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Abstract 39 

 40 

Skeletal muscle myocytes have evolved into slow and fast-twitch types.  These types are 41 

functionally distinct as a result of differential gene and protein expression. However, an 42 

understanding of the complexity of gene and protein variation between myofibers is unknown. 43 

We performed deep, whole cell, single cell RNA-seq on intact and fragments of skeletal 44 

myocytes from the mouse flexor digitorum brevis muscle. We compared the genomic expression 45 

data of 171 of these cells with two human proteomic datasets.  The first was a spatial proteomics 46 

survey of mosaic patterns of protein expression utilizing the Human Protein Atlas (HPA) and the 47 

HPASubC tool. The second was a mass-spectrometry (MS) derived proteomic dataset of single 48 

human muscle fibers. Immunohistochemistry and RNA-ISH were used to understand variable 49 

expression. scRNA-seq identified three distinct clusters of myocytes (a slow/fast 2A cluster and 50 

two fast 2X clusters).  Utilizing 1,605 mosaic patterned proteins from visual proteomics, and 596 51 

differentially expressed proteins by MS methods, we explore this fast 2X division.  Only 36 52 

genes/proteins had variable expression across all three studies, of which nine are newly described 53 

as variable between fast/slow twitch myofibers. An additional 414 genes/proteins were identified 54 

as variable by two methods. Immunohistochemistry and RNA-ISH generally validated variable 55 

expression across methods presumably due to species-related differences. In this first integrated 56 

proteogenomic analysis of mature skeletal muscle myocytes we confirm the main fiber types and 57 

greatly expand the known repertoire of twitch-type specific genes/proteins. We also demonstrate 58 

the importance of integrating genomic and proteomic datasets.  59 

 60 

Key Words: single cell RNA-sequencing; proteogenomics; skeletal muscle, twitch  61 
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Introduction 62 

 Skeletal muscle is a voluntary, striated muscle found throughout the body with 63 

contraction regulated by nerve impulses through the neuromuscular junction (NMJ). Skeletal 64 

muscles consist of different fiber types delineated by the isoform of the myosin heavy chain they 65 

express, metabolic function, and other properties (1). In humans, slow fibers (type 1) and some 66 

fast fibers (type 2A) exhibit oxidative metabolic properties, while fast type 2X fibers exhibit 67 

glycolytic metabolic properties (2). Mice have an additional type 2B fast fiber. These fiber types 68 

are variable across different muscles of the body reflecting different functional needs (2, 3).  69 

Multiple proteins and protein classes vary across fiber types (1, 4). These include 70 

isoforms of the myosin heavy and light chains, calcium ATPase pumps, troponin T, and 71 

tropomyosin proteins, as well as metabolic proteins, such as pyruvate kinase, GAP 72 

dehydrogenase, and succinate dehydrogenase. Beyond these classes, there have been few efforts 73 

to catalog the entirety of fast/slow twitch expression differences by proteomics or genomics.  74 

Among proteins, the deepest effort, to date, has been the single fiber proteomics work of 75 

the Mann laboratory (5, 6). In separate studies of mouse and human single fiber skeletal muscles, 76 

1,723 and 3,585 proteins were reported, respectively, many of which were variably expressed 77 

among slow and fast twitch fibers. The most comprehensive gene expression study was 78 

performed in mice using DNA microarrays across ten type 1 and ten type 2B fibers (7).  Single 79 

cell RNA-sequencing (scRNA-seq) also has been performed in skeletal muscle and muscle 80 

cultures. However, the large size of skeletal myocytes has precluded them from these datasets, 81 

which are instead predominately satellite cells, and other supporting cell types (8-15). A recent 82 

publication used SMART-Seq to evaluate three fast twitch mouse fibers (16). The totality of 83 
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these studies strongly suggests there are numerous expression differences between skeletal 84 

muscle fiber types and a need for new approaches to capture this diversity. 85 

The Kwon laboratory recently developed a large cell sorting method to isolate mature 86 

cardiac myocytes (17). We ascertained if this method could be used to isolate the even larger 87 

skeletal muscle myocytes for scRNA-seq. Our goal was to combine this genetic data with single 88 

cell spatial proteomic data from the Human Protein Atlas (HPA) and an established mass 89 

spectrometry human skeletal muscle proteomic dataset for a unique proteogenomic 90 

characterization of skeletal muscle expression mosaicism.  91 

Results: 92 

scRNA-seq and identification of fast/slow twitch fiber types 93 

We performed single cell RNA-seq using the established mcSCRB-seq protocol (18, 19).  94 

We recovered data for 763 cells and sequenced to a median depth of 108,110 reads per cell. As 95 

we were unsure of where the ideal skeletal myocytes might arise from our flow-sorting method, 96 

they were taken from two different gates set on extinction (EXT) always “high” and time of 97 

flight (TOF) being both high or low (Supplementary Fig. 1).  Additional cells were collected 98 

from a pseudo-biopsy approach with fragmented skeletal myocytes (see methods). Preliminary 99 

analyses, however, indicated a distinct cluster of cells with a high percentage of mitochondrial 100 

reads or otherwise low abundance reads. Notably, almost all of our pseudo-biopsy myocyte 101 

fragments and many TOF-low cells fell into this category. These quality control metrics likely 102 

indicated poor quality or sheared cells with loss of RNA. Thus, we excluded these cells and 103 

narrowed our analysis to the best 171 cells remaining with a median read count of 239,252 per 104 

cell.  105 
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 An average of 12,098 transcripts were identified in these cells and all had the expression 106 

patterns of mature skeletal myocytes, highly expressing a myosin heavy chain isoform.  Because 107 

of the narrow focus of this work to delineate cell subtypes and expression variability of just 108 

skeletal muscle myocytes, this isolation strategy linked to deep sequencing, proved to be 109 

advantageous. 110 

We performed PCA of the data, corrected the data for the top 20 PCAs and utilized the 111 

top 3,000 variable genes (by +/- standard deviation) to cluster these cell types (Fig. 1a).  Three 112 

