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Summary

Research on brain plasticity supports the notion that experience can shape brain structure as
well as function [1,2]. In particular, cultural and geographical properties of the environment have
been shown to deeply influence cognition and mental health [3, 4]. In rodents, exploring complex
environments has a positive impact on hippocampal neurogenesis and cognition [5]. In humans,
spatial navigation activates the hippocampus [6], and continuous navigation of a large complex
city environment increases posterior hippocampal volume [7]. While living near green spaces has
been found to be strongly beneficial, urban residence has been associated with a higher risk of
some psychiatric disorders [8–10]. However, how the environment experienced during childhood
and early life impacts later cognitive abilities remains poorly understood for two reasons. First,
human environments are manifold and much harder to characterize than a rodent’s cage. Second,
gathering cognitive testing of large samples from populations living in different environments is
very costly. To overcome these limitations, we measured non-verbal spatial navigation ability in
3.9 million people across all countries and examined a subset of this data (442,195 people, in 38
countries) . We used a cognitive task embedded in a video game, that is predictive of real-world
navigation skill [11, 12]. We focused on spatial navigation due to its universal requirement across
cultures, and parallels to rodent studies [13,14]. We quantified the complexity of participants’
environment with OSMnx, a tool giving access to the street network topology of cities anywhere
in the world [15]. We found that on average, people who reported having grown up cities have
worse navigation skills than those who reported growing up outside cities, even when controlling
for age, gender, and level of education. This effect varied across countries, being for instance more
than 6 times larger in the USA than in Romania. To investigate these variations we computed the
average Street Network Entropy (SNE) of the biggest cities of 38 countries: grid-like cities (e.g.
Chicago) have a small SNE, while more organic cities (e.g. Prague) have a higher one. We find a
correlation between the average SNE and the extent to which growing up in a city negatively
impacts spatial navigation ability. People growing up in countries with lower average SNE (griddy
cities) have comparatively worse spatial abilities than their rural compatriots. This confirms the
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Figure 1. Wayfinding task Illustrations of the wayfinding task - a Screenshots of the game.
b Nine examples of trajectory heatmaps out of the 75 levels. c - e Heatmaps of the trajectories
of all participants in level 42 (N=171,887) and level 68 (N=40,251).The black triangle represents
the starting position, and the circled numbers represent the ordered checkpoints the participants
must reach. d - f Examples of trajectories in level 42 and 68.

impact of the environment on human cognition on a global scale, and highlights the importance
of urban design on human cognition and brain function.

Results and discussion

We used the Sea Hero Quest database, which contains the spatial navigation behaviour of 3.9
million participants measured with a mobile video game, ’Sea Hero Quest’ (SHQ) [11]. SHQ
involves navigating a boat in search of sea creatures (Figure 1). Performance of SHQ has been
shown to be predictive of real-world navigation ability [12]. It has also allowed to differentiate
high-risk preclinical Alzheimer’s disease cases from low-risk participants [16]. Here, we focused
on the wayfinding task [11], where players are initially presented with a map indicating the
start location and the location of several checkpoints to find in a set order. A total of 3,881,449
participants played at least one level of the game. 60.8% of the participants provided basic
demographics (age, gender, home country) and 27.6% provided more detailed demographics (home
environment, level of education, see Methods). To provide a reliable estimate of spatial navigation
ability, we examined the data only from participants who had completed a minimum of eleven
levels of the game, and who entered all their demographics. We removed participants above 70
years old because we previously showed a strong selection bias in this group causing their perfor-
mance to increase [11]. This resulted in 442,195 participants that were included in our analysis.
Among them, 238,393 (age: 37.2 ± 13.5 years old) and 203,802 females (age: 38.0 ± 14.9 years old).

The environment effect and its interactions with age, gender and education - To
quantify spatial ability, we defined the ”wayfinding performance” metric (WFperf ), which cap-
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Figure 2. Effect of Environment on Wayfinding Performance - Interactions with
age, gender, education and country - a - Interaction with gender and age. b - Interaction
with education and age. Wayfinding performance has been averaged within 5-years windows. c -
Interaction with country. We fit a linear mixed model for wayfinding performance, with fixed
effects for age, gender and education, and random effect for country. We plot the environment
slopes for each country, with positive values indicating an advantage for participants raised
outside cities. Error bars represent the standard errors.

