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We proposed and characterized a novel biomarker of aging and frailty in mice trained from the
large set of the most conventional, easily measured blood parameters such as Complete Blood Counts
(CBC) from the open-access Mouse Phenome Database (MPD). Instead of postulating the existence
of an aging clock associated with any particular subsystem of an aging organism, we assumed that
aging arises cooperatively from positive feedback loops spanning across physiological compartments
and leading to an organism-level instability of the underlying regulatory network. To analyze the
data, we employed a deep artificial neural network including auto-encoder (AE) and auto-regression
(AR) components. The AE was used for dimensionality reduction and denoising the data. The
AR was used to describe the dynamics of an individual mouse’s health state by means of stochastic
evolution of a single organism state variable, the “dynamic frailty index” (dFI), that is the linear
combination of the latent AE features and has the meaning of the total number of regulatory
abnormalities developed up to the point of the measurement or, more formally, the order parameter
associated with the instability. We used neither the chronological age nor the remaining lifespan
of the animals while training the model. Nevertheless, dFI fully described aging on the organism
level, that is it increased exponentially with age and predicted remaining lifespan. Notably, dFI
correlated strongly with multiple hallmarks of aging such as physiological frailty index, indications
of physical decline, molecular markers of inflammation and accumulation of senescent cells. The
dynamic nature of dFI was demonstrated in mice subjected to aging acceleration by placement on
a high-fat diet and aging deceleration by treatment with rapamycin.

I. INTRODUCTION

An ever-increasing number of physiological state vari-
ables, such as blood cell counts and blood chemistry [1–
4], DNA methylation [4–8], locomotor activity [4, 9–11],
and exploratory behavior [9, 12], have been investigated
in association with aging and used to quantify aging pro-
gression in in-vivo experiments and in future anti-aging
clinical trials [4]. Most of the common statistical models
used in aging studies require chronological age or age at
death as labels for training; however, this data are rarely
available in sufficient quantity from human and labora-
tory animal cohorts. Even less information is available
regarding the change in biomarkers of aging and frailty
across the lifespan of individual animals or patients in
response to lifespan-modifying interventions. Thus, the
field would benefit from development of a convincingly
justified easily measurable and reliable biomarker of ag-
ing ideally obtainable from conventional and automated
measurements such as routine blood tests.

To produce a quantitative description of aging process
in mice, we turned to the largest open-access source of
phenotypic data, the Mouse Phenome Database (MPD)
[13, 14]. The MPD contains a wide range of phenotype
data sets including behavioral, morphological and phys-
iological characteristics and involving a diverse set of in-
bred mouse strains. In the present work, we implemented
biomarker of aging based on complete blood cell (CBC)

measurements. CBC test is a well established, easily ob-
tainable laboratory analysis protocol and it has a long list
of applications in both clinical medicine and biomedical
research [15].

Principal Components Analysis (PCA) revealed that
the fluctuations in CBC variables in the MPD are dom-
inated by the dynamics of a single cluster of features,
jointly deviating from the initial state and increasing in
variance with age.

The behaviour is typical for non-equilibrium complex
systems with strong interactions between the components
operating close to the critical or tipping point separat-
ing the stable and the unstable regimes [16]. Under the
circumstances, the organism state fluctuations should be
driven by the dynamics of a single variable, that is the
organism-level property having the meaning of the or-
der parameter corresponding to the unstable phase [17]
and associated with aging drift and mortality accelera-
tion [18].

To generate the biomarker of aging, we built a state-
of-the-art deep artificial neural network composed of de-
noising autoencoder (AE) and the auto-regressive (AR)
model, that is a computational metaphor for the dynam-
ics of the order parameter. The network output variable
exhibited the most desirable properties of a biological age
marker: it increased exponentially with age, predicted
the remaining lifespan of the animals, correlated with
multiple hallmarks of aging, and was henceforth referred
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to as the dynamic frailty index (dFI). The dynamic char-
acter of dFI was demonstrated in experiments involving
treatments previously shown to accelerate (high-fat diet)
or decelerate (rapamycin) aging in mice.

Therefore, we conclude that dFI is an accurate, easily
accessible biological age proxy for experimental charac-
terization of aging process and anti-aging interventions.
On a more conceptual level, our work demonstrates that
the auto-regressive analysis provided by the AE-AR deep
learning architecture may be a useful tool for the fully un-
supervised (label-free) discovery of biological age markers
from any type of phenotypic data involving longitudinal
measurements.

II. RESULTS

A. Overview of aging in the Mouse Phenome
Database

We started by building a training set from the largest
publicly available source of phenotypic data, the Mouse
Phenome Database (MPD) [13, 14]. To achieve the best
possible compatibility with earlier studies, we scanned
the database records to maximize the number of available
measurements common to those used in the construction
of the physiological frailty index (PFI) in [19]. As a re-
sult, we chose a subset of twelve complete blood count
(CBC) measurements from nine datasets, altogether in-
cluding more than 7, 500 animals (see Table S2 for a com-
plete list of datasets used for training of the models in
this work).