Supplementary Figure 1. Mouse skeletal muscle myocyte preparation.  A) Flow cytometry 
showing three gated areas representing EXT-high/TOF-high, EXT-high/TOF-low and EXT-low 
populations of flexor digitorum brevis myocytes. B) Representative images of Gate 1 EXT-
high/TOF-high. C) Representative images of Gate 2 EXT-high/TOF-low. D) Representative 
images of Gate 3 EXT-low.  E) Representative image of pseudo-biopsy isolated myocyte 
fragments. Gates 1 and 2 were used for library preparation. White size bar is 400 µm. 
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groups were observed in a UMAP dimensionality reduction plot. The first cluster, containing 69 113 

cells (40% of all cells) had elevated expression of Myh1 and Myh8 clearly identifying this group 114 

as containing fast 2X type cells and denoted as fast 2Xa (Fig. 1d).  A second cluster (N=53 cells) 115 

had slightly more variable Myh1 and Myh8 differential expression, but by overall Myh gene 116 

expression, Fig. 1g, also appeared to be a fast 2X cell type (denoted fast 2Xb).  Of note, Myh4¸ a 117 

Fig. 1. a) UMAP graph of 171 skeletal muscle cells based on variable gene expression 
determined by scRNA-seq. b) UMAP graph based on mouse orthologous expression of 
HPASubC variable proteins. c) UMAP graph based on mouse orthologous expression of MS 
variable proteins d-f) Heat maps of major genes expression differences between the different 
fiber types based on the different datasets. g) Major myosin heavy chain distributions across the 
171 cells as a percentage of each heavy chain. The colored areas are the assignments of each cell 
based on the scRNA-seq-based data h) Violin plots of 7 genes that varied between the two fast 
2Xa groups in the HPASubC-based data set. i) Assignment of each skeletal myocyte to a fiber 
type across the three methods. Strong agreement existed for the slow/fast 2A cells by any 
method of analysis 
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myosin heavy chain associated with fiber type 2B, was elevated in a single cell in this group 118 

(Fig. 1g) (3).   119 

A third cluster (3) containing 49 cells (29% of the total) was defined by high expression 120 

of Tnnt1 and Myh2. A deeper analysis of this group showed that 12 cells had high to modestly 121 

elevated Myh7 expression (a slow-twitch marker), indicating this cluster was a combination of 122 

slow-twitch cells and fast 2A fibers (Fig. 1g).  The flexor digitorum brevis is a fast twitch 123 

muscle, thus the overall distribution of significantly more fast (159) to slow fibers (12) is 124 

consistent with expected.   125 

Interestingly, the expression patterns of the main fast/slow differentiating Myh genes was 126 

not as dichotomous as noted in protein based fiber type data (5). Here there were many more 127 

cells with intermediate levels and coexpression of Myh1 and Myh2 suggesting higher gene 128 

plasticity and more cell hybrids (Fig. 1g) (3). 129 

HPA-based mosaic protein discovery 130 

To complement variable gene expression data, we generated mosaic protein data by 131 

performing an analysis of the IHC-based HPA dataset of skeletal muscle images using the 132 

HPASubC suite of tools (20). The HPASubC tool, obtains a selected organs’ images from the 133 

Human Protein Atlas (HPA) and allows rapid and agnostic interrogation of images for staining 134 

patterns of interest. This approach established a protein-based list of mosaically-expressed 135 

proteins. Out of 50,351 images reviewed for 10,301 unique proteins, 2,164 proteins had possible 136 

mosaic expression in skeletal muscle. Based on the aggregate image scores assigned to each 137 

protein, they were subsetted into categories of “real” mosaicism (374 proteins), “likely” 138 

mosaicism (1,231 proteins), and “unknown” probability of mosaicism (559 proteins) 139 

(Supplementary Data 1, Supplementary Fig. 2). For analysis purposes, we focused on the 1,605 140 
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proteins that were in the “real” or “likely” categories to reduce the incidence of false positive 141 

staining.  142 

This method identified the well-known fiber type specific proteins such as MYH1, 143 

MYH2, MY4, MHY6, MHY7, and MYH8 that were categorized as both “real” or “likely” based 144 

on staining patterns (Supplementary Data 1).  It also identified numerous uncharacterized or 145 

poorly characterized proteins, such as the zinc finger proteins ZNF213, ZNF282, ZNF343, 146 

ZNF350 and ZNF367 all of which had “real” patterns of mosaicism. A limitation of this spatial, 147 

IHC-based approach is that each protein image is independent of other proteins. Thus, one 148 

cannot identify co-expression patterns to assign proteins to certain fiber types. 149 

 We therefore investigated how these 1,605 proteins might inform on fiber type of 150 

skeletal muscle cells by using this list to subset the orthologous mouse gene data from the 151 

scRNA-seq experiment. Using just these orthologous mouse genes, we regenerated the UMAP 152 

plot that identified four clusters (Fig. 1b).  It essentially recapitulated the fast and slow fibers 153 

types noted from the exclusive scRNA-seq data, despite being based on a different set of genes. 154 

Supplementary Figure 2. Scoring schema for HPASubC-based skeletal muscle mosaicism.  A 
score of 1 indicated an “unknown” mosaicism based on subtle differences in stain intensity, or 
inconsistent patterns. A score of 2, “likely,” was a clear distinction of staining by myofiber but 
the staining was not robust.  A score of 3 “real” identified clear and robust staining differences by 
muscle cell.  The score was primarily about the pattern and secondarily about the intensity of the 
staining difference. 
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Uniquely, it subsetted the fast 2Xa cluster into two groups, one denoted by high expression of 155 

