visual search 

In order to test whether our findings may be confounded by different levels of engagement 

during the visual search phase, we tested whether there were differences in neural activation 

during the visual search phase between more honest participants and cheaters. First, we ran a 

univariate analysis in which we contrasted neural activity during the visual search against 

baseline activation. The analysis revealed that a big cluster in the visual cortex showed higher 

activation during search as compared to baseline activation, which is expected as participants 
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were engaged in visual search. In addition, several regions related to working memory, cognitive 

processing and navigation, such as the dmPFC and the MFG were more strongly activated during 

visual search (see Appendix for table with cluster statistics). To explore whether there are 

individual differences in level of engagement during visual search, participants’ cheat count was 

added as a group level covariate. The whole brain analysis revealed that there are no significant 

differences between more honest participants and cheaters during the visual search phase. In 

addition, we also tested whether differences in neural activation during visual search between 

cheatable and non-cheatable trials were more strongly expressed in cheaters or honest 

participants. In order to do so, a univariate analysis was run in which we contrasted neural 

activation during visual search in cheatable trials against activation during visual search in non-

cheatable trials. Again, these contrast maps were then correlated with cheat count on the group 

level. The whole brain analysis did not reveal any significant effects. These findings suggest that 

there are no significant differences in level of engagement or motivation during visual search 

between more honest participants and cheaters.  

 

Figure S2.The visual cortex, dMPFC and left and right dlPFC are more activated during visual 

search as compared to baseline 
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Table S5. Regions more activated during visual search as compared to during rest 

Region cluster_id peak_x peak_y peak_z cluster_mean volume_mm 

Occipital 

Cortex 1 0 -84 2.73 643.202 301369 

dmPFC 2 0 15 48.36 514.447 16490 

MFG 3 24 6 51.87 515.819 6981.39 

R dlPFC 4 45 6 30.81 488.557 6160.05 

R Insula 5 30 27 -0.78 553.421 5907.33 

R dlPFC 6 -48 0 30.81 448.594 3601.26 

L Insula 7 -33 21 -0.78 514.818 3064.23 

Cerebellum 8 -18 -42 -46.41 490.497 1769.04 

R lPFC 9 51 36 27.3 439.172 1674.27 

Cerebellum 10 -30 -69 -53.43 494.043 663.39 

 

Appendix 8 - Factor analysis to confirm validity of networks 

To test whether the regions we are analyzing indeed belong to three separate networks, we 

conducted an exploratory factor analysis with promax rotation (Hendrickson & White, 1964), 

which is an oblique rotation method which allows for correlation between latent factors. 

Specifically, the goal of this factor analysis was to determine the most important latent factors 

underlying all the regions resulting from our conjunction analyses, namely the left IFG and ACC 

(cognitive control network), the PCC, bilateral TPJs and MPFC (self-referential network), and the 

bilateral Nacc (reward network). We used the single trial activations obtained as explained above 

by fitting a model that includes a separate regressor for each trial from each of the regions as input 

for the factor analysis.  Before conducting the factor analysis, we first checked whether the regions 

intercorrelated at all using Bartlett’s test of sphericity which tests the observed correlation matrix 

against the identity matrix. Bartlett’s indicated that the null hypothesis can be rejected and there is 

significant correlation between variables justifying a factor analysis (χ2 =10582, p<0.001). In 

addition, the Kaiser-Meyer-Olkin (KMO) test was conducted which determines the adequacy of 

the observed variables by estimating the proportion of variance among all the observed variables. 

The KMO test revealed an overall estimate of 0.69 which indicates that the observed variables are 

adequate for a factor analysis. Next, we determined the number of factors with the help of the 

Kaiser criterion (choosing factors with an eigenvalue >1). This resulted in three latent factors, 

where the first factor represented the self-referential thinking network with the bilateral TPJs, PCC 

and the MPFC loading highly on this factor. The second factor clearly represents the reward 
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network as only the bilateral Nacc show high factor loadings. Lastly, the third factor clearly 

represents the cognitive control network as only the ACC and the left IFG load highly on this 

component. This exploratory factor analysis clearly indicates that the regions of interest used in 

our trial-by-trial and functional connectivity analysis indeed belong to three separate networks.  

    

Figure S3. Left: Scree plot showing the the eigenvalues for each factor. Right: the loadings for 

each of the factors  

Appendix 9 -Classifying cheaters versus honest participants 

Due to the fact that we found that we could classifiy cheaters and honest participants based on 

the functional connectivity patterns during decision-making, we wanted to see whether average 

activation within a subject in the ROIs from the three networks of interest (cogntive control, 

reward & self referential thinking) could be used to classify participants as cheaters or honest 

participants (categorized by median split). In order to do this we average the trial by trial 

estiamtes within participants resulting in one observation for each subject, which represents the 

average activation in each ROI across the whole task. In order to test this we employed a support 

vector classifier (Cox & Savoy, 2003; Mitchell, 2004) with linear kernel (C=1) was trained on 

average activations in the ROIs of each participant to determine whether a participant was a 

cheater or an honest participant (categorized by median split). In order to avoid overfitting and 

inflated prediction accuracy (Vul et al., 2009) this was done using 8-fold cross validation. 

Significance was estimated using permutation testing (N=5000). The classification analysis 

revealed that we could significantly classify an unseen participant as a cheater or an honest 

participant based on the average activation in the ROIs (F1=70%, AUC=77%, p<0.05). Using 
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activations from honest trials only an even higher classification accuracy was found (AUC=0.84, 

p<0.05). Classification was not significant using cheated trials only. 
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