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ABSTRACT 

Tumor relapse is responsible for most breast cancer related deaths1,2. The 
disease recurrence stems from treatment refractory cancer cells that persist as 
minimal residual disease (MRD) for years following initial therapy3. Yet, the 
molecular characteristics defining the malignancy of MRD remain elusive due to 
difficulties in observing these rare cells in patients or in model organisms. Here, 
we use a tractable organoid system and multi-omics analysis to show that the 
dormant MRD cells retain metabolic peculiarities reminiscent of the tumor state. 
While the MRD cells were distinct from both normal and tumor cells at a global 
transcriptomic level, their metabolomic and lipidomic profile markedly 
resembled that of the tumor state. The MRD cells particularly exhibited a de-
regulated urea cycle and elevated glycolysis. We find the latter being crucial for 
their survival and could be selectively targeted using a small molecule inhibitor 
of glycolytic activity. We validated these metabolic peculiarities of the MRD cells 
in corresponding tissues obtained from the mouse model as well as in 
transcriptomic data from patients following neo-adjuvant therapy. Together, our 
results show that the treatment surviving MRD cells retain features of the tumor 
state over an extended period suggestive of an oncogenic memory. In accord, 
we found striking similarity in DNA methylation profiles between the tumor and 
the MRD cells. The distinction of MRD from normal breast cells comes as a 
surprise, considering their phenotypic similarity with regards to proliferation 
and polarized epithelial organization. The metabolic aberrances of the MRD cells 
offer a therapeutic opportunity towards tackling emergence of breast tumor 
recurrence in post-treatment care. 

Minimal residual disease (MRD) is estimated to lead to mostly incurable relapse in 20-
40% of breast cancer patients within a period from a few years up to decades after the 
initial treatment2,3. Therefore, understanding and tackling MRD has been recognized 
as one of the great challenges to improve treatment options for breast cancer 
survivors4,5. MRD is not accessible for direct functional analysis in breast cancer 
patients due to its covert nature, but can be explored in mechanistic detail in model 
systems, such as genetically modified mouse models6. To this end, we have 
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established a preclinical mouse model of breast cancer (see Methods) that bears 
doxycycline-inducible hMyc- and Neu/Her2-oncogenes7-9, which we have successfully 
used to isolate MRD relevant for human disease10. From these transgenic mice we 
obtain primary mammary cells to establish 3D organoid cultures11 and are able to 
follow MRD establishment in phenotypic and molecular detail. In short, polarized 
structures lining a lumen represent the healthy tissue (Fig.1a, left panel, Normal), while 
addition of doxycycline at a dose of 200ng/ml (Extended data 1a-d) activates the 
expression of oncogenes, as shown for transgenic oncogenic-hMYC presence (Fig.1a, 
right panels, Tumor). This leads to uncontrolled proliferation as well as the loss of 
polarity and lumen (Fig.1a, left panels, Tumor). Removal of doxycycline from the media 
silences oncogene expression and triggers tumor regression, in line with the principle 
of oncogene dependence12,13. Residual acini exhibit a re-polarized epithelium and 
absence of hMYC protein (Fig.1a, left and right panels, Residual), reminiscent to 
findings in mammary gland histological sections of the mouse model taken eight weeks 
after inducing tumor regression10. 

Despite the phenotypic similarity of the residual spheres to normal acini, RNA-
sequencing data showed that the residual cells exhibit a distinct transcriptional profile 
(Fig.1b, Extended data 2a). Gene-set enrichment analysis of differentially expressed 
genes in residual cells in comparison to normal cells resulted in Gene Ontology (GO) 
terms of “cell division and cell cycle”, “cell signaling”, and “response to stimuli” being 
enriched for downregulated genes and are in line with the observed dormancy of the 
residual cells (Extended data 2b, Supplementary table 1). Genes connected to 
“cytoskeletal localization”, “cell adhesion and movement” and “activation of cell surface 
receptor signaling” were upregulated, supporting the re-polarization process upon 
MRD establishment (Extended data 2c). Additionally, the growth supporting metabolic 
pathways of pentose phosphate pathway and glycolysis, were enriched for significantly 
upregulated genes and were found similarly upregulated in tumor cells (Extended data 
2d, bottom-Supplementary table 2). Sub-setting the transcriptome to metabolic genes, 
the distinct PCA distribution patterns of the three populations observed in the global 
transcriptome were retained (Extended data 2e), suggesting altogether a potential 
metabolic abnormality of the surviving cells. 

To examine the metabolic state of the three cell populations in detail, we embarked on 
lipidomic profiling as well as untargeted and targeted metabolomics analyses. Both 
intracellular and extracellular (culture supernatant) samples were analyzed to obtain a 
comprehensive overview of the metabolic (patho)physiology. We first optimized the 
metabolite extractions from 3D cultures (Extended data 3). Then we obtained profiles 
from shotgun lipidomics, which showed a surprisingly close similarity of residual and 
tumor populations (Fig.1c). This was also evident in the untargeted metabolomics 
analysis, with the regressed cells resembling tumor state and not the normal (Fig.1d). 
Importantly, control samples obtained from wild-type mice lacking the reverse 
tetracycline-controlled transactivator (rtTA), but treated with doxycycline, clustered 
with the normal controls, thus excluding a potential confounding effect of doxycycline 
on the metabolism. Metabolomics analysis targeted at central carbon metabolism 
confirmed the results obtained from lipidomics and untargeted metabolomics, at the 
same time attesting that the dormant residual cells still retained key characteristics of 
their past tumorigenic state (Fig.1e, Extended data 4a, Extended data 5). Notably, the 
residual cells aligned with the tumor in one of the universal cancer metabolic features, 
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an enhanced glycolytic phenotype, as evident in decreased glucose pool sizes 
concomitant with increased levels of lactic acid (Fig.1f). Another evident metabolic 
alteration prominent in the residual as well as in tumorigenic cells included an 
enhanced urea cycle activity shown by increased secretion of urea and ornithine 
(Fig.1f).  

As changes in metabolite pools do not necessarily reflect flux changes, we used an 
integrative genome-scale metabolic modelling approach combining transcriptomics 
and extracellular metabolomics data with flux-balance analysis. In addition, we also 
performed reporter metabolite analysis14 which integrates differential gene expression 
into the metabolic network to identify de-regulated metabolites (suggestive of changes 
in their turnover rate) (see Methods). Both genome-scale flux estimates and the 
reporter metabolite analysis corroborate the metabolite measurements confirming the 
upregulation of glycolysis and the urea cycle as major hallmarks of the residual cells. 
De-regulation of the urea cycle was confirmed by measured changes in other 
metabolites related to this pathway, including putrescine, proline, fumarate and 
aspartate (Extended data 5), with the latter two bridging also to the TCA cycle and 
nucleotide metabolism (Fig.2, Extended data 6). Furthermore, the data also brought 
forward a de-regulation of the pentose phosphate pathway, the TCA cycle, glutamine 
uptake and S-Adenosyl methionine (SAM) metabolism (Fig.2, Extended data 6). 
Together, the transcriptomics and metabolomics data, as well as flux modelling reveal 
significant metabolic peculiarities in the residual cell population reminiscent of the 
tumor state (compare Extended data 6 and 7). 

We next asked to what extent these metabolic features of residual cells in the organoid 
system compare with the situation in mice and patients. Mouse mammary glands taken 
nine weeks following oncogene in-activation and subsequent successful tumor 
regression were compared to healthy glands obtained from age-matched control 
animals. Indeed, metabolic changes still persisted in the regressed tissue (Fig.3a) as 
reflected in elevated extracellular levels of urea, ornithine and putrescine (Fig.3b), a 
higher percentage of ARG1 positive cells (Fig.3c, Extended data 8), higher levels on 
NO (Fig.3d) and higher flux to lactate (Fig.3e). To assess the occurrence of such 
metabolic alterations in human patients, transcriptomic datasets of patient breast 
tissues after neoadjuvant treatment, were compared to breast tissues of healthy 
women. Notably, treated patient samples --based on genes in KEGG pathways being 
deregulated in cancer and involving HER2-- clustered closely (Fig.3f) with the residual 
mouse samples (presented in Fig.1b) and showed similar alterations in glycolysis and 
urea cycle compared to controls (Fig.3g). Additionally, alterations in these two 
pathways were also seen in the group of patient samples that were classified HER2 
positive by histological analysis in the clinic (Extended data 9a) as well as in samples 
that clustered closely to mouse when the joint clustering was done based on all genes 
generally involved in HER2 or MYC related KEGG pathways (Extended data 9b, c). 
Taken together, these results support that changes in metabolism could be of potential 
relevance in clinical treatment15, which is specifically interesting for glycolysis16,17 and 
gives a working rational to test and re-purpose already approved metabolic drugs 
designed for primary tumor intervention18.  