Myom2 and Gdf11 and the other denoted by high Ucp1 and Adamts4 (Fig. 1e). A t-test of gene 156 

expression comparing genes from just these two subsets of the fast 2Xa cluster identified 157 

multiple genes variably expressed between them (Fig. 1h). Although the cell clustering was 158 

generally similar between mouse scRNA-seq gene data and HPASubC data with regard to 159 

slow/fast 2A vs fast 2X, it was unclear which method was more representative.  Therefore, we 160 

obtained a public MS dataset as a third method to classify slow and fast twitch fibers. 161 

Fast/slow twitch variation by MS-based proteomics 162 

The human skeletal muscle fiber MS data in Murgia et al. is based on 152 fibers from 163 

eight donors (5). This dataset had 596 proteins with >2.3 fold variation between type 1 and type 164 

Supplementary Figure 3. UMAP of MS-based protein data by cell type. A) Seurat identified 
four cell clusters. B) UMAP was coloured based on cell assignments of Murgia et al.  The 
slow type cells are generally Seurat cluster 2. Fast 2A cells are generally in Seurat cluster 3, 
although they are also detected in clusters 1 and 3. Fast 2X clusters are predominately in 
Seurat cluster 1.  
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2A fibers. We analyzed the full LFQ dataset of protein expression and constructed a UMAP plot 165 

that showed four clusters (Supplementary Fig. 3). One cluster was composed primarily of slow 166 

type 1 fibers and was adjacent to a second cluster with a small mixture of slow and other cell 167 

types. Two other clusters were primarily a collection of fast 2X and fast 2A cell types. Similar to 168 

the HPASubC approach above, we subsetted the orthologous mouse genes to these 596 proteins 169 

to explore cell fiber type assignment.  170 

As seen in the UMAP plot, five groups were identified (Fig. 1c).  Similar to the other two 171 

datasets (scRNA-seq and HPASubC), a slow/fast 2A fiber type was denoted by elevated 172 

expression of several genes including Tnnt1 and Myl2 (Fig. 1f). One fast 2X fiber group (2Xb) 173 

was identified by high expression of Myh1 and Myh8. The second fast 2X fiber group was then 174 

subdivided into three groups based on alternative elevated expression of genes that include 175 

Gdf11 and Ucp1 (group 3), S100A8 (group 4) and Adamts4 and Mpz (group 5).  Unlike the 176 

protein expression level based UMAP, slow fibers and fast 2A fibers were not distinct. 177 

(Supplementary Fig. 3). This difference may be a result of the higher percentage of slow fibers in 178 

the MS dataset. 179 

Cross comparisons of the three approaches yield similar cell types. 180 

 We identified the cluster assignment of each skeletal muscle cell based on the scRNA-181 

seq, HPASubC, and MS approaches.  We then plotted this information to demonstrate the extent 182 

to which there was fluidity in assignment by fiber type (Fig. 1i).  All but one cell (48/49) 183 

assigned to the slow/fast 2A cluster based on scRNA-seq data remained in that cluster using 184 

other methods of clustering (HPASubC and MS). An additional 7-8 cells from the fast 2X groups 185 

became assigned to the slow/fast 2A cluster using the other methods of cell assignment. Cells 186 

moved interchangeably between the fast 2Xa and fast 2Xb clusters depending on the method used 187 
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to cluster.  We used this information to try and understand what distinguished fast 2Xa and fast 188 

2Xb clusters. 189 

The 2Xa and fast 2Xb clusters differ by axonal genes. 190 

To understand if the two fast 2X clusters represent unique cell types, cell states, or some 191 

technical division, we performed a differential expression to determine what genes drove their 192 

differences. Of 5,260 genes compared, 557 genes were differentially expressed (t. test; adj. p. 193 

value <0.01).  A Gene Ontology (GO) analysis on the 557 genes identified an enrichment of the 194 

cellular component “neuronal synapse,” suggesting variability at the NMJ. A further review of 195 

the top significant genes showed that >20 genes appear to have neuronal origins (Cdh4, Cdkl5, 196 

Cntn4, Dscam, Gabbr2, Kirrel3, Lingo2, Lrp1, L1cam, Nrcam, Ntn1, Ntrk3, Ptprt, Ptpro, Robo2, 197 

Sdk1, Sema5a, Sema6d, Shank2, Sox5, Tnr, and Wwox).  Of these, NRTK3, LRP1, and ROBO2 198 

were identified as mosaic in skeletal muscle cells by HPASubC.  Additionally, in HPA images, 199 

seven orthologous proteins of these “neuronal” genes showed moderate staining, but each of 200 

these had a TPM <1 (from GTEx expression data). Only LRP1 was identified in the orthologous 201 

MS-dataset. This variability made us wonder how frequently the same genes/proteins were noted 202 

to be mosaic by each of the three methods. 203 

There is limited overlap of shared expression information 204 

 We compared the 3,000 most variable genes, the 1,605 HPASubC proteins, and the 596 205 

MS proteins for shared patterns of mosaicism (Fig. 2). Only 23 genes/proteins were mosaic by 206 

all three approaches using the Seurat analysis method (Fig. 2a).  An additional 300 207 

genes/proteins were shared across two methods, with the most overlap identified between the 208 

two datasets with the most genes/proteins.  Thus, we reasoned the abundance of genes/proteins 209 

by method was a major driver of overlap leading us to focus on the 3,052 transcripts shared by 210 
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all three approaches, regardless of their mosaic/variable status.  This resulted in 157 211 

genes/proteins shared across any two methods with the most overlap between the two protein 212 

datasets (77 proteins) (Fig. 2c). 213 

 As so few genes were shared with the protein sets, we wondered if the computational 214 

approaches of the Seurat method limited the discovery of the correct variable genes.  Therefore, 215 

we tried a second analysis approach, simpleSingleCell, to identify variable genes (21). By this 216 

method, there was an increase (N=36) in overlap of genes/proteins being identified by all three 217 

