
   

 

1 
 

Vast diversity of anti-CRISPR proteins 
predicted with a machine-learning 
approach  
Ayal B. Gussow1, Sergey A. Shmakov1, Kira S. Makarova1, Yuri I. Wolf1, Joseph Bondy-Denomy2, Eugene V. 

Koonin1* 

1   National Center for Biotechnology Information, National Library of Medicine, National Institutes of 

Health, Bethesda, MD 20894, USA 

2   Department of Microbiology and Immunology, University of California San Francisco, San Francisco, 

CA, USA. 

 

*For correspondence: koonin@ncbi.nlm.nih.gov 

  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916767


   

 

2 
 

Abstract 

Bacteria and archaea evolve under constant pressure from numerous, diverse viruses and thus have 

evolved multiple defense systems. The CRISPR-Cas are adaptive immunity systems that have been 

harnessed for the development of the new generation of genome editing and engineering tools. In the 

incessant host-parasite arms race, viruses evolved multiple anti-defense mechanisms including 

numerous, diverse anti-CRISPR proteins (Acrs) that can inhibit CRISPR-Cas and therefore have enormous 

potential for application as modulators of genome editing tools. Most Acrs are small, highly variable 

proteins which makes their prediction a formidable task. We developed a machine learning approach for 

comprehensive Acr prediction. The model showed high predictive power when tested against an unseen 

test set that included several families of recently discovered Acrs and was employed to predict 2,500 

novel candidate Acr families. An examination of the top candidates confirms that they possess typical 

Acr features. One of the top candidates was independently tested and found to possess anti-CRISPR 

activity (AcrIIA12). We provide a web resource (http://acrcatalog.pythonanywhere.com/) to access the 

predicted Acrs sequences and annotation. The results of this analysis expand the repertoire of predicted 

Acrs almost by two orders of magnitude and provide a rich resource for experimental Acr discovery.  
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Introduction 

All life forms evolve under constant pressure from numerous, diverse viruses and other parasitic genetic 

elements and thus have evolved multiple defense systems1. The CRISPR-Cas are adaptive immunity 

systems that are present in nearly all archaea and about 40% of bacteria, and have been harnessed for 

the development of the new generation of genome editing and engineering tools2-4. In the incessant 

host-parasite arms race, viruses evolved multiple anti-defense mechanisms including numerous, diverse 

anti-CRISPR proteins (Acrs) that are currently known to comprise 46 distinct families5, 6.  The Acrs employ 

different mechanisms to abrogate the activity of CRISPR-Cas systems7-10. The majority of the Acrs that 

have been studied in detail to date bind to functionally important sites of CRISPR-Cas effector proteins 

and display high specificity towards a particular CRISPR-Cas variant from a narrow range of bacteria or 

archaea. Some Acrs, however, have broader specificity11, for example, acting as nucleic acid mimics12. 

Furthermore, recently, enzymatically active Acrs, such as acetyltransferases and nucleases, have been 

discovered13-15. Clearly, Acrs have enormous potential for application as modulators of genome editing 

tools16, 17. Despite the fundamental interest of Acrs for understanding the biology of host-parasite 

interactions in prokaryotes and their potential to transform the use of CRISPR in DNA editing, the 

discovery of novel Acrs remains a formidable task. The principal causes of these difficulties are the small 

size and extreme evolutionary variability of most of the Acrs which hampers their detection with even 

the most powerful sequence analysis methods10. The currently known Acr families have been discovered 

using a variety of creative approaches, the two primary ones being guilt-by-association and self-

targeting5, 12, 18-20.  

 

Guilt-by-association involves  searching for homologs of HTH-containing proteins that are typically 

encoded downstream of previously discovered Acrs18. Such proteins are known as anti-CRISPR 
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associated (Aca) and are notably more conserved among viruses than Acrs themselves which greatly 

facilitates their detection. The genomic neighborhoods encoding Aca homologs are then searched for 

potential novel Acrs.   

 

Self-targeting genomes are prokaryotic genomes that encode functional CRISPR-Cas systems that 

encompass spacers targeting regions of their own genome20. In this case, CRISPR-Cas system should, in 

theory, target and kill the host cell.  Thus, organisms with self-targeting genomes can only survive when 

they also carry Acrs that prevent CRISPR-Cas from functioning and keep the cell viable. 

 

Despite the notable success of these two approaches, buttressed by experimental validation of the 

predictions, neither provides a systematic methodology to detect novel Acrs. The main challenge in 

discovering novel Acrs is that, in addition to their extreme sequence variability, they share few 

distinguishing characteristics or similarities outside of their common role in thwarting CRISPR. With no 

clear way to discern Acrs from other proteins, and no sequence similarity between different Acr families, 

discovering novel Acrs remains a formidable challenge21. 

 

Here, we describe a systematic machine learning approach we developed to predict novel Acrs, based 

on the few known Acr attributes and a secondary screen using heuristics of known Acrs, to further 

enrich for likely Acr candidates. We show that this method is significantly predictive of novel Acrs, 

compile a collection of 2,500 previously undetected predicted Acrs families and examine in detail the 

top candidates. 
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Results 

Characteristic features of the known Acrs  

The general concept behind our approach is that we strive to combine the few characteristics Acrs tend 

to share into a detection model. Our first step was therefore to assemble and quantify features that 

previously discovered Acrs appear to have in common. To keep track of the known Acrs, we relied on a 

combination of curated Acr databases22, 23, and our own manual data curation (Supplementary Table 1). 