Therefore, we examined whether inhibition of glycolysis was affecting the robustness 
of the residual population. Indeed, treatment with 3-bromopyruvate (3-BP), a well-
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established inhibitor of glycolysis19 induced cell death in residual cells grown in the 
absence of oncogenes for 10 days (Fig.4a, Extended data 10a, b). This cytotoxic effect 
was especially prominent at the dose of 50µM (within the common range used for 
tissue culture20,21) and also reflected in the morphology of the residual cell structures, 
but not of normal acini (Fig.4b, Extended data 10b). Increased cell death upon 3-BP 
treatment was also observed in the residual cells that were allowed to grow for 21 days 
in the absence of oncogenes expression (Fig.4c), reinforcing the notion of a “memory” 
carried over from the tumor state. Quantification of the extracellular metabolite pools 
revealed that the relative fold change in glucose concentration upon treatment (3-BP 
to control glucose ratio) was the most dramatic for the regressed population, especially 
at the 50- and 250 µM doses (Fig.4d), suggestive of a reduced glucose uptake. 
Consistently, beyond glucose, we additionally observed significant alterations in 
lactate pools and in glutamine levels in regressed cells following treatment (Extended 
data 10c). In comparison, normal cells were affected by 3-BP only to a minor extent. 
Together, the differences in cell death and glucose levels confirm the glycolytic nature 
of the residual cell population and its relevance as a targetable vulnerability.  

As shown above, residual cells in vitro as well as MRD retain metabolic changes 
acquired during the tumor stage. Hinting at the mechanistic basis for this “oncogenic 
memory”, we find that the residual cells resemble tumor cells also in their DNA 
methylation profiles (Fig.4e). Interestingly, certain metabolites that we found to be 
increased in the tumorigenic and residual populations (Extended data 5), like 
succinate, fumarate and nitric oxide, are also implicated in epigenetic modifications 
through direct inhibition of alpha-ketoglutarate dependent demethylases22,23. 
Additionally, succinate, lactate and nitric oxide, all accumulated in tumor and residual 
cells, can operate as signaling molecules by binding and stabilizing proteins that 
further interfere with hypoxic signaling, including the stabilization of hypoxia inducible 
factor 1 (HIF1α), a well-known master regulator of the glycolytic phenotype in 
cancers24-26. Overall, the persistence of a tumor-associated metabolic signature in the 
residual population, despite the absence of continued oncogenic input, suggests that 
the accumulation of certain metabolites offers an additional survival advantage for 
MRD that is sustained through epigenetically-imprinted signaling pathways.  

Taken together, our study offers a first in depth characterization of MRD derived from 
a primary organoid system that is relevant for human disease10. These findings can be 
validated in vivo by directly analyzing the residual mammary glands taken from the 
mouse model (Fig.3a-e). The residual cells, despite being characterized by a non-
proliferative and histologically normal phenotype, harbor metabolic aberrations similar 
to that of the tumor cells. We refer to these changes as “oncogenic memory”, which is 
reflected in metabolite levels, glycolytic flux and DNA methylation patterns, and 
persists in the face of an inactive oncogenic signal in residual cells. Since residual cells 
represent a treatment refractory population of dormant cancer cells, tackling these 
memorized cancer hallmarks offers a unique therapeutic opportunity. We 
consequently illustrate how the interference with one of these metabolic nodes, viz., 
glycolysis, specifically targets the survival of residual cells. We envisage that the 
identified transcriptional, metabolic and epigenetic distinctiveness (Fig.4f) of MRD will 
offer novel long-term treatment options for targeted interference to block the  
progression towards tumor relapse.  
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Figures 

 