tures how efficient participants were in completing the wayfinding levels, while correcting for
video-gaming skills (see Methods). A multivariate linear regression was calculated to predict
wayfinding performance based on age, gender, education and environment. Age had the strongest
effect (F1,442190 = 66842, p < 0.001), followed by gender (F1,442190 = 22991, p < 0.001), environ-
ment (F1,442190 = 1679.8, p < 0.001), and education (F1,442190 = 1500.9, p < 0.001). Figure 2a
represents the interaction between environment, age and gender, and Figure 2b represents the
interaction between environment, age and education. We replicated previous studies showing that
wayfinding performance decreases with age [17,18], males performed better than females [19], and
performance increases with the level of education [20,21]. Here we now report that participants
raised outside cities are more accurate navigators than city-dwellers. Having a tertiary level
of education while having grown up in a city is roughly equivalent to having a secondary level
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Figure 3. Street Network Entropy (SNE) and environment effect in 38 countries -
a Cities with low (Chicago, USA) and high (Prague, Czech Republic) street network entropy. b
Distribution of the street bearings (36 bins). c Average SNE as a function of environment
estimate in each country. Positive values indicate an advantage of participants raised outside
cities compared to their urban compatriots. Squares and circles correspond to the low-SNE and
high SNE country groups, determined with k-means (k=2).

of education while having grown up outside cities in terms of wayfinding performance. The
sample sizes for each demographic and country are available Table S1. The effect of education on
wayfinding performance and its interactions with the other demographics are given in a separate
report [22]. Given the magnitude of the dataset, most effects are likely to be ’significant below the
0.001 threshold’. In the following, we will focus on effect sizes as they are independent of sample
size. To marginalize the effect of age, we computed Hedge’s g between the city and not-city
groups within 5-years windows. Averaged over all age groups, g = 0.13, 95%CI=[0.12, 0.14],
positive values corresponding to an advantage for participants who grew up outside cities. As
shown in Figure S1, Hedge’s g remained stable across age. This stability is interesting as one
could have hypothesized that the effect of the environment one grew up in could fade with age.
This is consistent with the literature on the timing of enriched environment exposure in mice,
showing that an early enriched environment exposure provides a ”reserve”-like advantage which
supports an enduring preservation of spatial capabilities in older age [23].

The environment effect across countries - To quantify how the effect of the envi-
ronment is distributed across countries, we fit a Linear Mixed Model (LMM) for wayfinding
performance, with fixed effects for age, gender and education, and random effect for country, with
random slopes for environment clustered by country: WFperf ∼ age+ gender + education+ (1 +
environment/country). To mitigate the selection bias, we removed participants from countries
with less than 500 players, or with education or environment classes more than 10-fold imbalanced
(8% of included participants, total remaining: 416,620). This resulted in 38 countries included in
our analyses (see Table S1). Figure 2c represents the environment slopes for each country, with
positive values indicating an advantage for participants raised outside cities. In terms of Hedge’s
g, this spectrum goes from Romania (g = -0.03, 95%CI=[-0.10, 0.04])) to the United States (g =

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.917211doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917211
http://creativecommons.org/licenses/by-nc/4.0/


LMM

G
am

e 
Le

ve
l E

nt
ro

py
Ga

m
e 

Le
ve

l E
nt

ro
py

Environment Effect Size

Positive scores mean worse
performance in cities

Environment Effect Size

Game Level 42
entropy = 2.9

Game Level 68
entropy = 3.4

a b

c

LMM

Low-SNE participants

High-SNE participants

Figure 4. Entropy and environment effect in each game level for high and low-SNE
participants - a The entropy of the Sea Hero Quest levels is computed from the bearing
distribution (rose plot) of the game levels’ simplified Voronoi map. Shown for 2 example levels. b
Two Linear Mixed Models (LMM) are computed, one with participants from Low-SNE country,
the other from high-SNE country (see Figure 3c). Each LMM outputs one environment slope per
game level. Positive values indicate an advantage of participants raised outside cities.

0.19, 95%CI=[0.17, 0.21]), positive values corresponding to an advantage for participants who
grew up outside cities.