At the time of our data curation, 39 Acr families were known (Supplementary Table 1). We used this 

original set to iteratively search for homologs in the non-redundant (NR) database at the NCBI using PSI-

BLAST (see Methods for details) and to construct a multiple protein sequence alignment for each Acr 

family. 

 

Each of these alignments was then PSI-BLASTed against our local dataset24 that includes prokaryotic and 

prokaryotic virus proteins and consists of a total of 182,561,570 proteins (see Methods for details).  All 

hits with an e-value below the threshold of 10e-4 were manually curated to eliminate obvious false 

positives, such as partial hits to very large proteins or hits to proteins with unambiguously assigned 

functions. The final positive set consisted of 3,654 Acrs, spanning 32 families (7 of the known Acr 

families were not represented in our database; Supplementary Table 1; Supplementary File 1). 

 

The most striking common feature of the Acrs is their small size (weighted mean Acr length: 104aa, 

Table 1) and the tendency to form sets of small proteins that are encoded by co-directional and closely 

spaced genes in (pro)virus genomes (hereafter directons) (Figure 1, Table 1). We hypothesize that these 
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directons are largely made up of co-transcribed early anti-defense genes. Acrs are also typically encoded 

upstream of proteins containing an HTH domain, the Acas18.  

 

Beyond these distinctive features, we considered other protein characteristics that we suspected might 

be predictive, such as the protein spacing within a directon (Directon Spacing, Table 1) or protein 

hydrophobicity25 (Mean Hydrophobicity, Table 1). We also considered whether proteins gave  any 

significant hits to conserved domains from either CDD26 or pVOG27 (Is Annotated, Table 1). In total, we 

constructed a set of 12 features (Table 1, see Methods for details) that, together, provided a 

compendium of quantifiable features that were used to identify Acr candidates. 
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Figure 1. Characteristics of known Acrs. 

A) A cartoon of a sample directon. Acr proteins characteristically fall upstream of an HTH-domain 

containing gene, termed Aca. Acrs are usually found in suspected mobile-genetic elements, such as 

phages. The Acr directon is highlighted in the gold color, while the surrounding proteins are indicated in 

blue. Characteristically, Acrs fall in directons with small, unidentified proteins. 

B) A density plot of Acr lengths. 

C) A density plot of Acr directon mean lengths. 
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Table 1. Feature set. Weighted means of all assessed features, and whether they were used in the final 

model. 

Feature Name Acr Mean Non-Acr Mean Used in final model 
Containing Genome is Prokaryote 0.895643762 0.895769231 No 
Containing Genome is Self-Targeting 0.334446946 0.191923077 Yes 
Directon Annotated Protein Fraction 0.22 0.69 Yes 
Directon Protein Lengths Mean 119.27 251.71 Yes 
Directon Predicted Membrane-Associated 
Fraction 

0.06 0.26 No 

Directon Size 3.49 3.5 Yes 
Protein is Annotated 0.064102564 0.673076923 Yes 
Protein has HTH-Downstream 0.400757737 0.118076923 Yes 
Protein is Predicted Membrane-Associated 
(TMHMM, SignalP) 

0.025641026 0.278076923 No 

Directon Spacing 18.37 13.7 No 
Protein Length 104.11 245.54 Yes 
Mean Hydrophobicity (Kyte and Doolittle) -0.48 -0.15 Yes 
 

Training and test sets 

To build a predictive model, a training set comprised of two components was required: a positive set, 

consisting of previously discovered Acrs, and a negative set, consisting of proteins confidently inferred 

not to be Acrs (non-Acrs). For the positive set, the Acrs were weighted by their family and interfamily 

similarities (Supplementary File 1, Methods), to ensure that related and highly similar Acrs were not 

over-represented in the training dataset. 

 

Because there is no well-defined, standard set of known non-Acr proteins, we constructed the negative 

set by randomly selecting viral and prokaryotic proteins, under the assumption that the majority of 

proteins are non-Acrs. The negative training dataset was constructed by randomly selecting proteins 

from a combination of 1000 randomly selected prokaryotic virus genomes and 4000 randomly selected 

CRISPR-Cas-containing prokaryote genomes. Similar to the positive set, we sought to avoid oversampling 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916767


   

 

9 
 

particular protein families. Therefore, these proteins were clustered by sequence similarity, and for each 

cluster, a single representative was selected (see Methods for details). We randomly selected 3,500 

proteins from this set to constitute the negative, non-Acr set. 

 

During our work on the model, an additional set of Acrs has been published28, 29. We incorporated these 

into our analysis as an unseen test set, i.e. a set of Acrs unavailable during the training stage that we 

could use to test our model against. Thus, our training set consisted of all known Acrs published before 

September 2018 (Supplementary File 1; positive set: n=2,775, 26 families; negative set: n=2,600), and 

the test set consisted of the Acrs published after that date (Supplementary File 1; positive set: n=879 

proteins, 6 families; negative set: n=600 proteins).  

 

Building and evaluating a predictive model 

Given our relatively small positive set, we sought to identify a model that would tend towards low 

variance. To this end, we chose a random forest of extremely randomized trees30. As an ensemble 

method with a highly random component, it has less variance and is therefore less likely to overfit. 