Figure 1: Multi-omics approach reveals characteristic features of residual 
structures in vitro and their metabolic resemblance to the tumor. a, 
Immunofluorescence staining of normal, tumor and residual structures. Left panel: 
polarity markers ITGA6 (red), ZO-1 (green), GM-130 (magenta); DAPI (blue). Right 
panel: human MYC oncogene (green); CDH1 (red). Scale bar: 25 μm. b, c, PCA 
analysis of normal (blue), tumor (orange) and residual (green) populations based on 
RNA sequencing data (b, normal n=8, tumor and residual n=4) and Lipidomics data (c, 
n=4). d, Heat map of untargeted metabolomics results showing the clustering of the 
three populations along with the most altered metabolic pathways (n=4). Hierarchical 
clustering was based on the complete linkage method using the Euclidean distance 
metric. Significance thresholds correspond to a p-value < 0.05 calculated using 
unpaired two-sided t-tests and adjusted for multiple hypothesis testing 27 in comparison 
to the normal population. PPP, pentose phosphate pathway; TCA, tricarboxylic acid 
cycle; OXPHOS, oxidative phosphorylation; AA amino acid. e, PCA analysis of normal 
and WT (blue), tumor (orange) and residual (green) populations based on intracellular 
metabolomics measurements targeted at central carbon metabolism (n=8; WT n=2). f, 
Selection of the most profoundly altered metabolites in extracellular spent growth 
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media of normal (N and WT, n=4 and n=2, respectively), tumor (T) and residual (R) 
populations (n=4). The results are based on a metabolomics analysis targeted at 
central carbon metabolites. The values represent metabolite abundance levels as 
quantified by the area under the curve (AUC) of the corresponding ions for each 
metabolite. a-f, Number of replicates corresponds to different animals. b, c, e, 
Centroids represent the mean and concentration ellipses one standard deviation 
(level=0.68) of an estimated t-distribution based on the first two principal components. 
f, Box plots: midline, median; box, 25–75th percentile; whisker, minimum to maximum. 
Statistics are calculated using the limma package28 in R with the significance threshold 
corresponding to a Benjamini-Hochberg adjusted p-value ≤ 0.01 and a log2 fold change 
(residual or tumor compared to normal) ≥ 1 or ≤ -1. 
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Figure 2: Global overview of altered metabolic pathways in residual cells, 
compared to normal.  
A selection of genes with significantly altered expression (Wald test29, Bonferroni 
adjusted p-value < 0.1; normal n=8, tumor and residual n=4), targeted metabolites with 
significantly altered levels (Benjamini-Hochberg adjusted p-value < 0.01; n=8; WT n=2) 
and significant reporter metabolites (top 5% with p-value < 0.1) of core metabolic 
processes are presented. Metabolites with an additional log2 fold change ≥ 1 or ≤ -1 
are highlighted in bold. A Wald test with a Negative Binomial GLM was used as test 
statistics for gene expression and for metabolite levels. For the reporter metabolites a 
gene set enrichment analysis was performed from a theoretical null-distribution using 
the reporter method30. Bonferroni adjusted p-values of the expression analysis were 
used as gene-level statistics. Metabolite-gene sets were derived from a genome wide 
human metabolic model (HMR2), with genes mapped to mouse orthologs31. Flux 
balance analysis predicted metabolic fluxes, which are altered in the corresponding 
pathways, are overlaid. Significantly altered gene expressions and metabolites were 
used to inform the predictions. Number of replicates corresponds to different animals. 
 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3: Glycolysis and urea cycle are the main altered metabolic pathways in 
residual cells in mice and human datasets. a, PCA analysis of extracellular 
metabolic profiles of isolated healthy (n=3; blue) and regressed (n=3; green) mammary 
glands following cultivation in cell growth media for 8 hours. The metabolomics 
analysis is targeted to central carbon metabolites. Centroids represent the mean and 
concentration ellipses one standard deviation (level = 0.68) of an estimated t-
distribution based on the first two principal components. b, Selective secreted 
metabolites linked to urea cycle from healthy (n=3; blue) and regressed (n=3; green) 
mammary glands. The values represent metabolite abundance levels as quantified by 
the area under the curve (AUC) of the corresponding quantifying ions for each 
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metabolite. c, Quantified ARG1+ cells (top) and intensity of ARG1 (bottom) in 
mammary gland sections of normal (n=5, 2921 cells) and residual (n=5, 2241 cells). 
Representative images of immunofluorescence staining in normal (top) and residual 
(bottom) duct stained for ARG1 (green); CDH1 (red), DAPI (blue). Scale bar: 20 μm. 
d, NOS activity in healthy (n=3) and regressed (n=3) mammary glands. e, Fractional 
labeling of lactate following cultivation of isolated regressed (n=3) and healthy (n=3) 
mammary glands in cell growth media supplemented with [U-13C] glucose for 8 hours. 
The three-carbon labeled (13C) isotopologue (M+3) is depicted. f, Joint clustering of 
mouse model (RNA-seq, normal n=8, residual n=4) and patient (microarray, healthy 
n=10 samples, residual n=20 samples) derived transcriptome log2 fold changes of 
healthy samples compared with regressed tumor samples. The clustering is based on 
all genes of KEGG pathways, which involve HER2 and are known to be deregulated 
in cancer. Hierarchical clustering with the complete linkage method and the Euclidean 
distance as a distance metric was used for clustering. For the patient comparison, two 
independent data sets, one obtained from healthy breast tissue (GSE65194)32,33 and 
one obtained from patient tissues after neoadjuvant treatment (GSE32072)34, were 
merged. g, Metabolic reactions of glycolysis and urea cycle, which are catalyzed by 
enzymes with differential expression (Benjamini-Hochberg adjusted p-value < 0.1), are 
highlighted in red. An empirical Bayes moderated t-statistics was computed from a 
gene wise linear model fit with generalized least squares28, comparing the treated 
patients (n=4 samples), which are clustering closely with the mouse samples (f), with 
healthy breast tissue (n=10 samples). Differential expression from mouse in vitro 
transcriptome data of residual versus normal samples (RNA-seq, normal n=8, residual 
n=4) is shown in comparison (Wald test, Bonferroni adjusted p-value < 0.1)29. a-f, 
Number of replicates corresponds to different animals, b-e, Box plots: midline, median; 
box, 25–75th percentile; whisker, minimum to maximum. b, Statistics are calculated 
using the limma package28 in R with the significance threshold corresponding to a 
Benjamini-Hochberg adjusted p-value ≤ 0.01 and a log2 fold change (regressed or 
tumor compared to healthy) ≥ 1 or ≤ -1. d, e, The difference is statistically significant 
by unpaired two-samples t-test with p-values equal to 0.0136 and 0.0115, respectively.  
 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4: Residual cells require altered glycolysis for survival and maintain a 
DNA methylation profile similar to the tumor cell population. a, Experimental 
design (top) and cell death quantification in normal, tumor and residual structures after 
72-hour treatment with 3-BP at the indicated doses (bottom) (n=5). b, Bright field 
images of healthy (left), tumor (middle) and residual (right) structures, treated with 
vehicle (top) and with 50 μM 3-BP (bottom), scale bar 100 μm. c, Experimental design 
(top) and cell death quantification in passaged residual and normal structures 72-hour 
treatment with 3-BP (n=5). d, Extracellular glucose abundance alteration upon 
treatment with 3-BP (at doses of 50- and 250 µM) in all three populations (n=4). The 
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values represent the glucose ratio of 3-BP treated to untreated cells. e, DNA 
methylation profiles of normal (n=2), tumor (n=3) and residual (n=3) cell structures. 
Colors of the density plots represent quartiles. f, Summary figure integrating 
transcriptomics (normal n=8, tumor and residual n=4), intracellular metabolomics (n=8; 
WT n=2), extracellular metabolomics of spent growth media (normal n=4, WT n=2, 
tumor and residual n=3) and DNA methylomics (normal n=2, tumor and residual n=3) 
from the three populations. The color depth represents the normalized Euclidean 
distance of the respective omics layer in reference to normal. The distances between 
the centers of the three populations correspond to the normalized mean Euclidean 
distances across all represented omics layers. a-f, Number of replicates corresponds 
to different animals. a, c, d, Box plots: midline, median; box, 25–75th percentile; 
whisker, minimum to maximum. 
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Extended data 1: Effect of doxycycline concentration on phenotype, tumor 
induction and mitochondrial function. a, Bright field images of 3D cultures at 
indicated time points and doxycycline concentrations. Scale bar: 100 μm. b, 
Percentage of induced structures in vitro (5th day on doxycycline) at the concentrations 
of 150 (n=2), 200 (n=2) and 1000 (n=4) ng/mL. Data shown as mean ± SEM. c, Bright 
field images of induced structures on the 5th day on doxycycline at the concentration 
of 200 ng/mL (top) and 1000 ng/mL (below). Scale bar: 500 μm. d, IHC on MT-CO1 
protein in vivo. From left to right: gland from age-matched control, tumor at 3 weeks 
on doxycycline, regressed gland at 2 weeks off doxycycline. Magnification: 4x. a-d, 
Number of replicates corresponds to different animals. 
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Extended data 2: Transcriptome data analysis of different gene subsets. a, 
Heatmap with rlog transformed and gene-wise centered and scaled (stdv = 1) 
transcript counts of differentially expressed genes (Wald test29, Bonferroni adjusted p-
value < 0.1) in residual cells compared to normal. b-c, Heatmap of significantly 
enriched KEGG pathways (unpaired two-sample t-test, p-value < 0.05) from 
differentially b, down-regulated and c, upregulated genes (Wald test, Bonferroni 
adjusted p-value < 0.1) in residual cells compared to normal. Clustering is based on 
fold changes of the sample wise calculated test statistics for the individual KEGG 
pathways of residual cells compared to normal. d, Heatmap with rlog transformed and 
gene-wise centered and scaled (stdv = 1) transcript counts of genes from glycolysis 
and pentose phosphate pathway. e, PCA analysis of transcriptome data sub-setted to 
metabolic genes, extracted from the mouse orthologs associated with the genome 
wide human metabolic model HMR231. Centroids represent the mean and 
concentration ellipses one standard deviation (level=0.68) of an estimated t-
distribution based on the first two principal components. a-e, Number of replicates 
(normal n=8, tumor and residual n=4) corresponds to different animals. a-d, 
Hierarchical clustering with the complete linkage method and the Euclidean distance 
as a distance metric was used for clustering. a, d, e, Sample labels: normal – blue, 
tumor – yellow, residual – green. 
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Extended data 3: Set-up of metabolic methods for 3D cultures. a, Primary 
epithelial cells obtained from mouse mammary glands are grown in matrigel, which 
enables growth in 3D and formation of hollow acini, schematic b, Timeline of 
experiment showing period of growth, tumor induction (5 days on doxycycline) and 
tumor regression (after doxycycline withdrawal, 7 days off). Experiments were 
designed in such a way that the metabolites from all three conditions (normal, tumor 
and residual) were harvested at the same endpoint after matrigel digestion. c, Total 
ion chromatograms showing a strong matrigel signal when no digestion is performed 
for the collection of structures (1), and an improved signal of intracellular metabolites 
after gel digestion (2), representative example. 
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Extended data 4: PCA analysis of additional omics layers revealing the residual 
structures' resemblance to the tumor. a, PCA analysis of normal (blue; n=4, WT 
n=2), tumor (orange; n=3) and residual (green, n=3) populations based on the 
extracellular spent growth media targeted at central carbon metabolites. Centroids 
represent the mean and concentration ellipses one standard deviation (level=0.68) of 
an estimated t-distribution based on the first two principal components. b, PCA 
analysis of normal (blue; n=2), tumor (orange; n=3) and residual (green; n=3) 
populations based on genome wide DNA methylation data. The ellipses are confidence 
ellipses with 0.99 normal probability and the centroids represent the geometric center 
of the ellipse. This ellipse type was chosen because of the low number of replicates. 
a, b, Number of replicates corresponds to different animals. 
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Extended data 5: Residual population exhibits metabolic resemblance to the 
tumor.  
Heat maps representing the significantly altered metabolites in intracellular samples 
(a) and extracellular spent growth media (b) of residual (R, n=4) and tumor (T, n=4) 
compared to normal (N, n=4; WT n=2) cells. The results are based on metabolomics 
analyses targeted at central carbon metabolites. The hierarchical clustering of the 
samples and the metabolites is based on Pearson’s correlation. Statistics are 
calculated using the limma package28 in R with the significance threshold 
corresponding to a Benjamini-Hochberg adjusted p-value ≤ 0.01 and a log2 fold change 
(tumor or residual compared to normal cells) ≥ 1 or ≤ -1. Number of replicates 
corresponds to different animals. 
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expression analysis (Wald test) were used as gene-level statistics. Metabolite-gene 
sets were derived from a genome wide human metabolic model (HMR2), with genes 
mapped to mouse orthologs31. Flux balance analysis predicted metabolic fluxes, which 
are altered in the corresponding pathways, are overlaid. Significantly altered gene 
expressions and metabolites were used to inform the predictions. Number of replicates 
corresponds to different animals. 
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Extended data 6: Global overview of altered metabolic pathways in tumor cells, 