To visualize the 12-dimensional CBC data from
the MPD, we performed principal component analysis
(PCA), that is a computational technique commonly
used for multivariate data analysis [20–22]. PCA of the
MPD slice representing fully-grown animals (exceeding
the age of 25 weeks old) turned out to be particularly
simple, see Fig. 1a. In this case, most of the variance
in the data (27%) is explained by the first PC score, z0,
which is strongly associated with age. None of the subse-
quent PC scores (z1, z2, etc., each explaining 20%, 16%,
etc. of the data variance, respectively) showed any rea-
sonable correlation with age. However, each of the PC
scores was associated with a distinct cluster of biologi-
cally related blood features, as shown in Fig. 1b. For
example, the first two PC scores could be predominantly
connected with the red and white blood cell counts, re-
spectively.

Notably, the largest variance in the data representing
the full dataset was rather associated with animal growth
and maturation. The first PC score is associated with
the age of animals younger than 25 weeks old but does
not change substantially after that age, see Fig. S1. The
second, PC score exhibited an association with age over
the entire available age range. This means that aging
and early development in mice are different phenotypes
and henceforth we perform all our calculations using the

data from animals aged older than 25 weeks.
The first PC score, z0, was the only PCA variable as-

sociated with the remaining lifespan of the animals. This
was determined by using Spearman’s rank-order correla-
tion tests to evaluate potential associations between the
first three PC scores and the age at death within cohorts
of mice of the same age and sex (Table I). The z0 variable
had therefore the most desirable properties of biological
age.

Variance of the PCA scores and hence the biological
age also grew with age (see the inset in Fig. 1a), which is
a signature of stochastic broadening. The dimensional-
ity reduction revealed by the PCA and the association of
the large-scale fluctuations driving the slow evolution or
disintegration of the system are characteristic of critical-
ity, which is a special case of the dynamics of a complex
system unfolding near a bifurcation or a tipping point,
on the boundary of a dynamic stability region [16, 23].

B. Aging, critical dynamics of the organism’s state
and the dynamic frailty index (dFI)

The dynamics of the order parameter associated with
the unstable phase is a measure of the aging drift and
mortality acceleration in aging organisms [18] and hence-
forth is to be referred to as the dynamic frailty in-
dex (dFI). In this section, we summarize the necessary
theoretical framework required for identification of the
biomarker and quantitative description of aging in bio-
logical data.

Over sufficiently long time-scales, the fluctuations of
physiological indices (such as CBC features), xi, are ex-
pected to follow the dynamics of the order parameter,
z = dFI: xi = biz + ξi. Here ξi is noise, bi is a vector
that may differ across species, and the integer index i
enumerates the measured features.

Close to the tipping point, the dynamics of the physio-
logical state is slow and hence the variable z satisfies the
stochastic Langevin equation with the higher order time
derivative terms neglected:

ż = αz + gz2 + f. (1)

Here the linear term, αz, on the right side of the equation
represents the effect of the regulatory network stiffness
governing the responses of the organism to small stresses
producing small deviations of the organism state from its
most stable position. The following term, gz2, represents
the lowest order non-linear coupling effects of regulatory
interactions.

The stochastic forces f represent external stresses and
the effects of endogenous factors not described by the ef-
fective Eq. 1. Naturally, we assume that random pertur-
bations of the organism state are serially uncorrelated, so
that 〈f(t)f(t′)〉 ∼ B, where B is the power of the noise,
and 〈...〉 stands for averaging along the aging trajectory.

The equation establishes the “law of motion” for the
organism’s physiological state. It is a mathematical re-
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a b

FIG. 1: Principal Component Analysis (PCA) of the MPD slice corresponding to mature animals (age greater than
25 weeks). a The graphs represent the average of the PC scores in subsequent age groups (the error bars are at the

standard deviation). The inset shows that the variance for all PC scores increase with age. b Clustering of CBC
features and PC scores in the training dataset. The colors represent the Pearson’s correlation coefficient (absolute

value) as indicated by the scale on the right side of the figure.

M (26 w) F (26 w) M (52 w) F (52 w) M (78 w) F (78 w)
Cohort 1, ani-
mals

98 125 155 188 167 150

z0=PC0 -0.27 (7.42e-03) -0.08 (3.67e-01) -0.32 (5.24e-05) -0.27 (1.78e-04) -0.42 (1.78e-08) -0.28 (6.17e-04)
z1=PC1 0.01 (9.11e-01) 0.02 (8.60e-01) 0.08 (3.10e-01) 0.08 (3.00e-01) 0.09 (2.45e-01) 0.05 (5.83e-01)
z=PC2 0.15 (1.36e-01) 0.08 (3.86e-01) 0.18 (2.67e-02) -0.10 (1.82e-01) 0.03 (7.22e-01) 0.06 (4.85e-01)

TABLE I: Spearmans rank-order correlation values and the corresponding p-values (in parentheses) for the top PC
scores with the remaining) lifespan (the significant correlations (p < 0.05) are highlighted in bold.

lation between the rate of change of the organism state
variable, ż = dz/dt, on the left side of the equation, and
the effects of deterministic (αz, gz2) and stochastic forces
(f), on the right side.

Depending on the sign of the stiffness coefficient, α,
the organism state may be dynamically stable (if α < 0)
or unstable (if α > 0). In the latter case, small devi-
ations of the organism state get amplified over time so
that no equilibrium is possible and the solution of Eq.1
describes an aging organism. Typically, α is small, and
hence, the evolution of the physiological indices exhibits
hallmarks of critically: it is slow (critical slowing down)
and the fluctuations of the physiological state following
the variations in z are large [z2 ∼ B exp(2αt)/2α (critical
fluctuations).