 

The model consisted of a random forest with 1000 decision trees. When training the model, each 

decision tree is built based on a random sampling of the training data. Each split in the decision tree is 

determined by randomly selecting multiple values across a random subset of the features, and then 

setting the values that minimize Gini impurity as the thresholds for the decision tree split. Thus, the final 

forest consists of 1000 decision trees, where each decision tree’s leaf nodes correspond to members of 

the training set. 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916767doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916767


   

 

10 
 

When using the model to assess a candidate protein, the candidate traverses each decision tree. Within 

each tree, it ends up in a leaf node that contains some mixture of Acrs and non-Acrs from the training 

set. The tree assigns the candidate a score that is equal to the fraction of Acrs in its leaf (this can be any 

value between zero and one, inclusive). The score assigned by the model is the mean of the scores 

across all 1000 trees. 

 

Using the model and the training set we developed, we assessed the performance of the model by 5 

iterations of 3-fold cross-validation. In each iteration, the model was trained on two-thirds of the Acr 

families, and capacity to predict the families that were left out was assessed. For each protein in the test 

set, we predicted the likelihood of a protein being an Acr using our random forest model. Given the 

large class imbalance, we down-weighted the negative set in training the model, so that its combined 

weight was equal to that of the positive set. This weighting was applied to both model training and 

assessment. 

 

We relied on receiver operating characteristic (ROC) area under the curve (AUC) to assess the model 

performance and used a genetic algorithm for feature selection. On average, across all 15 cross-

validation iterations, we found that our method was significantly predictive of Acrs with an AUC of 0.93 

(permutation p-value: 0.001, see Methods for details). 

 

We next used the model to predict Acrs in the unseen test set. The model was found to significantly 

distinguish Acrs from non-Acrs, with an AUC of 0.83 (permutation p-value: 0.001; Figure 2). This result 

indicates that our method is indeed predictive of novel, heretofore unseen Acrs. 
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Figure 2. Model assessment on an unseen test set.  

A) The ROC AUC of the model scores on an unseen test set.  

B) A histogram of 1000 AUCs calculated using permuted model scores against the unseen test set 

representing the null AUC distribution. As expected for a well-calibrated assessment, the null AUC 

distribution is centered on 0.5, indicating random separation. The AUC for the correct model scores, 

0.83, is indicated in red. 

 

 

 

`  

 

Using the model to predict novel Acrs 

Having demonstrated the predictive power of our model on the test set of recently discovered Acrs, we 

sought to predict novel Acrs. The first step in this direction was to define an appropriate search space of 

proteins likely enriched for Acrs. The initial dataset consisted of 182,561,570 proteins of which the 

majority (182,332,040) came from prokaryotes, and the rest were encoded by viruses (229,530). 

 

a b 
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Acrs are typically encoded either within prokaryotic virus genomes, or within prokaryotic genomic 

regions that appear to be integrated viruses (proviruses) or other mobile genetic elements (MGEs)10, 19. 

We therefore identified a subset of the prokaryotic database that consisted of genomes containing 

complete CRISPR-Cas systems31, under the premise that these genomes are more likely to encompass 

prophages with Acrs targeting the respective CRISPR-Cas variants16, 20. We further sought to limit the 

prokaryote protein set to proteins encoded by (predicted) proviruses. Although there are many methods 

for predicting complete proviruses and their boundaries, these fall short of comprehensive identification 

of provirus regions in prokaryotic genomes, primarily, because numerous proviruses are inactivated and 

partially deteriorated32, 33. Indeed, many of the known Acrs are encoded in the vicinity of virus proteins12 

but not necessarily within clearly active proviruses encoding hallmark virus genes and bounded by well-

defined provirus boundaries. Therefore, instead of explicitly predicting proviruses, we enriched for virus-

related sequence, by filtering the prokaryote protein set to the proteins encoded in the vicinity of 

known virus proteins (see Methods for details). The resulting combined dataset of prokaryotic viruses 

and suspected proviruses consisted of 10,938,430 proteins. As these proteins are largely virus-related, 

we expected this set to be enriched for Acrs. 

 

We assessed this set of proteins with our random forest model which resulted in an initial set of 

1,546,505 candidate Acrs. We further filtered these to retain only those that had no significant hits to 

CDD26 or pVOG27, yielding 892,830 proteins (see Methods for details). This set of proteins was clustered 

by sequence similarity, resulting in 232,616 protein clusters (Supplementary File 2 available at 

ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/ACR20/supplementary_file_2.txt; see Methods for details). 

Heuristic filters were applied to each of these clusters, based on known Acr characteristics, to further 

enrich the candidate set for true Acrs (Table 2).  
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Table 2. Heuristics for filtering Acr families.  

Heuristic features of candidate protein clusters   Threshold 

Number of members that have HTH-domain protein encoded 
downstream. 

A minimum of one. 

Number of members in self-targeting or virus genome. A minimum of one. 

Average directon size. A maximum of 5 genes. 

Number of homologs in our prokaryotic dataset. A maximum of 374. 

Ratio of prokaryotic homologs to suspected provirus homologs. A maximum of 3 or a single virus 
homolog.  

Number of HHBlits hits. A maximum of 52. 

 

The hallmark characteristics of Acrs are that they i) are encoded upstream of HTH proteins, and ii) are 

found in self-targeting genomes16. We therefore required each family to have at least one member that 

fulfills each of these criteria. After this filtering, 11,304 families remained, among which 20 included 

known Acrs. 