The city topology influences spatial abilities - To explain the variation of the envi-
ronment effect across countries, we considered that the topology of the street networks of cities
has an effect on their inhabitants’ spatial ability. This effect has previously been theorized in
the urban design literature [24, 25], but the empirical studies on street networks suffer from
limitations, mostly due to data availability, gathering, and processing constraints [26, 27]. To
overcome these limitations, we coupled our global dataset with OSMnx, a new tool allowing to
download street networks for anywhere in the world via OpenStreetMap [15,28]. We hypothesized
that people who grew up in cities with more complex street networks (e.g. Figure 3a Prague,
Czech Republic) would have a better sense of direction than people who grew up in grid-like cities
(e.g. Figure 3a Chicago, USA). Hence, their sense of direction would be more similar to their
compatriots who grew up in non-city areas. To quantify the complexity of a street network, we
computed the Shannon entropy of the city’s orientations’ distribution (see Methods), which has
deep theoretical connections with numerous complexity metrics [29, 30]. The smaller the entropy,
the less complex - i.e. the more ordered - the city street network, see Figure 3b. The use of entropy
was further motivated by the scaling hypothesis [31], which finds more turns along a route leads to
higher than linear perceptions of distance travelled, due to chunking effect of turns [32, 33]. The
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ability to chunk spatial information and build hierarchical cognitive maps, allowing the flexible
combination of “decision fragments”, has been shown to be an efficient strategy for complex
trajectory planning [34–37]. By quantifying the variance in road angularity in a given street
network, the entropy captures the need for an individual to hierarchically decompose complex
trajectories into simpler sub-trajectories. People living in more entropic environments, more
exposed to spatial decisions, would then be more likely to adopt such hierarchical and efficient
planning strategy. To have one entropy value per country, we computed the Street Network
Entropy (SNE), defined as the average of the Shannon entropy of the ten biggest cities of each
country in terms of population, weighted by the city population (Table S2). Figure 3c represents
the SNE of countries as a function of their environment slope from the above mixed model. The
majority of the countries have a similar SNE, corresponding the typical old core’s organic patterns
(e.g. France, Romania, Spain, but also Thailand or India). However some other countries have
distinctly smaller SNE, corresponding to the orthogonal grid, a very common planned street
pattern (e.g. the United States, Argentina). The correlation between country SNE and their
environment slope is significant (r = −0.58, p < 0.001). This validates our hypothesis: the lower
the SNE (i.e. the simpler the street network), the worst the spatial ability of the people who
grew up in cities compared to their compatriots raised outside cities.

The interaction between virtual and real-world topologies and their influence on
spatial abilities - We also tested the symmetrical effect: do different SHQ level topologies
interact with the effect of participant’s home environment? Here our hypothesis was that people
growing up in environments with more complex topologies might perform better at more elaborate,
entropic SHQ levels. Conversly, people growing up in grid-like cities might perform better at
grid-like SHQ levels. We used k-means to split the countries into two SNE groups, revealing
a low-SNE group and high-SNE group, see Figure 3c. We defined the SHQ level entropy as
we did for the cities, with the orientations’ distribution computed from the level’s simplified
Voronoi map (see Figure 4a and Methods for details). In order to include in our analysis as
many level topologies as possible, we ran the following analysis on a subset of participants
who completed all SHQ levels (75 levels, 10,626 participants). We fit two LMM for wayfinding
performance: one with the participants from low-SNE countries, the other with the participants
from high-SNE countries, see Figure 4b. Both models had fixed effects for age, gender and
education, and random effect for level, with random slopes for environment clustered by level:
WFperf ∼ age+ gender+ education+ (1 + environment/level). We included all the wayfinding
levels (N=42). Figure 4c represents for each level its entropy as a function of the environment
slope slow computed from participants in the low-SNE countries, and shigh computed from the
high-SNE countries. Positive values correspond to an advantage of participants growing up outside
cities. We observed that the only negative environment slopes correspond to low-SNE participants
in less entropic levels (Figure 4c), suggesting that people used to less entropic environments (e.g.
Chicago, USA) perform better in less entropic SHQ levels. The entropy of the levels was more
correlated to low-SNE environment slopes (Pearson’s correlation rlow = 0.58, p < 0.001) than to
high-SNE environment slopes (Pearson’s correlation rhigh = 0.41, p = 0.007). A co-correlation
analysis showed that these two correlations were statistically different (Fisher’s z = 2.32, p-value =
0.02, 95% CI for rlow - rhigh = [0.03 0.36]) [38]. Removing the level with the lowest entropy, which
could be considered an outlier, did not change the results substantially, rlow = 0.55, p < 0.001,
and rhigh = 0.35, p = 0.03. A co-correlation analysis also showed that these two correlations were
statistically different (Fisher’s z = 2.43, p-value = 0.02, 95% CI for rlow - rhigh = [0.04 0.39])