Very early in life, the deviations from the critical point
are small and the evolution of the organism state is dom-
inated by diffusion. Later in life, the linear term takes
over such that the deviations from the youthful state ac-
celerate exponentially:

z ≈ z̄ exp(αt) + z0 (2)

where z̄ ∼ (B/α)1/2 and z0 are constants representing
the accumulated early effects of random and determinis-
tic forces, respectively.

Finally, once dFI is sufficiently large, z >∼ Z = α/g, the
non-linear terms take over, disintegration of the organ-
ism state proceeds at a rate greater than exponential, and
the animal dies in a finite time. Mortality in this model
increases up to the average lifespan t̄ = 1/α log(Z/z̄).
Mortality is a complex function of the order parameter
z and hence of the chronological age. The mortality ac-
celeration rate at the age corresponding to the average
lifespan is of the same order of α.

C. Identification of dFI from longitudinal data by
applying a deep neural network

To identify the dFI from CBC measurements we per-
formed a fit of the experimental data from MPD onto
solutions of Eq. 1 with the help of an artificial neuron
network. Altogether we used 7616 samples from 9 MPD
datasets as the training set (see Material and Methods
and Table S2). We employed a combination of a deep
auto-encoder (AE) and a simple auto-regression (AR)
model for modal analysis (AE-AR; see neural network ar-
chitecture in Fig. 8). At its bottleneck, the encoder arm
of the AE produced a compressed 4-dimensional repre-
sentation y of the input, the 12-dimensional physiolog-
ical state vectors x built from the available CBC mea-
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surements. The decoder arm reconstructed the original
12-dimensional state x̃ from the bottle-neck features.

The longitudinal slice of MPD has only a few hun-
dred of specimen with serial measurements. The com-
bined AE-AR approach adopted here let us maximize the
number of mice used for training of the complete model.
Thus, we were able to use all the available samples, in-
cluding both the cross-sectional and the longitudinal seg-
ments of the MPD, in the AE arm of the algorithm to
produce the highest quality low-dimensional representa-
tion of the data.

The performance of the models was validated in test
datasets (see Material and Methods and Table S3), which
were completely excluded from fitting. The test datasets
were obtained from independent experiments by collect-
ing CBC samples from cohorts of NIH Swiss mice of dif-
ferent age and sex (dataset MA0071), cohort NIH Swiss
male mice observed for 15 months (dataset MA0072) and
cohorts of naive male and female NIH Swiss mice that
were humanely euthanized after reaching approved ex-
perimental endpoints (dataset MA0073).

We estimated the reconstruction error of the AE by
calculation of the root mean squared error (RMSE) and
coefficient of determination R2 for each CBC feature in
training and test sets (Tables S4 and S5). The average
RMSE in the test set was 228.8 with R2 = 0.54; in the
training set, RMSE was 106.4 and R2 = 0.77. The best
reconstruction was achieved for hematocrit (R2 = 0.94),
red blood cells (R2 = 0.92) and lymphocytes (R2 = 0.87);
the worst results were for mean corpuscular hemoglobin
concentration (R2 = −0.9) and platelets (R2 = −0.12)
in the test set.

Simultaneously with the AE, we trained the network to
fit the longitudinal slice of MPD (including fully-grown
animals at ages from 26 to 104 weeks with a sampling in-
terval of ∆t = 26 weeks) to the solution of the linearized
(g = 0) version of Eq.1,

z(t+ ∆t) = rz(t) + z′ + ξ, (3)

where z is the best possible linear combination of AE
bottle-neck features. The state z is the output of the
algorithm, the estimation of dFI (refer to the detailed
description of the artificial neural network architecture
behind the AE-AR algorithm in Fig. 8). The constants
r = exp(α∆t) ≈ 1, z′, and ξ, which are the best fit values
of the autoregression coefficient, the constant shift, and
the error of the fit (the combination of the system’s noise
and measurement errors), respectively.

Performance of the AR model was demonstrated by
plotting the autocorrelations between dFI values mea-
sured along aging trajectories of the same mice at age
points separated by 14 and 28 weeks in the test dataset
MA0072 (Fig. 2). Remarkably, the correlations (Pear-
son’s r = 0.71 (p < 0.001) and r = 0.70 (p < 0.001))
of the age-adjusted dFI persisted over the time lags of
14 and 28 weeks. The dFI auto-correlations were bet-
ter than the autocorrelations of the first PC score z0

for the same mice, see Fig. S2; the corresponding Pear-

FIG. 2: Auto-correlation properties of age-adjusted dFI
across sampling intervals ∆t of 14 (blue circles) and

28 (orange squares) weeks. (∗ marks statistically
significant correlations, p < 0.001)

sons correlation values were r = 0.58 (p < 0.001) and
r = 0.66 (p = 0.002) for 14- and 28- week time lags,
correspondingly.

A semi-quantitative view of hierarchical clustering
of CBC features co-variances in the test dataset pro-
duced groups of features associated with the immune
system (white blood cell counts and the related quan-
tities), metabolic rate/oxygen consumption (red blood
cell counts and hemoglobin concentrations), and an ap-
parently independent subsystem formed by platelets (see
Fig. S4).

dFI was associated with animal age in both the train-
ing and test (see Fig. S3 and 3, respectively). As expected
from the qualitative solution of Eq.1, dFI increased up
to the age corresponding to the average animal lifespan
(approximately 100 weeks in our case). We performed an
exponential fit in the form of Eq.2 on the data from the
test datasets (excluding animals that lived longer than
the strains average lifespan and animals at the end of
their life from the dataset MA0073). The calculation re-
turned dFI growth exponent of α = 0.022 per week. This
estimate is somewhat smaller than (but still of the same
order as) the expected Gompertz mortality acceleration
rate of 0.037 per week [24] for the SWR/J strain.