 

As genes encoding Acrs tend to form small directons, we sought to estimate a heuristic maximum 

threshold for the mean directon size in a candidate family that would enrich our protein set for true 

Acrs. We therefore searched for the threshold that, when applied, retained the largest fraction of the 

known Acrs in our set of 11,304 while filtering out as many of the candidate families as possible. To 

quantify this feature, we used the balanced accuracy metric, which is equal to the average of the 

fraction of correct classifications between the two groups. We found that a maximum mean directon 

size of 5 genes gave the highest balanced accuracy (see Methods for details). Consequently, we removed 

protein families with an average directon size of more than 5 genes. After this filtering, 5,507 families 

remained including 18 families of known Acrs. 
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To eliminate additional false positives, we PSI-BLASTed each protein family alignment against our 

sequence dataset and, under the premise that Acrs are highly variable, fast evolving proteins, removed 

families with numerous homologs in diverse prokaryotes. We found that the heuristic cutoff value for 

the number of prokaryote homologs that maximized balanced accuracy was 374. We therefore limited 

our set to clusters with no more than 374 significant hits to the prokaryotic protein set (Table 2). Next, 

we enriched for virus proteins by limiting to families that either include at least one homolog encoded in 

a virus genome or have a small ratio of prokaryote homologs to prophage homologs (see Methods for 

details). We found that the cutoff value for the prokaryote to provirus ratio that maximized balanced 

accuracy was 3 (Table 2). Finally, we sought to exclude families that have numerous annotations when 

assessed with HHBlits and thus include well-characterized non-Acrs34. We found the cutoff value that 

maximized balanced accuracy for the number of HHBlits hits was 52. 

 

Although, by applying these heuristics, we likely filter out some true Acrs predicted by the model, we 

expect that, overall, this approach enriches the resulting protein set for true Acrs. After applying the 

above filters, our enriched set consisted of 2,526 protein families (Figure 3, Supplementary File 2). 
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Characteristics of Predicted Acrs  

We PSI-BLASTed all 2,526 candidate protein family alignments against a dataset of known Acrs and Acr-

related sequences (see Methods for details). For 26 of these families, significant hits to the Acr set were 

detected. Of these protein families, 22 included known Acrs. The remaining 4 families with significant 

similarity to known Acrs are homologous to uncharacterized proteins (OrfA, OrfB, or OrfE) that are 

encoded within previously described Acr directons, namely, in the genomic neighborhoods of AcrIIA1-4 

in Listeria monocytogenes, and all have been suspected of Acr activity although did not show Acr activity 

when tested20.  

 

After removing these 26 families, we obtained 2,500 novel candidate Acr families, consisting of 16,919 

putative Acrs. The mean size of a family was 7, the largest family included 319 members, and nearly half 

of the families (49%) were singletons (Figure 4). 

Figure 3. Flowchart illustrating the heuristic filtering. 
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Figure 4. Histogram of predicted Acr family sizes. 

For visual clarity, families with more than 25 members are not displayed. 

 

 

Given the different cluster sizes, each predicted Acr was assigned a weight inversely proportional to the 

size of its cluster, in order to ensure that related and highly similar predicted Acrs were not over-

represented in summary statistics. Specifically, each predicted Acr was assigned a weight of 1/n, where 

n is the number of predicted Acrs in its cluster.  

 

The predicted Acrs have a weighted average size of 109 aa, with a standard deviation (SD) of 71.6 

(Figure 5A). As expected by design, the Acr genes tend to form small directons (weighted mean: 3.4; 

weighted SD: 1.47) consisting of short genes (weighted mean: 200aa; weighted SD: 155) (Figure 5B). The 

weighted mean isoelectric point of the predicted Acrs is 7.73 with a weighted SD of 2.6, and the 

weighted mean hydrophobicity is -0.31 with a weighted SD of 0.5. Per TMHMM and SignalP 

predictions35, 36, a weighted 15% of predicted Acrs have at least one putative transmembrane helix or 

signal peptide which, as expected, is substantially less than the expectation based on the negative set 

(28%, Table 1).  
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Using JPred37, we predicted the secondary structure of the consensus sequences in the predicted Acr 

set. The mean percentage of amino acids contributing to alpha helices was 39%, and the mean 

percentage of amino acids contributing to beta sheets was 13%. These values did not differ significantly 

from the negative set, in which 97% and 85% of the proteins were predicted to contain at least one 

alpha helix or beta sheet, respectively, and the mean percentage of amino acids contributing to alpha 

helices and beta sheets was 41% and 13%, respectively. 

 

Figure 5.  Protein length distribution of the Acr candidates. 

A) Density plot of the predicted Acrs protein lengths (mean: 109 aa)  

B) Density plot of the mean protein lengths of the predicted Acrs directons (mean: 200 aa). 

 

 

The candidates are distributed across a diverse set of species (n=1,770). Escherichia coli accounts for the 

largest share of candidate Acrs at 2.37%. Peptoclostridium difficile (1.46%) and Clostridium botulinum 

(1.16%) round out the top three. Overall, each of the 1,770 species contains an average of 0.06% of the 

a b 
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predicted Acrs. The most common CRISPR-Cas system in the genomes containing a predicted Acr(s) was 

subtype I-E (18.6%) followed by I-C (10.5%) and I-B (9.2%).  

 

Among the candidate Acr clusters, 10% include at least one member encoded in a virus genome, with 

279 virus strains encoding at least one Acr. Of the analyzed virus genomes, 197 (71%) encode a single 

predicted Acr, 66 (24%) encode two, and the remaining ones (5%) encode three or more Acrs. Archaeal 

viruses are also represented in this set, with 33 predicted Acrs predicted for 21 Archaeal viruses.  