compared to normal in an extended representation.  

A selection of genes with significantly altered expression (Bonferroni adjusted p-value 

< 0.1; normal n=8, tumor and residual n=4), targeted metabolites with significantly 

altered levels (Benjamini-Hochberg adjusted p-value < 0.01; n=8; WT n=2) and 

significant reporter metabolites (top 5% with p-value < 0.1) of core metabolic processes 

are presented. Metabolites with an additional log2 fold change ≥ 1 or ≤ -1 are 

highlighted in bold. A Wald test with a Negative Binomial GLM was used as test 

statistics for gene expression29 was used as test statistic for metabolite levels. For the 

reporter metabolites a gene set enrichment analysis was performed from a theoretical 

null-distribution using the reporter method30. Bonferroni adjusted p-values of the 
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expression analysis (Wald test) were used as gene-level statistics. Metabolite-gene 

sets were derived from a genome wide human metabolic model (HMR2), with genes 

mapped to mouse orthologs31. Flux balance analysis predicted metabolic fluxes, which 

are altered in the corresponding pathways, are overlaid. Significantly altered gene 

expressions and metabolites were used to inform the predictions. Number of replicates 

corresponds to different animals. 
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Extended data 7: Global overview of altered metabolic pathways in residual 

cells, compared to normal in an extended representation.  

A selection of genes with significantly altered expression (Bonferroni adjusted p-value 
< 0.1; normal n=8, tumor and residual n=4), targeted metabolites with significantly 
altered levels (Benjamini-Hochberg adjusted p-value  < 0.01; n=8; WT n=2) and 
significant reporter metabolites (top 5% with p-value < 0.1) of core metabolic processes 
are presented. Metabolites with an additional log2 fold change ≥ 1 or ≤ -1 are 
highlighted in bold. A Wald test with a Negative Binomial GLM was used as test 
statistics for gene expression29 was used as test statistic for metabolite levels. For the 
reporter metabolites a gene set enrichment analysis was performed from a theoretical 
null-distribution using the reporter method30. Bonferroni adjusted p-values of the 
expression analysis (Wald test) were used as gene-level statistics. Metabolite-gene 
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sets were derived from a genome wide human metabolic model (HMR2), with genes 
mapped to mouse orthologs31. Flux balance analysis predicted metabolic fluxes, which 
are altered in the corresponding pathways, are overlaid. Significantly altered gene 
expressions and metabolites were used to inform the predictions. Number of replicates 
corresponds to different animals. 
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Extended data 8: Immunofluorescence staining of ARG1 on tissue sections of 

healthy (age-matched controls) and regressed mammary glands. Representative 

images from stainings of healthy (top panel) and residual ducts (panel below). Scale 

bar: 20 µm 

Immunofluorescence: DAPI (blue), CDH1 (red), ARG1 (green).  
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Suppl. Figure 9: Correlation of mouse data with patient datasets. a Metabolic 
reactions of glycolysis and urea cycle, which are catalyzed by enzymes with differential 
expression (Benjamini-Hochberg adjusted p-value < 0.1), are highlighted in red. An 
empirical Bayes moderated t-statistics was computed from a gene wise linear model 
fit with generalized least squares28, comparing HER2 positive classified patients (n=3 
samples) with healthy breast tissue (n=10 samples). Differential expression from 
mouse in vitro transcriptome data of residual versus normal samples (RNA-seq, 
normal n=8, residual n=4) is shown in comparison (Wald test, Bonferroni adjusted p-
value < 0.1)29. b, Joint clustering of mouse model (RNA-seq, normal n=8, residual n=4) 
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and patient (microarray, healthy n=10 samples, residual n=20 samples) derived 
transcriptome log2 fold changes of healthy samples compared with regressed tumor 
samples. The clustering is based on all genes involved in HER2 or MYC related KEGG 
pathways. Hierarchical clustering with the complete linkage method and the Euclidean 
distance as a distance metric was used for clustering. For the patient comparison, two 
independent data sets, one obtained from healthy breast tissue (GSE65194)32,33 and 
one obtained from patient tissues after neoadjuvant treatment (GSE32072)34were 
merged. c, Metabolic reactions of glycolysis and urea cycle, which are catalyzed by 
enzymes with differential expression (p-value < 0.05), are highlighted in red. An 
empirical Bayes moderated t-statistics was computed from a gene wise linear model 
fit with generalized least squares28, comparing the treated patients (n=4 samples), 
which are clustering closely with the mouse samples (b), with healthy breast tissue 
(n=10 samples). Differential expression from mouse in vitro transcriptome data of 
residual versus normal samples (RNA-seq, normal n=8, residual n=4) is shown in 
comparison (Wald test, Bonferroni adjusted p-value < 0.1)29. a-c, Number of replicates 
corresponds to different animals,  
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Suppl. Figure 10: Functional validation of an altered glycolysis in residual cell 

populations. a, Bright field images in transmission showing a 96-well plate containing 

normal, residual and tumor structures before treatment with 3-BP, scale bar 100 µm 

(right panel) and 500 µm (96 well plate). b, Bright field time-lapse images of the normal 

(left) and residual (right) structures over the timeline of the experiment: seeding (day 

1), growth (day 6), tumorigenesis (day 11), regression (day 18) and after drug 

treatment (day 21). Scale bar 100 µm c, Extracellular metabolite abundance levels 

alteration in all three populations after treatment with 3-BP (n=4). The values represent 

the ratio of 3-BP treated to untreated cells. 

Number of replicates corresponds to different animals. 
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Supplementary Table 1 GO terms for Downregulated genes Significant gene 

ontology terms from the gene ontology biological processes for the comparison 

residual vs normal. 
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Supplementary Table 2 GO terms for Upregulated genes Significant gene ontology 

terms from the gene ontology biological processes for the comparison residual vs 

normal. 
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Materials and Methods 

Animals. Breeding and maintenance of mouse colony was done in LAR (Laboratory Animal 
Resources) facility of EMBL Heidelberg, in accordance to the guidelines of the European 
Commission, revised Directive 2010/63/EU and AVMA Guidelines 2007, under veterinarian 
supervision. Animals – TetO-cMYC/TetO-Neu/MMTV-rtTA1,2 in FVB background – were kept 
on a 12-hour light/12-hour dark cycle, with constant ambient temperature (23±1°C) and 
humidity (60±8%), supplied with food pellets (for tumor induction, pellets contained 
doxycycline hyclate, 625 mg/kg; Envigo Teklad) and water ad libitum. 