Limitations and Analysis Considerations In order to test a sufficient sample of partici-
pants it was necessary to use a virtual world implemented via a mobile app. Because virtual
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navigation lacks the self-motion cues experienced in the real-world, one could argue that such
a task might be more predictive of video games skill than real-world navigation. However, we
have previously shown that navigation performance in Sea Hero Quest is predictive of navigating
in the real world [12]. Here, we showed that, on average, growing up outside cities leads to
better spatial ability than growing up in cities. This effect was modulated by the design of the
cities in each country. The negative impact of cities on navigation was stronger in countries
with simpler, grid-like cities than in countries with more complex, organic cities. A plausible
interpretation is that city environments provide less challenge to navigate compared to rural
environments, leading those who grow up in cities to becoming less adept at navigating, and
this is exacerbated by growing up in a country that has predominantly grid-like cities. However,
other factors associated with growing up in cities could be driving the differences in navigation.
Our analyses indicate that neither education or video games skill was a factor underlying the
differences between growing up in a city or non-city. Future studies using birth cohorts would
be a useful way to address the impact of other factors that may be correlated with growing up a city.

A critical aspect of our approach lies in the quantification of city ”complexity”. Urban pattern
analysis is a vast interdisciplinary field of research, spanning from sociology [39] to architecture [40]
and traffic forecast [41]. If a city’s culture and history influence its topology [42], the latter in
return structures the behaviour, cognition and mental health of its inhabitants [8–10]. Space
Syntax studies developed a set of metrics to quantify the different dimensions of the interactions
between societies and urban patterns [43]. In this study we used the Shannon entropy of the
street network orientations: the higher the entropy the more organic the city, the lower the
more grid-like. This choice was motivated by the strong theoretical connections between entropy
and many measures of complexity [29, 44]. Its implementation was enabled by OSMnx, which
grants access to the street network of any city in the world [15]. However, the difficulty to
navigate a city cannot be entirely captured by its topological complexity. Other factors, such as
the presence of salient landmarks (e.g. the Eiffel Tower in Paris) can significantly help situate
oneself in space [45]. Studying the interaction between street networks complexity and landmark
saliency would be a fascinating endeavor, but it requires building a database quantifying the
saliency of city landmarks across the world. Similarly, we showed that participants who grew
up in low-entropy cities were better at low-entropy Sea Hero Quest wayfinding levels than their
compatriots who grew up in non-city areas. This was not true for participants who grew up
in higher-entropy cities. Here, we quantified game level’s entropy in the same way as for the
cities (see Methods), which only captures a facet of level’s complexity. Further research will be
needed to quantify the influence of visibility or landmark saliency on wayfinding performance in
virtual environments, and its interactions with the participant’s home environment complexity.
While our virtual levels varied entropy to a similar degree to real-world cities, the navigation
task was simulated in rural settings (rivers and ocean terrain) and may have had some effect of
performance differences, though notably, countries with greater access to oceans (e.g. smaller
island countries) were not better navigators [11]. Future follow up research could target in more
detail the experience of participants, looking at which regions they had grown up in. Here our
data were available to determine nationality and whether the person grew up in a city or outside
a city.

Conclusions

Exploring population-level cognitive performance in 38 countries, we reveal that growing up in a
city appears to have cost for the development of navigation ability. The less entropic the cities
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of a country, the more negative their impact on spatial navigation ability. We show this effect
is independent of age, gender, video games skill and education. Moreover, we find city dwellers
from countries with less entropic cities show better performance at less entropic game levels.
Conversely, city dwellers from countries with more entropic cities are better at navigating more
complex game levels. These results indicate that the home environment of childhood and early
life has an impact on cognitive ability, stable across the life-span. Future research will need to
explore how these differences emerge during childhood through adolescence, where abrupt changes
in ability can occur [46].