Fig. 2. Venn diagrams comparing the three methods and two analysis types with the full 
datasets (top) and the limited datasets (below).  a) A Seurat-based overlap including all 
mosaic genes/proteins.  b) A simpleSingleCell-based overlap including all mosaic 
genes/proteins. c & d) Seurat and simpleSingleCell-based methods limited to the 3,051 
genes/proteins shared across the three studies. 
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methods and more genes/proteins being identified by two methods (414) (Fig. 2b). Interestingly, 218 

comparisons limited to the shared gene/protein list resulted in the highest overlap between the 219 

MS- and gene-based datasets (Fig. 2d). A third method of using differential expression on the 220 

scRNA-seq data to compare the subset of 12 slow-twitch cells to all fast twitch (2X and 2A) or 221 

just fast 2X cells gave equivalent data to the simpleSingleCell approach. 222 

Shared, abundant transcripts by cell type 223 

 We then wondered about the extent to which highly abundant proteins/genes were driving 224 

our ability to detect mosaic proteins/genes. By normalized read counts of the scRNA-seq data, 225 

we determined the 50 most abundant transcripts by the average of each cell type in the three 226 

clusters determined by Seurat (Supplementary Data 2). Not surprisingly, the overall most 227 

abundant transcripts were Ttn, Acta1 and mt-Rnr2. Of the 23 mosaic genes/proteins found by all 228 

three methods (using Seurat analysis), only Myh1 and Tnnt1 were on the list. Adding the mosaic 229 

genes from the simpleSingleCell analysis, seven additional genes (Mylpf, Tnnt3, Tmp1, Tnni2, 230 

Eno3, Atp2a1 and Pfkm) were noted. This overall indicates that most abundant genes (≥41/50) 231 

are not consistently mosaic in skeletal myocytes.  232 

Species dichotomy in protein expression patterns 233 

 The generally low amount of overlap across the methods was unexpected. We wondered 234 

if this discrepancy particularly between the gene and protein data was the result of species 235 

differences in twitch type expression.  To address this, we investigated staining patterns for three 236 

proteins. Two (DCAF11, ENO3) were selected as they had clear mosaic staining by human 237 

HPASubC images and no gene variation by Seurat analysis of the scRNA-seq. PVALB was 238 

selected for showing variation by the mouse scRNA-seq data, but no variation by HPASubC.   239 
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DCAF11 was robustly mosaic in human but non-mosaic in mouse. ENO3 was mosaic in 240 

both and PVALB was weakly mosaic in human but robustly mosaic in the mouse tissue (Fig. 3). 241 

This data suggested that discrepancies may relate to differences in mosaic protein expression 242 

between species (DCAF11) and possible technical causes (PVALB).  Because ENO3 was mosaic 243 

in the mouse skeletal muscle, but not mosaic by Seurat gene expression analysis, we explored if 244 

a posttranscriptional form of regulation was occurring. 245 

 246 

 247 

RNA-ISH indicates variable mosaicism 248 

We performed RNA-ISH in both mouse and human skeletal muscles for Eno3, Srsf11 and 249 

Cyb5r1. All of their protein products were mosaic by HPASubC and MS protein expression and 250 

had high or reasonably abundant gene expression (6552.8, 19.3, 201.5 pTPM respectively, 251 

Fig. 3. Representative IHC and RNA-ISH of discrepant proteins and genes.  a) HPA 
images (top row) are mosaic for DCAF11 and ENO3 and negative for PVALB staining. 
Follow up staining validated the DCAF11 and ENO3 staining while suggesting a subtle 
mosaicism of PVALB in humans.  In mice, ENO3 and PVALB are clearly mosaic, while 
DCAF11 is not. b) RNA-ISH demonstrates co-expression of CYB5R1 and ENO3 in a mosaic 
pattern.  c) Only Eno3 was observed (in a mosaic pattern) in mouse muscle by RNA-ISH.  
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HPA). None of these genes were variably mosaic in the mouse gene data. We found mosaic co-252 

expression of all three genes in human skeletal muscle (Fig. 3). Whereas ENO3 and CYB5R1 253 

RNA was diffusely present across human skeletal myocytes, SRSF11 was localized to sub-cell 254 

membrane areas. In mouse muscle, Eno3 was variably expressed, but neither Cyb5r1 or Srsf11 255 

were identified, although their levels of expression (~1,000x lower than Eno3 in mouse) may be 256 

too low to be seen by this method. 257 

Many highly-supported variably expressed proteins were not previously identified 258 

 Thirty-six gene/proteins were variably expressed based on the simpleSingleCell, 259 

HPASubC and MS based analyses (Fig. 2d, Table 1).  Of these, based on an extensive literature 260 

search, nine functionally diverse proteins are uniquely reported here as mosaic.  Of the full 36, 261 

22 were present in fast twitch myocytes and 14 in slow twitch myocytes based on the MS data. 262 

In addition to these 36, another 414 genes/proteins were identified by two complementary 263 

methods (Fig. 2). This includes well-known type specific proteins TNNC1 and TNNI1 (present 264 

in the HPASubC and simpleSingleCell datasets, but not variably expressed in the MS dataset).  265 

Finally, another 4,217 genes/proteins were variably expressed by one method. Of this 266 

group, 1,211 were detected by HPASubC and 270 of these proteins were scored as “real” with 267 

clear patterns of mosaicism (Supplementary Fig. 4). 268 

Gene Name Gene 
Symbol 

Muscle 
Type- MS 

based 

HPASubC 
Confidence 

Seurat 
Norm. 
Counts 

Mosaic 
Status 

ArfGAP With Coiled-Coil, Ankyrin 
Repeat And PH Domains 2 Acap2 Fast Likely 1.79 Unknown 

Adenylate Kinase 1 Ak1 Fast Likely 5.75 Known 
Aldolase, Fructose-Bisphosphate A Aldoa Slow Likely 7.98 Known 
ATPase Sarcoplasmic/Endoplasmic 

Reticulum Ca2+ Transporting 1 Atp2a1 Fast Real 6.68 Known 

ATPase Sarcoplasmic/Endoplasmic 
Reticulum Ca2+ Transporting 2 Atp2a2 Slow Real 2.08 Known 