For purpose of genotyping, genomic DNA was extracted by tail-digestion in 75 µl of 
digestion buffer (NaOH 25 mM + EDTA 0,2 mM) at 98oC followed by addition of 75 µl Tris-
HCl (40 mM, pH 5,5) and centrifugation at 4000 rpm for 3 min. Gel-electrophoresis was 
used for the detection of PCR products (MYC 630 bp, Neu 386 bp, rtTA 380 bp) on 1,5% 
agarose (Sigma, A9539-500G) gel with Ethidium bromide solution (Sigma, E1510-10ML) 
in a final concentration of 0,5 µg/ml The products were visualized using Quantum-Capt1 
documentation system (Peqlab). 

3D cell cultures. Three-dimensional cell cultures were established according to the 
published protocol3 with some modifications. Primary mammary epithelial cells were 
obtained from 8 weeks old virgin females of described mouse strains, through digestion of 
mammary glands in 5 mL of digestion media (Lonza/Amaxa DMEM/F12 1:1 Mixture with 
HEPES, L-Gln, BE12-719F), supplemented with HEPES to the final concentration of 25 mM, 
150 U/mL Collagenase type 3 (Worthington, LS004183), 20 µg/mL Liberase Blendzyme 2 
(Roche, 05401020001) and 5 ml of Penicillin/Streptomycin (Gibco Life Technologies, 
15140-122). Digestion for 15-16 hours at 37oC in 5% (vol/vol) CO2 atmopshere, in loosely 
capped 50 mL polypropylene conical tubes, was followed by washing step with 45 mL of 
phosphate-buffered saline (PBS). Upon centrifugation at room temperature, 1000 rpm for 
5 min, interphase between upper fat layer and cell pellet was removed and 5 mL of 0.25% 
trypsin-EDTA (Invitrogen, 25200-056) was added. Suspension was incubated for 40 min 
at 37oC, 5% CO2 in loosely capped tubes, followed by the wash with 25 mL of STOP media 
(Lonza/Amaxa DMEM/F12 1:1 Mixture with HEPES, L-Gln, BE12-719F supplemented with 
HEPES to the final concentration of 25 mM and 10% Tet System Approved Fetal Bovine 
Serum, Biowest, S181T) and treatment with 5-15 mg/mL DNase I (ThermoFisher, 
18068015). After another centrifugation step at room temperature, 1000 rpm for 5 min, 
dissociated cells were resuspended in MEBM media (Lonza, Mammary Epithelial Cell Basal 
Medium CC-3151 with supplements from Mammary Epithelial Cell Medium BulletKit CC-
3150) and plated onto collagen-coated plates (BD Biosciences, 356400) for selection of 
epithelial cells. Next day cells were washed with PBS and the remaining ones treated with 
500 µl of 0,25 % trypsin-EDTA until detachment. Trypsin was inactivated with 9 mL of 
STOP media (described above), followed by centrifugation step at room temperature, 1000 
rpm for 5 min. Cell pellets were resuspended in PBS, counted, and mixed rapidly on ice 
with the prepared Matrigel-collagen mixture – Cultrex 3D Culture Matrix Basement 
Membrane Extract (Biozol, TRE-3445-005-01) and 1,5 mg/mL Cultrex 3D Collagen I rat 
tail (TEMA Ricerca, 3447-020-01). Mixed droplets in volume of 100 µl, containing 12 000 
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primary mouse mammary epithelial cells, were dispensed into flat bottom wells (Corning 
CellBIND 12 Well Clear Multiple Well Plates, 3336) or chambered cover glass slides for 
imaging (ThermoFisher Scientific, Nunc LabTek II Chambered Cover glass, 155379). After 
solidifying for 40 min at 37oC, 1.5 ml of MEBM serum-free media (supplemented with 2 mL 
of bovine pituitary extract, 0.5 mL of hEGF, 0.5 mL of hydrocortisone, 0.5 mL of GA-1000, 
0.5 mL Insulin from Mammary Epithelial Cell Medium BulletKit CC-3150) was added to each 
well. Doxycycline (Sigma, Doxycycline hyclate, D9891) was added in concentration 200 
ng/ml. For experiments based on biochemical assays, suspension of 500 cells and PBS was 
mixed with Matrigel in ratio 1:4 for 5 µl gels, that were seeded in the 96-well Corning black 
polystyrene microplates (Sigma-Aldrich, CLS3603) and left to solidify for 15 min at 37oC, 
followed by addition of 100 µl of MEBM media. Reseeding experiments were done by 
incubation of 100 µl gels with collagenase and liberase for 1,5 h at 37oC which led to 
digestion of Matrigel, releasing the structures from the gel. After washing with PBS, cells 
were incubated for 5-10 min at 37oC with Trypsin (150 µl per gel), washed with previously 
described STOP media, counted and seeded in microplates as 5 µl gels. 

Immunofluorescence. 3D culture gels for immunofluorescence staining were fixed with 
4% paraformaldehyde (PFA) for 7-10 min and transferred to the IF deactivated clear glass 
screw neck vials (Waters, 186000989DV), washed three times with PBS and once in IF 
buffer (containing NaCl, Na2HPO4, NaN3, BSA, TritonX-100, Tween-20; pH 7,4). Blocking 
was done using 1x IF buffer with 10% goat serum (Jackson Immuno Research, 005-000-
121) for 1,5 h, followed by incubation at 4oC overnight. Primary antibodies were diluted in 
primary block as described above and washed the next day in 1x IF buffer 3x, 15 min each. 
Incubation with secondary antibodies and 4’, 6’-diamino-2-phenylindole (DAPI) was done 
in the primary block for 1 hour (dilution 1:1000). Gels were washed with 1x IF buffer and 
1x PBS, 2 times, 10 min each. Gels were mounted with Vectashield Anti-fade mounting 
medium (Vinci Biochem, VC-H-1500-L010) into LabTek II chamber slide (ThermoFisher 
Scientific, 50733) and imaged on a Leica SP5 confocal microscope using 63x water lens 
and LAS AF imaging software. The following antibodies were used for the 3D cultures: 
alpha-6-integrin (BD Biosciences 25-0495-82, diluted 1:80), ZO-1 (Invitrogen 61-7300, 
diluted 1:500), GM-130 (BD Biosciences, 610823, diluted 1:100), E-cadherin (Invitrogen, 
13-1900, diluted 1:200). Nuclei were stained with DAPI (ThermoScientific, 62248, diluted 
1:1000). Anti-rabbit, anti-mouse, and anti-rat antibodies were purchased coupled with 
Alexa Fluor dyes from Invitrogen (A21247, A11034, A11036). FFPE tissue sections were 
stained using the standard protocols for ARG1 (Novus, NBP1-32731, diluted 1:250) 
antibody. Sections were mounted using ProLong Gold Antifade Mountant (ThermoFisher 
Scientific, P36930) and scanned using TissueFAXS Slides system (TissueGnostics). 
Quantification was done using StrataQuest Analysis Software (TissueGnostics). 

Immunohistochemistry. MT-CO1 antibody (Abcam, ab45918) staining was done on FFPE 
tissue sections following the standard IHC protocol: deparaffinization and rehydration of 
the samples; antigen retrieval using citric acid-based Antigen unmasking solution (Vector, 
H-3300) for 30 min in a steamer and inactivation of endogenous hydrogen peroxidase 
activity with 10% H2O2 solution (Sigma, H1009), followed by blocking using 10% Normal 
goat serum (Jackson Immuno Research, 00500121) in 1x Phosphate Saline Buffer (PBS). 
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Incubation with primary antibody (MT-CO1 diluted 1:500) was done in blocking buffer at 
4oC overnight, after which the slides were washed 3x, 5 min each, using 1x PBS, followed 
by incubation with biotinylated antibody (Peroxidase, Rabbit IgG; Vector Laboratories, PK-
6101) for 30 min, washing and incubation with Horse Radish Peroxidase (HRP) conjugated 
antibody and detection using DAB Peroxidase (HRP) Substrate Kit (Vector, SK-4100). 
Counter-staining was done using Hematoxylin QS (Vector, H-3404), after which the 
sections were dehydrated, mounted with DPX Mountant for histology (Sigma, 06522) and 
analyzed using LMD 7000 microscope (Leica) equipped with Leica CD310 digital camera 
and LASV3.7 (Leica) software. 