Saturation of the dFI beyond the average lifespan in
the training and test datasets revealed a limiting value
that is apparently incompatible with the animals’ sur-
vival. This possibility can be highlighted by plotting
the dFI ranges from a separate cohort of “unhealthy”
mice from MA0073 experiment, representing the animals
scheduled for euthanasia under lab requirements (Fig. 3,
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FIG. 3: Dynamical frailty index (dFI) as a function of
age in the test experiments: MA0071 (males, orange

diamonds), MA0071 (females, blue circles) and MA0072
(green triangles). The black curved dashed line is the

exponential fit in the age groups younger than the
average lifespan of NIH Swiss mice (indicated by the

dashed vertical line). Red stars mark the average dFI in
age-matched groups of frail animals from the MA0073

cohort. All data are presented as mean±SEM.

red dots).

The long autocorrelation time of dFI together with its
exponential growth at a rate compatible with the mor-
tality acceleration rate are indicators of the association
between dFI and mortality. This was further supported
by the Spearman’s rank correlation between the dFI val-
ues and the order of the death events within mice in
cohorts of same age and sex (Table II). We obtained sig-
nificant correlations for dFI and remaining lifespan for
all cohorts. Importantly, the age- and sex- adjusted dFI
predicted remaining lifespan better than a naive PC score
z0 from the linear analysis.

The dFI predicted remaining lifespan later in life better
than body weight or insulin-like growth factor 1 (IGF1)
serum level, which were previously shown to be associ-
ated with mortality in [25] and [26]. As pointed out in
[26] and checked here, the concentration of IGF1 in serum
was significantly associated with lifespan (r = −0.28,
p = 0.008) only in one cohort of younger, 26-week old
male mice. According to [25] and our calculations, mouse
body weight is better associated with mortality, again, in
the youngest animals at the ages of 26 and 52 weeks.

a

b

FIG. 4: Correlation of dFI with the physiological frailty
index (PFI) a and the extended set of phenotype

measures b in the test datasets MA0071 and MA0072.
Features with correlation above and below significance

level 0.001 are shown with grey and blue circles,
respectively. The most significant correlations (excluded

dFI components) were between dFI and -reactive
protein (CRP), red cell distribution width (RDW), body

weight (BW) and murine chemokine CXCL1 (KC).

D. dFI and hallmarks of aging

To further validate dFI as an age biomarker, we exam-
ined its association with physiological frailty index (PFI),
a quantitative measure of aging and frailty established
previously [19]. dFI and PFI were found to be strongly
correlated (Pearson’s r = 0.64, p < 0.001), see Fig. 4a.
PFI is a composite frailty score and depends on CBC
measures for its determination. PFI is also influenced by
changes in more traditional measures of frailty, such as
grip strength, cardiovascular health, inflammation mark-
ers, etc. Remarkably, the correlation between PFI and
dFI remained significant after adjustment for sex and age
(Pearson’s r = 0.54, p < 0.001).

As illustrated in Figs. S4 and S6, we observed that the
dFI was significantly associated with an extended set of
CBC features across independent functional subsystems
(most notably, but not limited to, myeloid cell lineage).
The correlation between dFI and myeloid cell features
was less profound in the training set, involving multiple
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M (26 w) F (26 w) M (52 w) F (52 w) M (78 w) F (78 w)
Cohort 1, ani-
mals

98 125 155 188 167 150

dFI -0.31 (1.68e-03) -0.18 (4.77e-02) -0.38 (1.35e-06) -0.23 (1.37e-03) -0.41 (5.12e-08) -0.28 (5.23e-04)
Cohort 2, ani-
mals

86 118 145 177 133 129

dFI -0.34 (1.37e-03) -0.21 (2.05e-02) -0.38 (2.33e-06) -0.25 (7.82e-04) -0.32 (1.79e-04) -0.31 (3.19e-04)
IGF1 -0.31 (1.96e-03) -0.17 (6.92e-02) -0.10 (2.09e-01) -0.11 (1.23e-01) 0.04 (6.86e-01) 0.05 (5.59e-01)
Body weight -0.32 (1.61e-03) -0.19 (3.34e-02) -0.25 (2.25e-03) -0.24 (9.71e-04) 0.03 (6.92e-01) 0.04 (6.78e-01)

TABLE II: Spearman’s rank-order correlation values and the corresponding p-values (in parentheses) for dFI with
lifespan. Analysis is shown for two cohorts: Cohort 1 includes all animals with mortality data, Cohort 2 includes the
subset of animals from Cohort 1 for which IGF1 measurements were available. Significant correlations (p < 0.05) are

highlighted in bold.

strains (see Fig. S6). The correlation coefficient is a mea-
sure of response of dFI to individual CBC features vari-
ation and is different (sometimes even of opposite sign)
in various mouse strains, see Fig. S7. The variation of
the associations of individual features and dFI would be
a significant challenge to a linear model and is a demon-
stration of the non-linear character of the autoencoder.