Calsequestrin 2 Casq2 Slow Likely 1.61 Known 
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CD36 Molecule Cd36 Slow Likely 2.71 Known 
Creatine Kinase, Mitochondrial 2 Ckmt2 Slow Likely 4.54 Known 
DnaJ Heat Shock Protein Family 

(Hsp40) Member C3 Dnajc3 Fast Likely 2.2 Unknown 

Enolase 3 Eno3 Fast Real 6.97 Known 
ELKS/RAB6-interacting/CAST Family 

Member 1 Erc1 Fast Likely 3.14 Unknown 

Glyceraldehyde-3-Phosphate 
Dehydrogenase Gapdh Fast Likely 5.91 Known 

Glyoxalase Domain Containing 4  Glod4 Slow Likely 1.79 Unknown 
Glycerol-3-Phosphate 

Dehydrogenase 1 Gpd1 Fast Likely 3.22 Known 

Kinesin Family Member 5B Kif5b Fast Likely 3.83 Unknown 
Lactate Dehydrogenase A Ldha Fast Real 5.81 Known 
Lactate Dehydrogenase B Ldhb Slow Real 4.5 Known 

Myosin Binding Protein C, Fast Type Mybpc2 Fast Real 5.2 Known 
Myosin Heavy Chain 1 Myh1 Fast Real 7.91 Known 
Myosin Heavy Chain 6 Myh6 Slow Likely 1.79 Known 
Myosin Heavy Chain 8 Myh8 Fast Likely 5.41 Known 

Myosin Light Chain, 
Phosphorylatable, Fast Skeletal 

Muscle 
Mylpf Fast Real 3.47 Known 

Myosin Light Chain 3 Myl3 Slow Real 1.95 Known 
Myozenin 2 Myoz2 Slow Real 8.06 Known 

PDZ And LIM Domain 1 Pdlim1 Slow Likely 3.43 Known 
Peroxisomal Biogenesis Factor 19 Pex19 Fast Likely 2.41 Unknown 

Phosphofructokinase, Muscle Pfkm Fast Likely 2.2 Known 
Phosphoglycerate Kinase 1 Pgk1 Fast Likely 3.67 Known 

Ribosomal Protein S15a Rps15a Slow Likely 4.94 Unknown 
Thymosin Beta 4 X-Linked Tmsb4x Fast Likely 3.58 Unknown 

Troponin C2, Fast Skeletal Type  Tnnc2 Fast Real 1.1 Known 
Troponin I2, Fast Skeletal Type Tnni2 Fast Likely 5.19 Known 

Troponin T1, Slow Skeletal Type Tnnt1 Slow Real 7.47 Known 
Troponin T3, Fast Skeletal Type Tnnt3 Fast Real 6.31 Known 

Topomyosin 1 Tpm1 Fast Likely 7.97 Known 
UDP-Glucose 6-Dehydrogenase Ugdh Slow Likely 8.01 Unknown 

Table 1.  37 Genes/Proteins identified as mosaic by all three methods based on simpleSingleCell 
analysis.  

 269 

Discussion 270 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916791
http://creativecommons.org/licenses/by-nc/4.0/


 We describe the first proteogenomic analysis of skeletal muscle single fiber types using 271 

combined scRNA-seq, spatial proteomics, and MS proteomics. Because delineations of skeletal 272 

muscle fiber types are known and this project was exclusive to this one cell type, our study is a 273 

useful model system to evaluate combining and synthesizing gene and protein data into a 274 

coherent description of a cell. Also, by utilizing a deep sequencing approach and fewer cells, we 275 

were not limited to just classifying a cell, but rather had sufficient data to delve into full gene 276 

expression. Our data identifies common themes across the methods, but also significant 277 

differences and complexities in gene/protein assignments.  278 

Regardless of the method and genes/proteins used to cluster, we found general agreement 279 

on the major types of skeletal muscle myocytes. We identified a small group of slow twitch cells 280 

Supplementary Figure 4. Nine representative images of 270 proteins scored as real 
mosaicism using HPASubC, but not identified by other methods.  All images from 
HPA. 
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that clustered with fast 2A cells.  These groups were consistently clustered away from two 281 

clusters of fast 2X cells.  The differences between these two fast 2X groups, described herein as 282 

2Xa and 2Xb, are open to interpretation. The simplest explanation is that some axonal material 283 

remained variably adherent to skeletal muscle cells through the NMJ, and these 20+ genes 284 

resulted in the separation observed by UMAP (Fig. 1a). This would imply a technical cause of 285 

the two fast 2X cell subtypes as a result of myocyte isolation. Adherent cell fragments are likely 286 

to be a global issue for some cell type isolation, although it would not impact nuclear scRNA-seq 287 

studies. A more interesting explanation is variable neuronal transfer of mRNAs across the NMJ 288 

into the skeletal muscles via extracellular vesicles (22, 23). This would imply a real state-289 

difference in these cells, notable only by the deep sequencing strategy employed. Regardless, of 290 

which is accurate, this division is unlikely to indicate true separate fast 2X subtypes. In fact, the 291 

cross-referenced proteomic data was useful in demonstrating the arbitrary nature of this 292 

delineation (Fig. 1i).  293 

The extent of overlap of mosaic genes/proteins across the methods was surprisingly low. 294 

Only 36 genes/proteins were cross-validated across all three approaches using the 295 

simpleSingleCell method (Table 1). This list included well-known, fiber-type specific proteins 296 

such as MYH1 and MYH6 and newly described mosaic proteins like DNAJC3 and GLOD4. The 297 

lack of agreement across methods has made it difficult to confidently state how many 298 

proteins/genes are variable by twitch pattern and further demonstrates the challenge of relying on 299 

a single method. If a gene or protein is mosaic by two methods, this number climbs to 450. If all 300 

mosaic genes and proteins are included, this increased to >4,500 genes/proteins.  Over 1,600 301 

proteins appear to be mosaic by the HPASubC method alone (Supplementary Data 1 and 302 