RNA collection and extraction. RNA was harvested from a pool of two 3D gels per 
condition, using 900 µl of mirVana lysis buffer. Extraction was done using mirVana miRNA 
Isolation Kit, with phenol (Ambion, AM1560). After assessing RNA quality and 
concentration on Bioanalyzer (Agilent 2100, G2939BA), RNA was sequenced in the 
Genomics Core Facility at EMBL on Illumina NextSeq 500 platform, non-directional single 
end read length NextSeqHigh 75 bp.  

Analysis of RNA sequencing data. After assessing the quality of the raw RNA sequencing 
reads by FastQC version 0.11.3. [Andrews S. FastQC: a quality control tool for high 
throughput sequence data. 2010. Available at: 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] , adapter trimming using 
Cutadapt version 1.9.1 [Martin M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal. 2011;17(1):10–2.] with default options 
providing the standard Illumina TrueSeq Index adapters was done. FaQCs version 1.344 
was used for subsequent quality trimming and filtering, applying the following parameters: 
-q 20 -min_L 30 -n 5 -discard 1. Total reads per sample after trimming and filtering ranged 
from 34.1 to 52.0 million. Sequencing reads were aligned to the M. musculus reference 
genome (GRCm38.p4) [NCBI. Genome Reference Consortium Mouse Build 38 patch release 
4 (GRCm38.p4) Available at: 
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.24/] using Tophat2 version 
2.0.10 5, which included the sequence for human c-MYC and rat HER2 with the following 
parameter: -G -T -x 20 -M --microexon-search --no-coverage-search --no-novel-juncs --
mate-std-dev 100 -r 50 --min-segment-intron 20 -i 30 –a 6. For the differential expression 
analysis, only reads with unique mappings were considered. Gene level count tables were 
obtained using the count script of the HTSeq python library version 0.6.1p1 6 with default 
options. All reads mapped in total to 19500 to 20800 genes across all samples. For 
performing a dimensionality reduction by principal component analysis (PCA) and 
hierarchical clustering rlog transcript counts were utilized, transformed with the “rlog” 
function of the Bioconductor package DESeq2 version 1.12.4 (10). R V.3.3.1. (R 
Development Core Team) was used for conducting biostatistical analyses. 

Differential expression analysis. The statistical analysis for differential expression was 
mainly done with the Bioconductor package DESeq2 version 1.12.4 7. Size-factor based 
normalization was performed to control for batch effects and inter-sample variability. 
Genes with less than 10 counts across all samples were filtered to increase the sensitivity 
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of the detection of differential gene expression. Package defaults were used for dispersion 
estimation and differential expression analysis with the function “Deseq”, which includes 
independent filtering, cooks cutoff8 for outlier detection and the performance of a Wald-
test. The animal was included as a confounder variable in the model design. Subsequently, 
adjusted p-values were computed from the DESeq2 calculated p-values by applying a 
Bonferroni correction for multiple testing. Genes with a padj-value < 0.1 were considered 
as significantly differentially expressed (DE). R V.3.3.1. (R Development Core Team) was 
used for conducting biostatistical analyses.  

Gene set enrichment analyses. 2039 differentially expressed genes in residual 
(compared to never induced control; q-value < 0.1) and 6411 differentially expressed 
genes in tumor cells (compared to never induced, q-value < 0.1) were taken for gene 
ontology (GO) enrichment analysis. GO enrichment analysis was performed using Fisher’s 
exact test with a foreground of all respective differentially expressed genes and a 
background, which was composed of a unique set of 5 randomly picked genes per 
foreground gene exhibiting a similar expression mean over all samples. The analysis was 
done separately for up-regulated and down-regulated genes. The chosen cutoff for 
significant GO terms was p-value < 0.001. Further, a gene set enrichment analysis for 
significantly enriched KEGG pathways was performed for up-regulated and down-regulated 
differentially expressed genes separately using the function “gage” of the likewise called R 
package with version 2.32.1 9. The function calculates sample-wise test statistics with an 
unpaired two-sample t-test using annotations from “org.Mm.eg.db” version 3.7.0 [Marc 
Carlson (2018). org.Mm.eg.db: Genome wide annotation for Mouse. R package version 
3.7.0.]. KEGG pathways with a p-value < 0.05 were considered significantly enriched. 

Additionally, a reporter metabolite analysis was performed to identify metabolites or 
metabolic pathways that are likely to be de-regulated. Therefore, the q-values and log2 
fold changes (FC) of the respective differentially expressed genes were used to calculate 
p-values from a theoretical null distribution (10000 permutations) utilizing the reporter 
metabolite algorithm from the “piano” R package10. Multiple testing adjustment was applied 
using the Benjamini-Hochberg procedure. The threshold for significance was padj-value < 
0.01 for the non-directional class, the distinct-directional class and the mixed-directional 
class, but maximally the top 5% of the total list of tested metabolites considering each 
class equally. Pathway enrichment was calculated for gene sets of 1 gene per group or 
bigger. The gene set was obtained from a revised version of the HMR2 model11, whose 
gene-protein-reaction annotations were translated to mouse orthologs. R V.3.3.1. (R 
Development Core Team) was used for conducting biostatistical analyses. 

Integration of transcriptomics data into flux balance analysis. Differential gene 
expression data was integrated info flux balance analysis (FBA) using a new simulation 
method, Metabolic Analysis with Relative Gene Expression (MARGE). This method aims to 
overcome some limitations identified in other previously published methods12. In particular, 
it avoids making assumptions on any direct proportionality between transcript levels and 
reaction rates, instead it uses relative expression between two conditions, as an indication 
of the direction and magnitude of the flux control exerted on a metabolic pathway through 
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transcriptional regulation. The implementation is based on a previously-proposed extension 
of FBA that integrates gene-protein-reaction (GPR) association rules into the stoichiometric 
matrix of the metabolic network, allowing the computation of enzyme-specific flux rates13, 
and is formulated as two-step linear optimization problem. The first step optimizes the 
agreement between relative enzyme usage and relative gene expression, and the second 
adds a parsimonious enzyme usage criterion. 

 

Step 1: 

 

 

Step 2: 

 

Where a and b are two experimental conditions, ea and eb are the gene expression in each 
condition, va and vb are reaction flux vectors, ua and ub are enzyme usage vectors, Sext is 
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rates per condition, and relative rates between conditions. The fold change of significantly 
changed extracellular metabolite profiles (padj-value < 0.01) were calculated and imposed 
as constraints in the model with a deviation tolerance of 50% to account for measurement 
error. For metabolites whose level did not significantly change between conditions, 
absolute constraints were imposed to ensure a minimum level of uptake/secretion in 
accordance with the observed directionality. Measurements from pure media allowed 
determining active secretion/uptake of metabolites into/from the media in respect to both 
conditions.  

A revised version of the human genome-scale metabolic model HMR2 (14) was used for 
simulation, in which mouse gene orthologs of the gene-protein-reaction annotations had 
been updated/corrected as well as the model itself to yield more accurate flux predictions. 
In brief, this included the introduction of a mitochondrial intra-membrane space (adapted 
from14) to improve the prediction of respiratory ATP synthesis, the revision of reactions 
from the beta-oxidation pathway and auxiliary enzymes, the introduction of ATP 
maintenance costs and the adaption of model uptakes and releases of metabolites from 
experimental data15. Further, atomically unbalanced reactions were removed and the 
directionality of reactions was constraint where infeasible. The import/export of SBML files 
was obtained through the libSBML API16 using the load_cbmodel of reframed. The IBM 
ILOG CPLEX Optimizer version 12.8.0 was used for solving the MILP problems. All 
simulations were conducted with Python 3.6.9. 

The simulations were performed using the reframed python package (version 1.0.0)( 
https://doi.org/10.5281/zenodo.3478380). In particular, we used the MARGE function 
(implementing the method described above) with the following parameter settings: 
growth_frac_a=0.8, growth_frac_b=0.8, activation_frac=0.001, step2_tol=0.1. The IBM 
ILOG CPLEX Optimizer (version 12.8.0) was used for solving the MILP problems. All 
simulations were conducted with Python 3.6.9. 