The dFI was strongly associated with red blood cell
distribution width (RDW) and body weight (Fig. 4b),
known predictors of frailty in both mice [15] and humans
[27, 28]. dFI was also strongly associated with levels of
C-reactive protein (CRP, r = 0.39, p < 0.001) and the
murine chemokine CXCL1 (KC, r = 0.28, p < 0.001),
both of which are known markers of systemic inflamma-
tion and mortality [29–31].

Aging is associated with an increasing burden of senes-
cent cells [32, 33], widely considered to be a source of
chronic sterile systemic inflammation, “inflammaging”
[34]. Senescent cells are commonly detected in vivo as a
population of p16/Ink4a-positive cells accumulated with
age recognized by the activity of p16/Ink4a promoter-
driven reporters [35]. We utilized earlier described hem-
izygous p16/Ink4a reporter mice with one p16/Ink4a al-
lele knocked in with firefly luciferase cDNA [36]. Fig. 5a
shows the correlation between animal age and presence of
senescent cells, as measured by the flux from p16/Ink4a
promoter-driven luciferase activity (r = 0.54, p = 0.01).
The correlation of this SC proxy (total luciferase flux)
with dFI was even stronger (r = 0.69, p < 0.001;
Fig. 5b).

E. dFI reflects lifespan-modulating interventions

Having established the association between dFI and re-
maining lifespan in the MPD, we next tested its predic-
tive power by evaluating the response of dFI to life-long
interventions known to affect the lifespan of mice. In the
data from [19], male mice that were fed a high-fat diet
(HFD) instead of a regular diet (RD) beginning at 50
weeks of age had significantly reduced lifespans (Fig. 6a)
and also showed a significant increase in average dFI mea-
sured at week 78 (p = 0.05, Student’s two-tailed t-test;
Fig. 6b) in comparison to control RD-fed males. In con-

trast, HFD feeding of female mice had no effect on either
lifespan or average dFI (Figs. 6c and 6d). Thus, dFI ap-
peared to be a good predictor of gender-dependent dif-
ferences in organismal aging response to HFD, the un-
derlying reasons for which remain to be explained.

We also tested the response of dFI to a short lifespan-
extending condition: treatment with rapamycin [37, 38].
Here we present the results of an experiment with 60-
week-old male mice treated with rapamycin daily at a
dose of 12 mg/kg for 8 weeks or, in the control group,
vehicle on the same schedule. The cohort of 24 60-week
old C57BL/6 male mice was divided into treatment and
control groups using a stratified randomization technique
to produce indistinguishable distributions of dFI values.

Body weights were measured every week and increased
as expected in the control group (Fig. 7a). In contrast,
body weight in the rapamycin-treated group stayed ap-
proximately constant near the initial value throughout
the observation period of 10 weeks. A lower body weight
is typical for rapamycin-treated mice in comparison to
control group [19, 39]. In order to generate dFI values
for the mice in this experiment, blood samples were col-
lected from each animal for CBC measurements every
two weeks (Fig. 7b).

The longitudinal character of sampling in the experi-
ment let us use the autoregression analysis to detect the
effects of the drug on the dynamics of dFI in the course
of the experiment. Whenever a non-random force (that
is the effect of the drug) is present in Eq.1, the jump in
dFI between any of consequent measurements from the
same animal should satisfy modified Eq.3:

z(t+ ∆t) = rz(t) + z′ + J + ξ, (4)

where J is the accumulated effect of the drug along the
aging trajectory. The time intervals between the sub-
sequent measurements are very small, α∆t << 1 and
hence the autoregression coefficient r ≈ 1. We therefore
expected to identify the effect of rapamycin by compar-
ing the distributions of the dFI increments between the
measurements.

We indeed observed the dFI jumps that were signifi-
cantly different depending on whether rapamycin treat-
ment was present between the dFI measurements both in
the control and the treated groups, see Fig. 7c (p = 0.02,
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a

b

FIG. 5: Total flux (TF) in log scale representing p16-dependent luciferase reporter activity as a quantitative
indicator of senescent cells: statistically significant correlations with age (a) and with dFI (b) in old mice (> 50

weeks).

a

b

c

d

FIG. 6: dFI responds to the lifespan-modifying effect of high-fat diet (HFD) feeding. (a, c) Kaplan-Meier survival
curves showing that long-term (26 weeks) HFD feeding significantly reduces the lifespan of male (a) (p = 0.025, log
rank test), but not female (c) (p = 0.6, log rank test) mice in comparison with regular diet (RD) feeding. (b, d) dFI
values measured late in life (at week 78) for male (b) and female (d) mice fed with RD or HFD. Individual animals
are represented by dots, with the horizontal bar indicating the group mean value. The horizontal dashed line shows

the mean value for animals from both groups. dFI was significantly higher in males with HFD vs RD (p = 0.05,
Student’s t-test), but there was no significant difference between HFD and RD groups of female mice.

Student’s two-tailed test). These results support the pos-
sibility of using longitudinal dFI measurements to detect
effects of life-extending therapeutics over much shorter
times that what could be done based on the appearance
of evident changes in frailty or longevity.