Methods

Data

The design and the data collection process of Sea Hero Quest have been thoroughly described
in [11].
Video game - In this study we focused on the wayfinding task. At the beginning of each
wayfinding level, participants were given locations to visit from a map. The map disappeared,
and they had to navigate a boat through a virtual environment to find different checkpoints.
Checkpoints were generally not encountered in the order of passage, but rather have to be navigated
to by returning form one checkpoint to another (Figure 1). Participants were encouraged to
collect as many ‘stars’ as possible across the levels: the faster the more stars were obtained. The
first two levels were tutorial levels to familiarise the participant with the game commands.
Participants - A total of 3,881,449 participants played at least one level of the game. To provide
a reliable estimate of spatial navigation ability, we examined the data only from participants who
had completed a minimum of eleven levels of the game, and who entered all their demographics.
We removed participants above 70 years old because we previously showed a strong selection bias
in this group causing their performance to increase [11]. This resulted in 442,195 participants
that were included in our analysis.
Demographic information - Demographics were provided by consenting participants in two
steps. First, their age, gender and home country were asked. Then, after having played a few
levels, participants were invited to provide further information such as their level of education
and the type of environment they grew up in. Among the included participants there was 238,393
males (age: 37.2 ± 13.5 years old) and 203,802 females (age: 38.0 ± 14.9 years old). The levels
(N = sample size) of education were: university (N=200455), college (N=121851), high-school
(N=115537), and no formal (N=12897). We merged the university with the college levels due to
their ambiguous meaning in some countries, and the high-school with the no formal level due to
the relative low sample size of the latter. Hence, in our analysis the education variable had two
levels: secondary (N=128434) and tertiary (N=322306). The levels of home environment were:
city (N=141151), suburbs (N=146730), mixed (N=95316), rural (N=83397). We merged the
mixed, suburb and rural levels together to facilitate the interpretation of the effect of growing-up
in city (N=141151) and non-city (N=325443) environments.
For the analysis on the game level entropy, we included the participants that played all the Sea
Hero Quest wayfinding levels (N = 10,626). They were 5219 males (age: 41.89 ± 15.95 years old),
5407 females (age: 41.98 ± 16.32 years old), 7429 with tertiary education and 3604 grew up in
cities.
Behavioural data - We collected the trajectory of each participant across each level. The
coordinates of participants’ trajectories were sampled at Fs = 2 Hz.
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Metrics

Wayfinding performance - As in [11], we computed the trajectory length in pixels, defined as
the sum of the Euclidean distance between the points of the trajectory. To control for familiarity
with technology, we normalised the trajectory lengths by dividing them by the sum of their values
at the first two levels. The first two levels only reflected video gaming skill (motor dexterity
with the game controls) as no sense of direction was required to complete them. We defined
an overall wayfinding performance metric corrected for video gaming skill (WFperf ) as the 1st
component of a Principal Component Analysis across the normalized trajectory lengths of the
first 4 wayfinding levels (levels 6, 7, 8 and 11, 60.5% of variance explained).
Street Network Entropy - We used the OSMnx toolbox to download the street network
topology of cities from OpenStreetMap (OSM) [15]. For each included city we created a street
network graph from OSM data within 1000 meters of the city geographical center. Then, we
computed a 36-bin edge bearings distribution (1 bin every 10 degrees), taking one value per street
segment. We initially took twice as many bins as desired, then merged them in pairs to prevent
bin-edge effects around common values like 0 and 90 degrees. We also moved the last bin to the
front, so e.g. 0.01 degree and 359.99 degrees were binned together. We calculated the Shannon
entropy of the city’s orientations’ distribution.

H = −
36∑
i=1

P (oi)log(P (oi)) (1)

where i indexes the bins, and P(oi) represents the proportion of orientations that fall in the ith

bin [30]. For each of the 38 countries included in our analysis, we defined the average Street
Network Entropy (SNE) as

SNE =
1∑
i αi

10∑
i=1

αiHi (2)

where (Hi)i∈[1..10] are the Shannon entropies of the 10 biggest cities in terms of population, and

αi is the population of the ith city (see Table S1).
Game Level Entropy - We calculated the Shannon entropy of the Sea Hero Quest level’s
orientations’ distribution similarly as for the cities. To create the equivalent of ”streets” in the
levels of the game, we computed the Voronoi regions from the game level’s layout, and took their
edges. The Voronoi region boundaries are considered equivalent to road centre lines in the city
context. We then used the Douglas-Peucker algorithm to simplify the line made of the connected
segments [47], see Figure 4a. For all game levels, we used a maximum offset tolerance between
the original and the simplified line of three pixels. The entropy of the orientation distribution of
the Game Level’s segments was then computed with equation 1.

Data Availability

The dataset is available at this address: https://appagile-webdav-shq-jupyterhub-aazp003.
appagile.io/ Besides the raw data, the server provides a platform to analyse the data in a
JupyterHub, with 96 cores, 750 GB of memory and 100 TB of storage. A login/password to the
server will be provided from the corresponding author upon request.

Code Availability

Analyses and figures were made using Python, R, and Matlab. Scripts are available from the
corresponding author upon request.
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