 

The maximum number of predicted Acrs in a single virus strain was 5, observed in Ruegeria phage DSS3-

P1, four of which fell in the same HTH-containing directon. The viruses that were found to most 

commonly encode more than one Acr were Mycobacterium phages, followed by Bacillus and 

Synechococcus phages. Of the Archaeal viruses, the viruses that were found to most commonly encode 

more than one Acr were Sulfolobales Mexican rudivirus followed by Sulfolobus islandicus viruses. 

 

We sought to examine the genomic context of the largest predicted Acr clusters and gauge how often 

they tend to appear in similar genomic neighborhoods. We examined the 10 largest Acr clusters and 

generated a presence-absence matrix for the members of these clusters in different genomic 

neighborhoods (Figure 6), with a genomic neighborhood defined as the 10 genes upstream and 

downstream of each Acr. Each column is a genomic neighborhood (ordered by similarity) and each row 

represents an Acr family (see Methods for details). Whereas the larger Acr clusters in this subset tend to 

appear in similar genomic neighborhoods, within these neighborhoods, we also find scattered predicted 

Acr singletons. This pattern is similar to what has been observed in known Acrs, where the Acrs present 

in a given directon vary across closely related strains, with some Acrs appearing in nearly all instances of 

the directon and others appearing sporadically20. 
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Figure 6. Presence=absence matrix of Acr families in genomic contexts. 

A binary matrix where each column is a distinct genomic neighborhood (ordered by similarity) and each 

row represents an Acr family (see Methods for details). Each cell represents the presence or absence of 

a member from the Acr family in the neighborhood, with grey representing presence and black 

representing absence.  

 

 

Case by case analysis of top Acr candidates 

We next examined in greater detail the top candidates from our Acr candidate set. The top 30 families 

with at least 4 members were selected from the candidate set and explored using HHPRED38, PSI-BLAST 

against NR and examination of the genomic context for each candidate (see Methods for details). 

Supplementary Table 2 presents the key features of the top 30 candidates.  

 

Here, we present in some detail the genomic contexts and characteristics of the top 5 candidates. It has 

been previously shown that Acrs tend to be encoded in short directons consisting of small genes, usually 

including one HTH gene18, 20. Further, they tend to fall in self-targeting genomes, usually in the vicinity of 

MGE proteins. This configuration has been seen with multiple Acr families across numerous species. One 
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classic example of this is the Acr IIA1-4 families20 (Figure 7), which were shown to be encoded in such a 

configuration.  

 

Figure 7. Genomic context of Acrs IIA1-4. 

The genomic contexts of Acrs IIA1-4 in Listeria, with Acrs encoded in short directons of small genes 

including one for a protein containing an HTH domain. Proteins containing an HTH domain are indicated 

with a yellow outline. Also shown are OrfA, OrfB and OrfC, proteins that have been suspected of Acr 

activity although did not show Acr activity when tested for Acr function20. 

 

 

 

Candidate 4338 

Members of one of our top 5 candidate Acr clusters, candidate 4338 (hereafter C4338) were found in 

suspected prophages and phages of Listeria monocytogenes, adjacent to AcrIIA1, with three quarters of 

the members of this family found in self-targeting genomes. At the time of our analysis, C4338 was not 

found to be homologous to any of the previously discovered AcrIIA genes. However, shortly after the 

completion of the analysis and while this manuscript was in preparation preliminary results on testing 

C4338 for an anti-CRISPR function have been reported independently39. C4338 has been identified as an 

anti-Cas9 protein (AcrIIA12), supporting the utility of our approach to discover novel Acrs. 

 

A IIA1

IIA3

BIIA2

IIA1IIA4

A IIA1 B

IIA1 CIIA2
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Candidate 20391 

Members of the C20391 cluster were identified in one phage (Listeria phage B054) and four suspected 

prophages (one in Listeria innocua and three in Listeria monocytogenes) (Figure 8A). All the prophage-

encoded homologs were found in self-targeting genomes that carry CAS-II-A. Three of these genomes 

also carry CAS-I-B. All the prophage-encoded members of this cluster were found in bacterial genomes 

that also encoded AcrIIA1, and two of these also encoded Acrs IIA2 and IIA3. Given that all the genomes 

encoding proteins of this family encompass CAS-II-A, we predict that this is the target of its anti-CRISPR 

activity, although targeting of CAS-I-B is difficult to rule out. 

 

As is characteristic of known Acrs, C20391 homologs are typically encoded in short directons consisting 

of three genes (Figure 8A). One of these genes contains an HTH domain and is homologous to OrfD of 

Listeria monocytogenes. OrfD has been previously identified as a marker for Acr directons and is a 

distant homolog of AcrIIA1 although in itself, this protein has not been shown to possess Acr activity20. 

All members of this cluster are encoded adjacent to members of another predicted Acr family, C12805. 

C12805 includes 3 additional members that are not adjacent to C20391, but are all found in a directon 

with AcrIIA4 and an additional candidate, C42626, in prophages of Listeria strains solely containing CAS-

I-B (Figure 8A).  

 

Figure 8. Genomic contexts of top candidates. 

A) Genomic context of C20391, C12805 and C42626 in 8 Listeria genomes. The genomic contexts of 

these three candidates are typical of the known Acrs, encoded in short directons of small proteins, 

with one protein including an HTH domain. 
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B) Genomic context of C23907 in Rhodobacter capsulatus and Rhodobacter phage RcapNL. The 

genomic context of C23907 is typical of known Acrs and includes an HTH-containing protein that is a 

distant homolog of Aca3. 

C) Genomic context of C27905 in Clostridium. C27905 is found in directons between 2-4 proteins in 

length, and is adjacent to an HTH domain containing protein, as typical of known Acrs. 