Supplementary Fig. 4). 303 
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The reason for the variability in mosaic genes/proteins is certainly multifactorial. One 304 

potential major difference is the comparison across two separate species (mouse and human).  As 305 

we noted with the DCAF11 IHC, this protein was mosaic in human muscle but did not appear to 306 

be mosaic in mouse. Secondly, some genes have markedly variable expression levels between 307 

the two species. While CYB5R1 and SRSF11 are robustly expressed in human muscle at 201.5 308 

and 19.3 pTPM (in HPA), they were only 17.7 and 1.9 FPKM in our mouse scRNA-seq. It is 309 

also possible that post-transcriptional regulation leads to more extreme expression variation in 310 

proteins than genes. As described above, extreme expression dichotomy in Myh genes was less 311 

than in similar MYH protein data (Fig. 1d) (5).  312 

Our study represents the first use of LP-FACS to isolate single myofibers for scRNA-seq. 313 

As skeletal myocytes are often long, stretching across the length of a muscle, isolation 314 

techniques (particularly from human samples) may rely on the use of biopsies or otherwise 315 

fragmented myocytes. To test the effect of myocyte fragmentation on scRNA-seq data quality, 316 

we used a liberal gating strategy of our dissociated myocytes (including both EXT-high/TOF-317 

low and EXT-high/TOF-high populations) as well as directly sequencing fragmented myocytes 318 

generated through a pseudo-biopsy approach. Disappointingly, we found that a large portion of 319 

our sequenced myocytes were of poor quality, including those from our pseudo-biopsy approach. 320 

By contrast, the highest quality data likely came from fully intact myocytes, in particular the 321 

EXT-high/TOF-high population. Because this population is almost completely enriched for 322 

intact myocytes, we believe that future experiments using LP-FACS to isolate skeletal myocytes 323 

should focus solely on the EXT-high/TOF-high population. We are confident that this will allow 324 

for a much higher percentage of good quality scRNA-seq libraries, akin to what we have 325 

observed previously with LP-FACS isolation of cardiac myocytes (17). These results also mean 326 
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that more work must be done to identify better isolation methods for human skeletal muscle. 327 

Current methods of human skeletal muscle biopsying from the quadriceps only obtains muscle 328 

fragments and thus more creative methods to obtain full length fibers or non-damaged fibers 329 

must be considered. 330 

Technical factors also impact our ability to detect mosaicism on all platforms.  Discovery 331 

mass spectrometry is challenged to identify low abundance proteins. Having low input from 332 

single fibers was further limiting and reduced the ability to computationally distinguish 333 

expression differences in low abundance proteins. Most fibers had between 500-700 proteins 334 

identified. As we have stated repeatedly, IHC in the HPA is subject to false positive staining 335 

from shared epitopes (20, 24-26).  It also incurs false negative staining for failed antibodies or 336 

antibodies with staining parameters designed for other tissues.  Further, some genes/proteins 337 

observed in the other datasets were missing from the HPA data.  The gene data was also limited 338 

in the number of total cells analyzed (171) and the rarity of slow twitch cells from this muscle. 339 

Cross-cell contamination, may have also stunted the differences between cell types (27). 340 

 In conclusion, we have created the first proteogenomic analysis of gene/protein 341 

mosaicism in skeletal muscle. We replicated the known fiber types of slow, fast 2A, and fast 2X, 342 

as well as greatly expanded our understanding of genes and with variable expression across these 343 

cell types. 344 

Methods  345 

Isolation and Sequencing of Adult Skeletal Myocytes 346 

 347 

Experiments were performed using C57BL/6J mice greater than 3 months of age. To isolate 348 

skeletal myocytes, we performed collagenase-based digestion of the flexor digitorum brevis 349 
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(FDB), a short muscle of the hind feet, as per previously established protocols (28).  We tested 350 

two separate approaches to isolating myocytes. In the first approach, we dissected the FDB from 351 

tendon to tendon prior to digestion, enabling isolation of fully intact myocytes. In the second 352 

approach, we cut small portions of the FDB muscle using scissors. We reasoned that the latter 353 

approach would broadly mimic skeletal muscle biopsy as might be done, for example, from a 354 

human patient sample. The FDB was transferred to a dish containing DMEM with 1% 355 

penicillin/streptomycin, 1% fetal bovine serum, and 2mg/mL Collagenase Type II 356 

(Worthington). Muscle was digested for 1.5 hours in a 37C cell incubator with 5% CO2. 357 

Subsequently, the muscle was transferred to a dish containing media without collagenase, and 358 

gently triturated to release single myocytes. Large undigested chunks and tendons were removed 359 

with tweezers prior to single cell isolation.  360 

We subsequently isolated single myocytes through large particle fluorescent-activated cell 361 

sorting (LP-FACS), using a flow channel size of 500 µm. The COPAS SELECT Flow Pilot 362 

Platform (Union Biometrica) was employed. Using time-of-flight (TOF, measuring axial length) 363 

and optical extinction (EXT, measuring optical density) parameters, we found that skeletal 364 

myocytes separated into three populations – an EXT-low population, EXT-high/TOF-low 365 

population, and EXT-high/TOF-high population (Supplementary Fig. 1A). The EXT-high/TOF-366 

high population was comprised almost entirely of intact myofibers with lengths > 400 µm, 367 

suggesting successful sorting of large myocytes (Supplementary Fig. 1B). Interestingly, the 368 

EXT-high/TOF-low population was composed of what appeared to be rod-shaped fragments that 369 

maintained sarcomeric proteins, albeit disrupted (Supplementary Fig. 1C). The EXT-low 370 

population was comprised mostly of debris and dead cells, as previously observed with cardiac 371 

myocytes (Supplementary Fig. 1D).  The EXT-high/TOF-low population qualitatively resembled 372 
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our pseudo-biopsy isolated myocyte fragments (Supplementary Fig. 1E), which also shared 373 

similar TOF and EXT parameters (not shown). To our knowledge, this is the first FACS-based 374 

single cell RNA-seq study of skeletal myocytes; thus, we adopted a broad gating strategy for 375 

isolation of single cells. We sorted 700 EXT-high myocytes (comprised of both TOF-high and 376 