Human breast cancer transciptome comparison. Microarray gene expression datasets 
from breast cancer patients pre- and post-treatment17 and control breast tissue from 
healthy women18 were downloaded from Gene Expression Omnibus (GEO)19. Each dataset 
was first analyzed independently, which included filtering for sample outliers, 
normalization, background correction, minimal intensity filtering of genes and the 
annotation of genes from probe set IDs with the removal of multiple mappings of transcript 
cluster identifiers. The sample outliers were identified with the function 
“arrayQualityMetrics” of the likewise called R package with version 3.38.020. Normalization 
and background correction were done using the “rma” function of the R package “oligo” 
version 1.46.021. The minimal intensity threshold for gene filtering was determined by 
fitting a null model to the whole data set and taking the lower 5% boarder as a cut off. The 
two datasets were then combined and processed together a second time (normalization, 
outlier removal, intensity filtering). In order to address the batch effect of the joined data 
stemming from the two experimental settings, the first principal component was removed 
from the data set. In addition, the “normal-like” tumor subtype of the patients’ dataset 
was removed due to the poorly defined diagnostic category and high biological variability. 
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For the differential gene expression a gene-wise linear model was fitted to the dataset 
using generalized least squares and including the tumor subtype as a confounder variable 
if applicable. Next an empirical Bayes moderated t-statistic and log-odds were computed 
with the “eBayes” function of the “limma” package version 3.38.322,23 using the package 
defaults. All genes with a Benjamini-Hochberg adjusted p-value < 0.1 were considered 
differentially expressed. R V.3.3.1. (R Development Core Team) was used for conducting 
biostatistical analyses. 

Intracellular and extracellular sample harvest and metabolite extraction 

3D cell cultures. Prior to the harvest of organoids, 50 µl of spent growth media were 
snap-frozen and stored at -80oC until the extraction of metabolites for extracellular 
metabolomics. Following the collection of the spent growth media, the organoid structures 
were freed from Matrigel upon digestion for 1,5h- at 37oC with liberase and collagenase 
added to the remaining media. Subsequently, the media were aspired, the organoids were 
washed three times with PBS, centrifuged shortly (1000 r.p.m, 2 min, at room 
temperature) and quenched with 200 µl cold (-80oC) HPLC-grade methanol (Biosolve 
Chimie, 136841). For metabolite extraction, adonitol (Alfa Aesar, 488-81-3) was added as 
an internal standard to the organoids/methanol mixture and the samples were incubated 
at 72oC for 15 min, followed by addition of 200 µl ice-old MilliQ water and centrifugation 
(15000 r.p.m, 10 min, 4oC). The supernatants were collected and dried with a speed-vac. 
The dried metabolite extracts were stored at -80oC until metabolomics analysis. Metabolite 
extraction from the spent growth media was performed as described above by adjusting 
the volume of the extraction solvents to 100 µl of HPLC-grade methanol and 100 µl of 
MilliQ water. Finally, 50 µl of the initial pure growth media as well as from the last washing 
solution were collected and extracted as described above, with the latter sample employed 
as control to validate the effective washing of the organoids from the extracellular media 
before quenching.    

In vivo and ex vivo mammary glands experiments. For experiments that allowed for 
tumorigenesis and regression in vivo, food pellets supplemented with doxycycline (625 
mg/kg) were used for tumor induction in mice which were weekly monitored for tumor 
detection and their overall health. Full blown tumors developed in the period of 4-6 weeks 
and when burden was too large (d = 2 cm), animals were given food without doxycycline 
which resulted in the fast tumor regression to a non-palpable state. At the timepoint of the 
complete tumor regression (9 weeks after oncogenes deactivation), mammary glands were 
harvested from these mice, along with the wild-type (non-inducible) siblings which had the 
same treatment. Before harvesting, vaginal lavage to check for the phase of estrous cycle 
was obtained, according to the modified protocol24: slides were dried at room temperature, 
fixed in 10 % formalin, washed in 1x PBS, stained with Crystal Violet solution (Sigma, 
V5265) followed by wash in water and analyzed using Leica Application Suite X and Leica 
DFC7000 T microscope (Leica Microsystems). For [U-13C]glucose tracing experiments, 
mammary glands were dissected, minced and digested for 2 hours at 37oC using 
collagenase and liberase enzymes, then cultured for 8 hours at 37oC in 5% (vol/vol) CO2 
atmopshere, in DMEM glucose- and pyruvate-free media (ThermoFisher Scientific, 
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11966025) supplemented with 4,5 g/L labeled D-Glucose U-13C, 99% (Cambridge Isotope 
Laboratories, Inc., CLM-1396-1) and 2 mL of bovine pituitary extract, 0.5 mL of hEGF, 0.5 
mL of hydrocortisone, 0.5 mL of GA-1000, 0.5 mL insulin from Mammary Epithelial Cell 
Medium BulletKit CC-3150. For non-labeled metabolomics experiment, mammary glands 
were dissected and cultured for 8 hours at 37oC in 5% (vol/vol) CO2 atmosphere, in DMEM, 
High Glucose (4,5 g/L glucose) GlutaMAX (Gibco, 10569044) supplemented with 2 mL of 
bovine pituitary extract, 0.5 mL of hEGF, 0.5 mL of hydrocortisone, 0.5 mL of GA-1000, 
0.5 mL insulin from Mammary Epithelial Cell Medium BulletKit CC-3150. The spent growth 
media were collected and extracted for metabolomics analyses as described above. For 
intracellular metabolomics sample harvesting, the mammary glands were collected 
following the cultivation period, washed two times with PBS and quenched with 200 µl of 
cold (-80oC) HPLC-grade methanol. Subsequently, the metabolite extraction was 
performed as described for the 3D cell cultures.  

Targeted metabolomics analysis with Gas chromatography – Mass Spectrometry. 
Dried metabolite extracts were derivatized with 50 µl of 20 mg/mL methoxyamine 
hydrochloride (Alfa Aesar, 593-56-6) solution in pyridine (SigmaAldrich, 437611) for 90 
min at 40oC, followed by addition of 100 µl N-methyl-trimethylsilyl-trifluoroacetamide 
(MSTFA) (Alfa Aesar, 24589-78-4) for 12 hours at room temperature25,26. GC-MS analysis 
was performed using a Shimadzu TQ8040 GC-(triple quadrupole) MS system (Shimadzu 
Corp.) equipped with a 30m x 0.25 mm x 0.25 µm DB-50MS capillary column 
(Phenomenex, USA). 1 µl of sample was injected in split mode (split ratio 1:10) at 2500C 
using helium as a carrier gas with a flow rate of 1 ml/min. GC oven temperature was held 
at 1000C for 4 min followed by an increase to 3200C with a rate of 100C/min, and a final 
constant temperature period at 3200C for 11 min. The interface and the ion source were 
held at 2800C and 2300C, respectively. The detector was operated both in scanning mode 
recording in the range of 50-600 m/z, as well as in MRM mode for specified metabolites. 
The metabolite identification was based on an in-house database with analytical standards 
being utilized to define the retention time and the mass spectrum for all the quantified 
metabolites. The metabolite quantification was carried out by calculating the area under 
the curve (AUC) of the marker ion of each metabolite normalized to the AUC of adonitol’s 
marker ion 319. Subsequently, the AUCs were normalized to total metabolite levels. To 
identify the statistically significant altered metabolites the limma package22 (version 
3.36.5) in R (version 3.5.2) was utilized with the significance threshold corresponding to a 
Benjamini-Hochberg adjusted p value ≤ 0.01. Metabolites that followed the additional 
criterion of a log2 fold change (regressed or tumor compared to healthy) ≥ 1 or ≤ -1 were 
further highlighted in the plots with bold letters.  

For the [U-13C]glucose tracing experiments, dried metabolite extracts were derivatized with 
50 µl of 20 mg/mL methoxyamine hydrochloride (Alfa Aesar, 593-56-6) solution in pyridine 
(SigmaAldrich, 437611) for 90 min at 40oC, followed by addition of 100 µl N-tert-
Butyldimethylsilyl-N-methyltrifluoroacetamide + 1% tert-Butyldimethylchlorosilane 
(Sigma Aldrich, 00942) for 1 hour at 60oC. The samples remained at room temperature 
until GC-MS analysis. The GC-MS was operated using the same conditions as described 
above with the following difference: GC oven temperature was held at 1000C for 3 min 
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followed by an increase to 3000C with a rate of 3.50C/min, and a final constant temperature 
period at 3000C for 10 min. The natural abundance isotopes were corrected using the 
Isotope Correction Toolbox (ICT)27. Statistics were calculated by unpaired two-samples t-
test following assessment of normality and equal variance using the Shapiro-Wilk’s test 
and F test, respectively. 