D) Genomic context of C11640 in Xanthomonas. C11640 is found in directons consisting of 2 proteins, 

where the second protein is an HTH domain containing protein, as typical of known Acrs. 
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 In the genomic neighborhoods of C42626 (Figure 8A, L. monocytogenes L99, M7 and HCC23), one 

instance includes an expanded version of AcrIIA4 (encoded in L. monocytogenes L99) that contains an 

HTH, whereas the remaining two instances of AcrIIA4 lack an HTH domain. However, an examination of 

the nucleotide sequences immediately upstream of the truncated AcrIIA4 indicates that this truncation 

is likely to be an error in the sequence annotation, and that the N-terminal of these instances of AcrIIA4 

can be extended to match the AcrIIA4 homolog in L. monocytogenes 99, including the HTH domain. 

Furthermore, the region of AcrIIA4 that contains the HTH domain is similar to the portion of OrfD that 

contains an HTH domain (38% identity), so that extended version of AcrIIA4 appears to be a fusion of 

OrfD and AcrIIA4. 

 

Thus, candidates C20391, C12805, and C42626 all contain the hallmark characteristics of known Acrs, 

including their tendency to fall in known Acr neighborhoods and next to known Acr markers. This 

corroborating evidence greatly raises our confidence that these are true Acrs and further validates the 

predictive power of the methodology.  

 

Candidate 23907 

Members of the cluster C23907 were identified in one phage (Rhodobacter RcapNL) and in 3 RcapNL 

prophages integrated in self-targeting genomes of Rhodobacter capsulatus. C23907 belongs to a small 

directon of 3 genes, with the second gene in the directon containing an HTH domain. This HTH-

containing gene is a distant homolog of Aca3, a previously discovered gene associated with Acrs, further 

supporting the prediction of anti-CRISPR functionality of C23907. The third gene in the directon is 

uncharacterized (Figure 8B). The 3 self-targeting prophages containing the Acr occur in genomes with 

two CRISPR systems, type I-C and type VI-A, either of which are potential targets of C23907. 
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Candidate 27905 

Members of the C27905 cluster were found in Clostridium. Half of the homologs were found in genomes 

that are self-targeting. As is characteristic of Acrs, C27905 genes typically belong to a small directon of 2-

4 genes, where the second protein encoded in this directon contains an HTH domain (Figure 8C). The 

other proteins in the directon are uncharacterized. All the genomes in this set contain CRISPR I-C, a 

potential target of C27905. 

 

Candidate 11640 

Members of the C11640 cluster were found in Xanthomonas. Eight of these genes were identified in 

Xanthomonas translucens and one in Xanthomonas sp. SHU199. Eight of the nine homologs were found 

in self-targeting genomes. C11640 tends to fall in a small directon of two genes, as is characteristic of 

known Acrs, where the second gene in the directon contains an HTH domain (Figure 8D). All the 

genomes containing C11640 have type I-C CRISPR systems, a potential target of C11640. 
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Discussion 

The Acrs are of major interest to a wide range of researchers, due both to their role in the evolutionary 

arms race between viruses and their prokaryotic hosts, and to their potential use as CRISPR-Cas 

inhibitors in genome engineering applications.  However, identification of Acrs remains a formidable 

challenge, given their extreme variability and lack of functionally characterized homologs.   

 

Here we demonstrate substantial predictive and discriminative power of a machine-learning approach 

for identification of candidate Acrs. This result appears unexpected given the paucity of distinctive 

features of the Acrs. Nevertheless, these few, rather generic features including the small size of the Acr 

genes, their arrangement in short directons that contain, additionally, genes for HTH proteins, poor 

evolutionary conservation, association with viruses and proviruses, and self-targeting seem to be 

sufficient for apparently robust Acr prediction. The underlying reason seems to be that, in viruses of 

prokaryotes, a substantial fraction, often, the majority of the genes that are not directly implicated in 

virus replication and morphogenesis are involved in anti-defense functions. A notable example can be 

found among archaeal viruses in some of which up to 40% of the genes appear to encode Acrs40.  Hence 

a possible caveat of our predictions: some of the genes that we predict as Acrs might target other, non-

CRISPR defense systems. Conversely, the possibility exists that, using the approach described here, we 

only detect one, albeit major, class of Acrs, whereas others might exhibit distinct properties. For 

example, a recently discovered Acr is an acetyltransferase that inhibits subtype V-A CRISPR-Cas via 

acetylation of the effector protein13. Another anti-V-A Acr is a nuclease that abrogates the CRISPR-Cas 

activity by cleaving the guide RNA14. Thus, a distinct class of enzymatically active Acrs seems to exist, and 

at least some of these can be larger and more evolutionarily conserved proteins than the Acrs addressed 

here. 
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The above caveats notwithstanding, the combination of sensitive database searches, machine learning 

and heuristic filters applied here yielded 2500 previously undetected families of strong Acr candidates 

that comprise an extensive resource, which we make accessible online 

(http://acrcatalog.pythonanywhere.com/), for structural and functional studies on Acr-CRISPR 

interactions, with likely subsequent applications. The current database of prokaryotic virus genomes is 

limited in scope but grows rapidly, thanks, largely, to metagenomic discovery of new viruses. 