III. DISCUSSION

We introduced a novel way of using deep artificial neu-
ronal networks to train biomarkers of age and frailty
from big biomedical data involving longitudinal measure-
ments, i.e. multiple samples of the same animals collected
along the aging trajectories. We exemplified the ap-
proach with the discovery and characterization of a novel

biomarker of aging in mice, the dynamic frailty index
(dFI), from conventional and automated measurements
of Complete Blood Counts (CBC) and trained from the
data from Mouse Phenome Database (MPD).

We started with linear dimensionality reduction using
the principal component analysis (PCA), which has a
long list of applications in biomarkers of aging research
[40, 41]. As expected, we observed that the variance
of CBC features in MPD is dominated by a cluster of
features closely associated with the first PC score; none
of the other PC scores correlated with age. Hence, the
data suggests that aging in mice can be explained by
the dynamics of a single (latent) variable that is a sin-
gle organism-level quantity and a natural indicator of the
progress of aging (i.e., a biomarker of aging).

The associations of slow organism state dynamics with
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a b
c

FIG. 7: Effects of 8 week-long rapamycin treatment on body weight and dFI. Body weight (a) and dFI (b) were
measured every one and two weeks, respectively. All of the data are presented as mean±SEM (n = 12 mice/group);

(c) Change of dFI between two consecutive measurements when no treatment was given (blue box, includes both
control and rapamycin group after withdrawal) or treatment was given (orange box, rapamycin group during

treatment period). The change in dFI was signicantly lower under treatment (p = 0.02, Student’s two-tailed t-test).

the first principle component score is a hallmark of criti-
cality, that is the situation whenever a system’s dynamics
occurs in the vicinity of a tipping (or critical) point, sep-
arating the stable and the unstable regime [42]. Gene
regulatory networks of most species are tuned to critical-
ity [42]. In [18] we proposed that aging corresponds to the
unstable regime, when small deviations of the organism
state from its initial position get amplified exponentially.
The first principal component score is then an approxi-
mation to the order parameter, herein referred to as dFI,
that is corresponding to the unstable phase and having
the meaning of the total number of the regulatory errors
accumulated in the course of life of the animal [43].

The order-parameter is a generalization of a concept
originally introduced in the Ginzburg-sLandau theory
in order to describe phase-transitions in thermodynam-
ics [44]. The order parameter concept was further gen-
eralized by Haken to the ”enslaving-principle” saying
that next to the critical point the dynamics of fast-
relaxing (stable) components of a system is completely
determined by the ’slow’ dynamics of only a few ’order-
parameters’ (often variables associated with unstable
modes) [17]. The dFI identified in connection with the
dynamics of the order parameter is then not a mere ma-
chine learning tool for specific predictions, but a funda-
mental macroscopic property of the aging organism as a
non-equilibrium system.

PCA belongs to the class of unsupervised learning al-
gorithms, such that the model does not require any la-
bels such as chronological age or the remaining lifespan
for its training. It is therefore remarkable, although ex-
pected from a large corpus of previous works, that the
first principle components are associated with age and
the remaining lifespan of the animals. However, the abil-
ities of linear rank reduction techniques, such as PCA,
to recover accurate dynamic description of aging is lim-

ited for the following reasons. First, there are no reasons
to believe that the effects of non-linear interactions be-
tween different dynamic subsystems are small. That is
why the result of such a procedure can not be expected
to perform well in different biological contexts (strains,
laboratory conditions, or therapeutic interventions such
as drugs).

Second, biological measurements are often noisy, and
hence, simple techniques lacking efficient regularization
may fail to reconstruct the latent variables space cor-
rectly unless a prohibitively large number of samples is
obtained [45]. Finally, the association of the first princi-
pal component with the order parameter and hence the
biomarker of aging in the form of dFI is only an ap-
proximate statement. Fundamentally, there is no way to
identify the dynamics of the system from the data, that
does not include the dynamics itself in the form of multi-
ple measurements of the same organism along the aging
trajectory.

To compensate for the drawbacks of PCA, we employed
an artificial neuron network, a combination of a deep de-
noising auto-encoder (AE) and an auto- regressive (AR)
model. The AE part of the algorithm is a non-linear gen-
eralization of PCA and was used to compress the corre-
lated and necessarily noisy biological measurements into
a compact set of latent variables, a low-dimensional rep-
resentation of the organism state.

The AR-arm of the network is nothing else but the best
possible prediction of a future state of the same animal
from the current measurements in such a way that the
collective variable inferred by the model is a directly in-
terpretable and physiologically relevant feature, the dy-
namic frailty index (dFI). The approach is a computa-
tional metaphor for the analytical model behind iden-
tification of the order parameters associated with the
organism-level regulatory network instability from [18].
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The neural network applied here was inspired by deep
rank-reduction architectures, recently used for character-
ization and interpretation of numerical solutions of large
non-linear dynamical systems [46, 47].

dFI increases exponentially with age and is associated
with remaining lifespan. It is therefore a natural quanti-
tative measure of aging drift and hence may be used as a
biomarker of age. Remarkably, it appears that blood pa-
rameter data alone can define biological age with a degree
of accuracy comparable to that of the best previously
described biomarkers of aging e.g., DNA methylation-
based clock [5–8] or physiological frailty index [19]. This
may reflect a key role for aging of hematopoietic tissue
in determining aging of the whole organism, a concept
that is intuitively acceptable given the universal systemic
physiological function of blood.