TOF-low populations) as well as 100 myocyte fragments isolated through the pseudo-biopsy 377 

method. 378 

These sorted cells were placed individually into 96-well plates. Capture plate wells contained 5 379 

µl of capture solution (1:500 Phusion High-Fidelity Reaction Buffer, New England Biolabs; 380 

1:250 RnaseOUT Ribonuclease Inhibitor, Invitrogen). Single cell libraries were then prepared 381 

using the previously described mcSCRB-seq protocol (18, 19). Briefly, cells were subjected to 382 

proteinase K treatment followed by RNA desiccation to reduce the reaction volume. RNA was 383 

subsequently reverse transcribed using a custom template-switching primer as well as a barcoded 384 

adapter primer. The customized mcSCRB-seq barcode primers contain a unique 6 base pair cell-385 

specific barcode as well as a 10 base pair unique molecular identifier (UMI). Transcribed 386 

products were pooled and concentrated, with unincorporated barcode primers subsequently 387 

digested using Exonuclease I treatment. cDNA was PCR-amplified using Terra PCR Direct 388 

Polymerase (Takara Bio). Final libraries were prepared using 1ng of cDNA per library with the 389 

Nextera XT kit (Illumina) using a custom P5 primer as previously described. 390 

 391 

scRNA-seq sequencing and analysis 392 

Pooled libraries were sequenced on two high-output lanes of the Illumina NextSeq500 with a 16 393 

base pair barcode read, 8 base pair i7 index read, and a 66 base pair cDNA read design. To 394 

analyze sequencing data, reads were mapped and counted using zUMIs 2.2.3 with default 395 
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settings and barcodes provided as a list (29). zUMIs utilizes STAR (2.5.4b) (30) to map reads to 396 

an input reference genome and featureCounts through Rsubread (1.28.1) to tabulate counts and 397 

UMI tables (30, 31). Reads were mapped to the mm10 version of the mouse genome. We used 398 

GRCm38 from Ensembl concatenated with ERCC spike-in references for the reference genome 399 

and gene annotations. Dimensionality reduction and cluster analysis were performed with Seurat 400 

(2.3.4) (32). 401 

Seurat and simpleSingleCell 402 

Analysis was performed using the Seurat R toolkit V3.1.1 for this dataset (32). Initial filtering 403 

removed lower quality cells (read count <5000 RNAs detected or >20% mitochondrial genes) 404 

before sctransform normalization (33). A standard Seurat workflow was initially used for data 405 

analysis. This workflow identifies a subset of genes with high cell-to-cell variation within the 406 

scRNA-seq data. This subset is subsequently used as input to principal component analysis as 407 

well as downstream nonlinear dimensionality reduction methods such as Uniform Manifold   408 

Approximation and Projection (UMAP). Additionally, Seurat also allows for use of custom gene 409 

lists as input to downstream analysis. This allowed us to use two custom gene lists, specifically 410 

those derived from orthologous genes to mosaic proteins in the visual (HPASubC) dataset (20) or  411 

the differentially expressed proteins in the MS proteomic dataset (5). Thus each of our three gene 412 

lists, one produced by Seurat’s workflow, another visual proteomic-based gene list, and a final 413 

mass spectrometry-based gene list defining known muscle cell types, were used one at a time to 414 

subset our initial data set and generate principal components for downstream analysis. 415 

After determining clustering via these three approaches, UMAPs were generated alongside with 416 

heat maps representing the top genes in clusters as determined by each gene set used for PCA. 417 

Overlapping genes between the HPAsubC data, MS data, and significant genes determined by 418 
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Seurat were also examined for overlaps. Gene expression for Trdh, Lama4, Ryr1, Dpp10, 419 

Pde4dip, Sugct, and Myh1 was plotted across two fast 2Xa clusters based on the HPASubC data. 420 

 421 

Simple Single Cell and Scran 422 

Simple single cell 1.8.0 workflow was followed using scran 1.12.1 for normalization of raw 423 

counts and fitting a mean-dependent trend to the gene-specific variances in single-cell RNA-seq 424 

data (21). In line with this, we decomposed the gene-specific variance into biological and 425 

technical components and selected the top 3000 genes for comparisons. 426 

 427 

RNA-ISH 428 

Mouse and human skeletal muscles were obtained at necropsy (>3 month old) and rapid autopsy 429 

(66 year old male), the latter under an IRB-approved protocol. Tissues were immediately fixed in 430 

formalin and paraffin-embedded blocks were created, from which 5 micron slides were made.   431 

Custom probes for RNA in situ hybridization (RISH) were obtained from RNAscope (ACDBio). 432 

These probes were designed to detect human and mouse forms of the following genes: ENO3 433 

(GenBank accession nm_001976.5), CYB5R1 (nm_016243.3), SRSF11 (nm_004768.5), Eno3 434 

(nm_007933.3), Cyb5r1 (nm_028057.3), and Srsf11 (nm_001093753.2). Each probe set targeted 435 

all validated NCBI refseq transcript variants of the gene.   436 

The Multiplex Fluorescent Reagent Kit v2 (ACDBio) was used following the manufacturer's 437 

instructions.  Briefly, FFPE tissue slides were baked for one hour at 60°C. The slides were 438 

subsequently deparaffinized with xylene, rinsed with 100% ethanol and air-dried.  After 439 

application of hydrogen peroxide and washing, slides were treated with target retrieval reagent in 440 

a steamer (>99°C) for 20 minutes. Then, the tissue was permeabilized using a protease. 441 
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Hybridization of the probes to the targeted mRNAs was performed by incubation in a 40°C oven 442 

for 2 hours. After washes, the slides were processed for the standard signal amplification and 443 

application of fluorescent dye (Opal dye 520, 570 and 620, AKOYA Biosciences) steps. Finally, 444 

the slides were counterstained with DIPA, mounted with Prolong Gold Antifade Mounting 445 

solution (Invitrogen) and stored in a 4°C room. The fluorescent images were obtained in the 446 