Untargeted metabolomics by flow injection mass spectrometry. Untargeted 
metabolomics analysis was performed based on a previously published approach28. Briefly, 
samples were analyzed on a LC-MS platform consisting of a Thermo Scientific Ultimate 
3000 liquid chromatography system with autosampler temperature set to 10° C coupled 
to a Thermo Scientific Q-Exactive Plus mass spectrometer equipped with a heated 
electrospray ion source and operated in negative ionization mode. The isocratic flow rate 
was 150 µL/min of mobile phase consisting of 60:40% (v/v) isopropanol:water buffered 
with 1 mM ammonium fluoride at pH 9 and containing 10 nM taurocholic acid and 20 nM 
homotaurine as lock masses. Mass spectra were recorded in profile mode from 50 to 1,000 
m/z with the following instrument settings: sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas 
heater, 200° C; sweep gas, 1 a.u.; spray voltage, -3 kV; capillary temperature, 250° C; 
S-lens RF level, 50 a.u; resolution, 70k @ 200 m/z; AGC target, 3x106 ions, max. inject 
time, 120 ms; acquisition duration, 60 s. Spectral data processing was performed using an 
automated pipeline in R. Detected ions were tentatively annotated as metabolites based 
on matching accurate masses of assumed [M-H] and [M-2H] ions with either no, one or 
two 12C to 13C exchanges within a tolerance of 5 mDa to compounds in the Human 
Metabolome database as reference29, with the method-inherent limitation of being unable 
to distinguish between isomers. Hierarchical clustering of the ions was performed with the 
complete linkage method and the Euclidean distance as a distance metric. Only ions with 
non-zero intensity and unique annotation including no assumed mass shift were used for 
the clustering analysis. For the visualization, ions with a false discovery rate < 0.05 as 
determine by unpaired two-sided t-tests and subsequent multiple hypothesis testing 
correction according to Storey’s and Tibshirani’s method30  were considered as significantly 
changed. 

Lipidomics. Acidic extractions were performed as described31 in the presence of an 
internal lipid standard mix containing 50 pmol phosphatidylcholine (13:0/13:0, 14:0/14:0, 
20:0/20:0; 21:0/21:0, Avanti Polar Lipids), 50 pmol sphingomyelin (d18:1 with N-acylated 
13:0, 17:0, 25:0), 100 pmol D6-cholesterol (Cambridge Isotope Laboratory), 25 pmol 
phosphatidylinositol (16:0/ 16:0, Avanti Polar Lipids), 25 pmol phosphatidylethanolamine 
and 25 pmol phosphatidylserine (both 14:1/14:1, 20:1/20:1, 22:1/22:1), 25 pmol 
diacylglycerol (17:0/17:0, Larodan), 25 pmol cholesteryl ester (9:0, 19:0, Sigma), 24 pmol 
triacylglycerol (D5-Mix, LM-6000/D5-17:0/17:1/17:1, Avanti Polar Lipids), 5 pmol 
ceramide and 5 pmol glucosylceramide (both d18:1 with N-acylated 15:0, 17:0, 25:0), 5 
pmol lactosylceramide (d18:1 with N-acylated C17 fatty acid, Avanti Polar Lipids), 10 pmol 
phosphatidic acid (21:0/22:6, Avanti Polar Lipids), 10 pmol phosphatidylglycerol 
(14:1/14:1, 20:1/20:1, 22:1/22:1), 10 pmol lyso-phosphatidylcholine (17:1, Avanti Polar 
Lipids), 50 pmol cardiolipin (14:1/14:1/14:1/15:1, Avanti Polar Lipids), and 50 pmol 
monolysocardiolipin (16:0/16:0/16:0, Avanti Polar Lipids). Neutral extractions were 
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performed as described31 containing a phosphatidylethanolamine plasmalogen (PE P-)- 
standard mix which was spiked with 16.5 pmol PE P-Mix 1 (16:0p/15:0, 16:0p/19:0, 
16:0p/ 25:0), 23.25 pmol PE P- Mix 2 (18:0p/15:0, 18:0p/19:0, 18:0p/25:0) and 32.25 
pmol PE P-Mix 3 (18:1p/15:0, 18:1p/19:0, 18:1p/25:0). Lipid standard preparations w 
done as described in31. Lipid extracts were resuspended in 60 µl methanol and samples 
were analyzed on a QTRAP 6500+ mass spectrometer (Sciex) with chip-based (HD-D ESI 
Chip, Advion Biosciences, USA) nano-electrospray infusion and ionization via a Triversa 
Nanomate (Advion Biosciences, Ithaca, USA) as previously described31,32. Data evaluation 
was done using LipidView (Sciex) and an in-house-developed software (ShinyLipids) 

NOS enzymatic assay. Mammary glands were dissected and homogenized in NOS assay 
buffer and further processed following the Nitric Oxide Synthase Activity Assay kit (Abcam, 
ab211083) protocol for measuring enzymatic activity of nitric oxide synthase (NOS). 
Statistics were calculated by unpaired two-samples t-test following assessment of 
normality and equal variance using the Shapiro-Wilk’s test and F test, respectively. 

Glycolysis inhibition experiments. Cells were seeded in 3D conditions (5µl of 80% 
Matrigel droplet) in black with clear flat bottom TC-treated imaging 96-well plates (Falcon, 
353219). 3-bromopyruvate (Sigma-Aldrich, 16490) was added to the cell media, whereby 
following doses (µM) were tested: 250, 50, 25, 10, 2, 0 (vehicle, water). CellTox Green 
Cytotoxicity Assay (Promega, G8741) was performed according to manufacturer 
instructions to measure cell death after 72 hours or 48 hours of treatment. Green 
fluorescence was measured using EnVision plate reader (PerkinElmer) Resorufine/Amplex 
Red FP 535 for excitation and Europium 615 emission filter. Data analysis was performed 
using GraphPad Prism8, fold change was calculated by normalization to untreated control 
using transform function, transform Y values using Y = Y/K, different K for each dataset K 
= mean of untreated control for normal, tumor and residual separately. Experiments were 
reproduced two or three times; number of biological replicates is depicted in the figure 
legends and for each biological replicate there were 5-6 technical replicates take 
an average from technical replicates. 

Images were taken over time-course of the experiment from using the high-throughput 
Olympus ScanR microscope in transmission mode. Each well of the 96-well plate was 
imaged using 1 ROI per with 21 Z-stacks (100 µm distance between stacks) at 4X 
magnification in a chamber with standard conditions (37 °C, 5% CO2). Projections of z-
stacks and image stitching was done using a Fiji software.  

DNA methylation profiles. After digestion of the Matrigel with collagenase and liberase, 
DNA was collected from the 3D cultures and extracted following Qiagen protocol for 
cultured cells (Qiagen Blood & Cell Culture DNA Mini kit, 13323). Bisulfite-free sequencing 
was performed at the Genomics Core Facility at EMBL Heidelberg. 

Sequencing reads were aligned with the “qAlign” function of the R package “QuasR” version 
1.22.1 33 using the reference genome sequence for M. musculus from the R package 
“BSgenome.Mmusculus.UCSC.mm10” version 1.4.0 the R bowtie wrapper “Rbowtie” 
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version 1.22.0 [Hahne F, Lerch A, Stadler MB. “Rbowtie: An R wrapper for bowtie and SpliceMap short 

read aligners.”] and34(rand the parameter setting modification: bisulfite=“undir”. Next, the 
DNA methylation was genome-wide quantified for all cytosine nucleotides in CpG context 
with the function “qMeth” from “QuasR” using the information from both strands combined. 
R V.3.5.1. (R Development Core Team) was used for conducting biostatistical analyses.  
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