Furthermore, so far, no targeted search for Acrs in MGEs other than viruses, such as plasmids or 

transposons, has been performed. Understanding the distribution of Acrs throughout the prokaryotic 

mobilome is a key next step to understanding the arms-race that can be expected to lead to the 

discovery of numerous novel Acrs. Thus, the clear next step is to extend our approach to search 

expanding virus genome databases, metagenomes, and other MGE.  Iterative application of this strategy 

should greatly expand the diversity of Acrs.  
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Methods 

Iterative Search for Acr Homologs 

For each Acr family, we selected a single representative sequence and PSI-BLASTed it against NCBI’s 

non-redundant sequence database (NR).  Iterative PSI-BLAST was run to convergence, the identified 

homologs were aligned using MUSCLE41, and the resulting alignment was PSI-BLASTed against our 

prokaryote dataset24 and our prokaryotic virus dataset from the NCBI viral genomes resource42. We used 

a cutoff of e-value less than or equal to 10e-4 for homolog detection and manually reviewed each 

resulting alignment. 

 

Weighting the Acrs 

For the positive set, we sought to weight each Acr by its sequence similarity to the other Acrs, in order 

to avoid oversampling closely related data points. Initially, each Acr family is assigned a weight of one. 

Then, within each Acr family, its member proteins were clustered using mmseq2, with the parameters 

c=0.5 and s=0.443. Each cluster is defined as a sub-family, and the initial weight of one given to the family 

is divided evenly amongst the sub-families. Following this, each sub-family’s weight is divided evenly 

among its members. Thus, each Acr’s weight is proportional to its similarity to other Acrs in the set. 

 

For the negative set, an analogous procedure was followed. After randomly selecting a set of proteins as 

the negative set pool, these proteins were clustered using the same mmseq2 parameters as used for the 

Acr families, and from each cluster, a single representative was selected. Each representative protein 

was given a weight of one. 
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In training and in assessing the model, the negative set was re-weighted so that each class (Acr and non-

Acr) had the same total weight. 

 

Protein Annotations 

Proteins in our dataset were annotated by PSI-BLASTing protein alignments from CDD26 and pVOG27, 

with an e-value cutoff of 10e-4. Proteins with significant hits to to pVOGs were classified as viral. 

 

Self-Targeting Assemblies 

Self-targeting assemblies were detected by BLASTing the spacers31 from each assembly in our dataset 

against the corresponding genome and filtering for exact matches. Wherever an exact match was found, 

the respective assembly was classified as self-targeting (Supplementary File 3). 

 

Defining The Features For The Model 

Overall, 12 total features were defined. Some features related to the protein itself, while others relate 

to the protein’s directon. A directon was defined as consecutive proteins on the same strand with a 

maximum of 100bp between adjacent proteins. 

 

The features were defined as follows: 

Protein size. The length, in amino acids, of the candidate protein. 

 

Directon size. The number of genes in the directon. 

 

Mean directon protein size. The mean length, in amino acids, of all proteins in the directon. 
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Protein hydrophobicity. The protein’s hydrophobicity 25. 

 

Protein annotation. A binary score of whether the protein is annotated or not. We consider a protein as 

“annotated” if it has at least one significant hit to any alignment, outside of alignments annotated as 

“hypothetical protein”, “putative predicted product”, or “provisional”. 

 

Fraction of directon that is annotated. The fraction of proteins in the directon that are annotated as 

defined above. 

 

HTH-downstream. Whether there is an HTH domain-containing protein encoded downstream of and 

adjacent to (within three genes) the Acr candidate within the same directon. This feature was analyzed 

by PSI-BLASTing proteins against the subset of alignments from the PVOG and CDD datasets containing 

in their name or description either the term “HTH” or “helix-turn-helix”, with an e-value cutoff of 5e-3. 

 

Self-targeting. Whether the protein is encoded in a self-targeting genome.  

 

Predicted membrane association. Whether the gene is predicted to be transmembrane or contain a 

signal peptide using tmhmm and signalp, respectively 35, 36. 

 

Fraction of membrane-associated proteins in directon. The fraction of the proteins encoded in the 

directon that are predicted to be transmembrane or contain a signal peptide as defined above. 

 

Directon spacing. The mean spacing between genes in the directon. 
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Whether genome is viral. Whether the protein is encoded in a viral genome or in a prokaryotic genome. 

 

 Ten generations of genetic feature selection were run, yielding the following best feature set:  

1) Containing Genome is Self-Targeting 

2) Directon Annotated Protein Fraction 

3) Directon Protein Lengths Mean 

4) Directon Size 

5) Protein is Annotated 

6) Protein has HTH-Downstream 

7) Protein Length 

8) Protein Hydrophobicity 

 

Building the Model 

The model was constructed using scikit-learn (https://scikit-learn.org), specifically, the 

ExtraTreesClassifier with the the n_estimator parameter set to 1000, meaning that the random forest 

consisted of 1000 trees. The rest of the parameters were left at default. 

 

The model was trained on the training data set described above, while down-weighting the negative set 

so that each class (Acr and non-Acr) has the same total weight. 

 

Predictive scores were calculated by using the ExtraTreesClassifier function predict_proba. When 

calculating binary predictions, the threshold was set to the best value for differentiation in the training 

set when maximizing accuracy, which was equal to 0.09. 
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Defining the Acr Search Space 

Predicted Provirus Sequences 

The alignments of the pVOG proteins were compared to the dataset of genomes containing CRISPR-

Cas24, 31. Each directon containing a protein with a viral hit with an e-value below 10e-4 was considered a 

provirus-related sequence, along with the adjacent directons on either side. Adjacent blocks of 

prophage-related directons (within 500 bp of each other) were considered as provirus candidates. If the 

provirus candidate contained at least two virus hits within 3 kb of each other, it was considered a 

predicted prophage. 