As an alternative explanation, age-dependent changes
in blood parameters may be secondary events induced
by aging of the remainder of the organism (i.e., var-
ious solid tissues). However, accumulated experimen-
tal evidence argues against this. In fact, there are
multiple reports demonstrating rejuvenating effects of
young hematopoietic system on old animals delivered
either by bone marrow transplantation or by parabio-
sis (reviewed in ref. [48]). Moreover, restoration of
mouse hematopoiesis through transplantation of HSCs
from young vs old donors clearly demonstrated that aged
HSCs cannot be rejuvenated by the environment of a
young body [49]. Also, the interpretation of age depen-
dence of HSC-derived features as secondary effects of ag-
ing would face formal difficulties, since the dynamics of
such factors should exhibit shorter, in fact at least twice
shorter, doubling times than the dFI and the mortality
rate doubling times.

A peculiar result of our analysis is that our data
strongly point towards myeloid lineage that provides
much more accurate predictors of biological age than
lymphoid lineage parameters. This is counterintuitive
since aging is generally accepted to be associated with
the well-documented general decline in immunity known
as an immunosenescence [50–52], the phenomenon illus-
trated by the reduced efficiency of vaccination [53] and
increased frequency and lethality of infectious diseases
and cancer in older organisms [54]. Nevertheless, there is
strong experimental evidence that supports and provides
a mechanistic explanation for our finding that myeloid
parameters weigh more heavily than lymphoid ones as
biological age indicators. In a comprehensive study of
the epigenetic mechanisms of HSC aging, Beerman et al.
[49]. described age-dependent epigenetic reprogramming
that leads to a significant shift towards myeloid lineage
differentiation of the progeny of aged HSCs [49, 55, 56].
This shift is driven by specific changes in methylation of
the DNA of HSCs that occur during mouse aging. Sur-
prisingly, these changes in methylation, which alter gene
expression, do not occur in the part of the genome that
controls HSC phenotype, but rather modify DNA regions
encoding genes that control downstream differentiation

stages. Remarkably, the pattern of DNA methylation
changes associated with aging of HSCs seems to repre-
sent the same process that was previously described as
a DNA methylation-based clock [5, 49], and therefore,
may be part of the same epigenetically controlled fun-
damental aging mechanism. Another factor that could
diminish the impact of lymphoid lineage-related param-
eters as biological age markers is the reactive nature of
this branch of hematopoiesis, which serves to rapidly re-
spond to sporadic events such as viral or bacterial infec-
tion, wounding, and other types of stress requiring an
emergency response usually in the form of acute inflam-
mation. Since the time of occurrence of such events is
unpredictable, age-associated changes may be masked by
the noise coming from large-scale age-unrelated fluctua-
tions in the lymphoid compartment.

These observations do not mean that the blood is the
single determinant of aging (otherwise, biological age
would be 100% defined by the age of HSCs), but at least
place it among the major drivers of the process and pro-
vide an explanation for our success in reliably determin-
ing biological age from blood test data. Rather, the iden-
tification of aging with the dynamics of a single organ-
ism state variable, dFI, suggests a cross-talk in the form
of continuous interactions between the organism compo-
nents. dFI, hence emerges as a feature characterizing the
organism as a whole, rather than representing a property
of any particular subsystem.

The cooperative character of aging in the model im-
plies that there is no specific subsystems tracking time
or age in an animal. The age-dependent chances appear
in a self-consistent manner by strong non-linear inter-
actions between physiological compartments. Formally,
this is expressed by representing the aging organism as an
autonomous (or time-invariant) dynamical system hav-
ing no designated subsystem for tracking time. Accord-
ingly, we expected no physiological indices may depend
on age of the animals explicitly, only implicitly via de-
pendence on the collective variable, dFI. That is why,
we believe, the analysis of dFI properties revealed that
in addition to the trivial dependence on CBC features,
which were directly involved in dFI calculation, the dFI
was strongly correlated with certain measures of frailty,
also known as hallmarks of aging. These include grip
strength, body weight, RDW, and markers of inflamma-
tion such as CRP and KC (IL-8). dFI also correlated
well with p16-luciferase flux, a proxy for the number of
senescent cells in aged mice. We observed a very high
degree of concordance between the dFI and the physio-
logical frailty index (PFI), which is a combination of a
much wider range of analyses than CBC, including phys-
ical fitness, cardiovascular health and biochemistry.

The dFI increased at a characteristic doubling rate of
0.022 per week, that is, in line with our theoretical predic-
tion, comparable with the mortality rate doubling time
in the species. Also, in the cross-sectional dataset the
dFI saturated at a limiting value at the age correspond-
ing to the average lifespan in the group. However, we
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observed that the dFI ceiling corresponds to the dFI lev-
els in cohorts of animals scheduled for euthanasia due
to morbid conditions under current laboratory protocols,
which is as close to death as animals could possibly be
in a modern laboratory. Therefore, we conclude that fur-
ther dFI increments are incompatible with survival. It is
thus dynamics of the organism state defining the uncon-
strained growth of dFI fueled by the dynamic instability
of the organism state is the ultimate cause of death in
aging mice. In [18], we explained that the exponential
dFI acceleration is a signature of the linear dynamics in
the weak coupling limit. At the maximum dFI level, the
inevitably present non-linear effects take over and further
evolution of the organism state occurs on much shorter
time scales and lead to a complete disintegration of the
organism.