Johns Hopkins Microscope Core Facility using a Zeiss LSM700 Laser scanning confocal 447 

microscope. 448 

 449 

Immunohistochemistry 450 

The same tissues described above were used for standard immunohistochemistry. Antibodies 451 

were obtained for WDR23/DCAF11 (bs-8388R, Bioss Antibodies), PVALB (A2781, Abclonal), 452 

and ENO3 (ARP48203_T100, Aviva Systems Biology) that were reported to cross react to both 453 

human and mouse.  Immunohistochemistry was performed as described previously (25, 34). 454 

 455 

HPA and HPASubC 456 

The HPA is a comprehensive repository of IHC stained tissue microarrays for numerous 457 

tissues, including skeletal muscle (35, 36). The HPASubC tool can rapidly and agnostically 458 

interrogate images of the HPA to characterize specific staining patterns in organs (20, 24, 26). 459 

HPASubC v1.2.4 was used to download 50,351 skeletal muscle tissue microarray images 460 

covering 10,301 unique proteins from the HPA website (v18). The images were individually 461 

reviewed using HPASubC by K.M.F to evaluate the presence of a mosaic pattern of protein 462 

expression based on IHC staining. The classification of mosaicism was based on a pre-study 463 

training set of 300 images from HPA reviewed collaboratively (K.M.F and M.K.H). Mosaicism 464 
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was defined as a dispersed pattern of differential staining in which a significant number of non-465 

adjacent muscle fibers had a higher staining intensity than the surrounding fibers, preferably 466 

persisting across the entire microarray. All positive selections made by the trainee were reviewed 467 

and rescored, as needed, by a board-certified pathologist (M.K.H.).  468 

 After an initial fast review of the images, a re-review to score the images was performed. 469 

A three-tiered classification system was used indicating increasing certainty of mosaicism: 0 470 

indicated the absence of mosaic staining; 1 indicated unknown mosaic staining; 2 indicated 471 

likely mosaic staining; 3 indicated real mosaic staining. Scoring evaluation was based on the 472 

quality of the mosaic pattern, including stain intensity differential between fibers, the presence of 473 

“blush”/incomplete staining within cells, and the consistency and completeness of the fiber 474 

staining pattern throughout the sample. HPASubC was used on an Apple MacBook Pro running 475 

macOS Sierra v10.12.6 with 8 GB RAM and 3.1 GHz CPU and a Dell Precision Tower 3620 476 

running Windows 10 with 16 GB RMA and a 3.7 GHz CPU. 477 

 478 

Conversion of gene and protein symbols 479 

 To identify orthologs across human and mouse genes/proteins we had to synchronize 480 

across gene/protein names and across the species. We used the David Gene ID Conversion Tool 481 

(https://david.ncifcrf.gov/conversion.jsp), BioMart at Ensembl 482 

(http://useast.ensembl.org/biomart/martview/e8a4fba4cb5c0be7a30841471b55674d), UniProt 483 

Retreive/ID mapping (https://www.uniprot.org/uploadlists/) and direct searches at both UniProt 484 

and GeneCards (https://www.genecards.org/), to cross integrate the human protein symbols, 485 

mouse gene symbols, human gene symbols and ENSG IDs (37-39).  486 

 487 
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Gene Ontology (GO) Validation 488 

 GO was performed on the 557 most variable genes between two fast 2X clusters (2Xa and 489 

2Xb) using the Gene Ontology resource (http://geneontology.org/) and selecting for cellular 490 

component.  491 

 492 

Mass Spectrometry (MS) Data Set 493 

We utilized the Murgia et al. human skeletal muscle fiber MS-based proteomic dataset 494 

(5). This contained information from 3,585 proteins across 152 fibers from 8 donors (5). The 495 

ratio of expression of proteins between Type 1 and Type 2A cells were determined using Table 496 

S6 of Murgia et al. Five hundred and ninety-six proteins with >2.3 fold differences between cell 497 

types were selected.  Label-free quantification (LFQ) data, from Supplemental Table S4, for the 498 

154 human single muscle fiber proteomics was obtained.  The log2 transformed LFQ data was 499 

converted to raw values and only proteins expressed across all fiber types (n=94) were 500 

considered for plotting UMAP as described (5). Functions of the R-package Seurat (Version 501 

3.1.1) were executed sequentially to   derive   a   UMAP   along   with   its   dependency   library   502 

“uwot   (Version   0.1.4)” in R (Version 3.6.1) (40, 41). A Seurat object of the data matrix was 503 

created using ‘CreateSeuratObject’ with default parameters. This data was normalized using the 504 

‘NormalizeData’ function and outlier proteins were identified using the ‘FindVariableFeatures.’ 505 

Proteins across the fiber types were scaled and centered to create a PCA object using ‘ScaleData’ 506 

and ‘RunPCA’ respectively. Further, k-nearest neighbors and shared nearest neighbor for each 507 

fiber type were generated on the Seurat object using ‘FindNeighbors’ and ‘FindClusters’to plot 508 

UMAP using ‘RunUMAP’. All of these functions were executed using default parameters. The 509 
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clustering obtained with UMAP was overlaid with the classification of muscle fiber types based 510 

on Murgia et al. using ggplot2 (Version 3.2.1). 511 

Data availability 512 

Mouse skeletal muscle sequencing was deposited at the Sequence Read Archive (SRA – 513 

SRP241908) and the Gene Expression Omnibus (GSE143636). 514 

Code availability 515 

All analysis scripts are available at GitHub 516 

(https://github.com/mhalushka/Skeletal_muscle_mosaicism). 517 
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