 
Prokaryotic Virus Sequences 

The set of virus proteins was assembled from the NCBI viral genomes resource42 and subset to 

prokaryotic viruses based on taxonomy data 

(https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239). This virus set totaled 

229,530 proteins encoded in 2,291 genomes. 

 

Permutation P-Value Calculation 

To calculate permutation p-values, the model’s predictions for the test set were shuffled. We then 

tested how well the model performed on this shuffled dataset. This procedure was repeated 1000 times, 

creating a null distribution of AUCs. With this null distribution, a permutation p-value was calculated as 

follows. Let 𝑛𝑛𝑝𝑝 be the number of AUCs in the null distribution that are greater than or equal to the 

actual observed AUC. The permutation p-value, then, is equal to 
1+𝑛𝑛𝑝𝑝
1001

. Thus, when the actual AUC was 

greater than any AUC in the entire permuted set, the p-value was approximately 0.001. 
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Clustering and Weighting Candidate Acrs 
Candidate Acrs were clustered using mmseq2, with the parameters c=0.5 and s=0.443. A weight of 1/nc 

was assigned to each cluster, where nc is the number of Acr candidate clusters. The weight of each 

cluster was then divided evenly among all protein members of the cluster, so that the weight of each Acr 

was inversely proportional to the size of the cluster it belonged to. These weights were used when 

calculating summary statistics for the Acr candidate set, to avoid oversampling closely related data 

points. 

 
 
PSI-BLASTing Against Known Acr and Acr-related Sequences 

We created a sequence database of known Acrs and Acr-related sequences (Supplementary File 4). This 

database included all known Acrs, Acas, and proteins previously suspected of possessing Acr activity but 

not showing any when tested. We included the group of previously suspected Acr proteins as these are 

proteins that bear Acr characteristics, and therefore may be detected by our method, but have already 

been tested for Acr activity. 

 

The alignment of each candidate Acr cluster was PSI-BLASTed against this dataset of known sequences, 

the clusters that produced hits with an e-value of less than 10e-3 were discarded as belonging to known 

Acr families or families that have already been already tested for the Acr function. 

 
Heuristic Filtering  

To choose the thresholds for all the heuristics except for self-targeting and HTH-downstream, 10 evenly 

spaced threshold values were tested, between the minimum Acr value and the maximum Acr value. 

Each of these 10 thresholds were applied as cutoffs to the Acr families, and for each threshold the 

balanced accuracy was calculated. The balanced accuracy is equal to the mean of the percentage of 
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known Acrs that passed the threshold and the percentage of all proteins that were filtered by the 

threshold, so that a higher balanced accuracy corresponds to better discrimination between the known 

Acrs and the rest of the candidates. The final threshold was selected so as to maximize the balanced 

accuracy. The selected threshold was then applied to the dataset.  

 

Six heuristics were defined to further enrich the Acr candidate set. 

 

Number of members that have HTH-downstream. We required that at least one member of the 

candidate family have an HTH-containing protein encoded downstream within the same directon. 

 

Number of members in self-targeting or virus genome. We required that at least one member of the 

candidate family was either encoded in a self-targeting genome or encoded in a virus genome. 

 

Mean directon length. The mean number of genes in the directon for all members of the family. 

 

Number of homologs in prokaryotic dataset. The multiple protein alignment of each family was PSI-

BLASTed against the prokaryotic sequence dataset24 and filtered for hits with a maximum e-value of 10e-

6, 50% identity and 50% query coverage. All families with more than 400 hits were discarded. 

 

Ratio of prokaryotic homologs to predicted provirus homologs. Multiple protein alignment of each family 

was PSI-BLASTed against the predicted provirus sequence dataset and the virus sequence dataset and 

filtered for hits with a maximum e-value of 10e-6, 50% identity and 50% query coverage.  
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If a family produced at least one hit to a virus sequence, it was included. If not, it was required that the 

ratio between the number of hits to the prokaryotic sequence dataset to the number of hits to the 

predicted provirus dataset was less than or equal to three. 

 

Number of HHBlits hits. The alignment of each family was compared to PFAM44 and PDB7045 using 

HHBlits34. Families with more than 100 hits were discarded. 

 
Construction of Acr Presence-Absence Matrix 

To generate the presence-absence table, for the 10 largest Acr clusters, 10 genes upstream and 

downstream were extracted where available (a maximum of 20 genes total). If within this set, an 

additional predicted Acr was represented, the set was further extended to include the 10 genes 

upstream and downstream of that additional predicted Acr. The resulting gene arrays were considered 

the Acr genomic neighborhood. 

 

A binary matrix was constructed where each column is a genomic neighborhood, ordered by content 

similarity, and each row is a predicted Acr family. In addition to the Acrs from the top 10 largest clusters, 

those encoded within 10 genes upstream or downstream of Acrs from the largest clusters were 

included. Each cell represents the presence or absence of a member of the respective Acr family in the 

neighborhood.   

 
Manual Assessment of Candidates 

The multiple alignment for each of the top 30 candidates in Supplementary Table 2 was compared 

against  the PDB, PFAM and NCBI CD databases using HHPRED38. For each candidate we calculated a 

consensus sequence, where the consensus letter for an alignment position was defined as the amino 

acid that has the highest BLOSUM62 score among the amino acids occupying the position. The 
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consensus sequence of each candidate family was PSI-BLASTed against NR, and the genomic contexts of 

homologs were visually assessed using Geneious Prime. 
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