The effects of non-linearity can be neglected nearly al-
ways in the course of the life of an animal, if the di-
mensionless parameter expressing the animal lifespan in
units of the mortality rate doubling time is small. Given
the observed dFI doubling rates, we infer that the cor-
responding ratio is of the order of two, which is hardly
large, and hence, non-linear corrections to the dynamics
of the order parameter, dFI, should not be very small.
Therefore, our linear AR model is only a reasonable ap-
proximation. We therefore believe that better perform-
ing dFI variants could be obtained by allowing for higher
rank AR models, possibly including the effects of mode
coupling with dFI.

The deep artificial neural network applied here also
belongs to the class of unsupervised algorithms. It is re-
markable that we used neither the remaining lifespan nor
even the chronological age of the animals to infer dFI.
This was possible, in principle, since by having a very
specific model of the aging process, we were able to use
longitudinal aging trajectories of individual animals for
training. Due to the ability to obtain meaningful descrip-
tion of aging in the data without health or lifespan labels,
the proposed method should be particularly useful for
analysis of large longitudinal datasets from recently in-
troduced sensors (such as wearable devices) often without
any clinical and/or survival follow-up information avail-
able.

Aging manifests itself as slow deviations of the organ-
ism state from its initial state and can be tracked by mea-
suring dFI. Our analysis shows that that the underlying
organism state regulatory network in mice is dynamically
unstable, and hence the organism state cannot relax to
any equilibrium value after a perturbation. Formally this
is expressed by strong auto-correlations of dFI over ex-
tended periods of time. It is therefore likely that the
effects of short treatments should persist until the end
of life, whereas the effects of such treatments could be
detected in short experiments involving longitudinal dFI
measurements over a few months’ time.

The dynamic character of dFI implies that most of the
organism state changes associated with aging are in fact
reversible. We therefore expect that further investigation

of the longitudinal dynamics of physiological state vari-
ables and the associated biomarkers of aging and frailty
could eventually lead to cost- and time-efficient clinical
trials of upcoming anti-aging therapeutics.

IV. MATERIALS AND METHODS

A. Datasets

The training data set of CBC features was prepared
from the nine data sources available in the Mouse Phe-
nome Database (MPD) [13, 14]. List of the included
sources is presented in Table S2 together with a statistic
on animal number group by sex and age cohorts. Our
model was trained using the best overlap of available
CBC features from all sources. The final list contained
12 CBC features: granulocytes differential (GR%),
granulocytes count (GR), hemoglobin (HB), hemat-
ocrit (HCT%), lymphocyte differential (LY%), lympho-
cyte count (LY), mean corpuscular hemoglobin content
(MCH), mean hemoglobin concentration (MCHC), mean
corpuscular volume (MCV), platelet count (PLT), red
blood cell count (RBC) and white blood cell count
(WBC). In the case of data source had no granulocytes
measurements, it was retrieved using formulas:

GR = WBC− LY −MO
GR% = 100− LY%−MO%

(5)

All animals with the missing data were excluded from
the training.

The list of all abbreviations is shown in Table S1.

B. Animals

Four-to-five week-old NIH Swiss male and female mice
were obtained from Charles River Laboratories (Wilm-
ington, MA) and were allowed to age within the Roswell
Park Comprehensive Cancer Center (RPCCC) animal fa-
cility. Blood samples were obtained at different ages as
part of creating of the Physiological Frailty Index (PFI)
as previously described (REF). p16/INK4a-LUC mice
(p16-Luc) were obtained from the N. Sharpless labora-
tory at the University of North Carolina (Chapel Hill,
NC). All animals were housed under 12:12 light:dark
conditions (12 hours of light followed by 12 hours of
darkness) at the Laboratory Animal Shared Resource at
RPCCC. All animal experiments were approved by the
Institutional Animal Care and Use Committee of Roswell
Park Cancer Institute.

Dataset MA0071 was built in a cross-sectional exper-
iment using male and female NIH Swiss mice. Blood
was collected from male mice by cardiac puncture at 26
(n = 20), 64 (n = 20), 78 (n = 20), 92 (n = 20), and
136 (n = 8) week old mice. Female age groups were rep-
resented by 30 (n = 20), 56 (n = 20), 68 (n = 20), 82
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(n = 20), 95 (n = 20), 108 (n = 20), and 136 (n = 8)
weeks of age.

Dataset MA0072 was obtained from a longitudinal ex-
periment. Blood samples were collected through saphe-
nous vein from male NIH Swiss mice at 66 (n = 30), 81
(n = 24), 94 (n = 22), 109 (n = 18), and 130 (n = 11)
weeks of age.

Dataset MA0073 includes blood samples collected from
97 male and 127 female mice of different ages when an-
imals reached approved experimental endpoints and re-
quire humane euthanasia. Whole blood cell analysis was
performed in 20 ul of blood using Hemavet 950 Ana-
lyzer (Drew Scientific) according to manufacturer’s pro-
tocol. For rapamycin treatment experiment 60-weeks-old
C57BL/6J male mice were obtained from Jackson Labo-
ratories (USA). Rapamycin was purchased from LC Lab-
oratories (MA, USA). Rapamycin was administered daily
at 12 mg/kg via oral gavage for 8 weeks. Control group
was treated with vehicle (5% Tween-80, 5% PEG-400,
3% DMSO).

C. In vivo bioluminescence imaging

Bioluminescence imaging was performed using an IVIS
Spectrum imaging system ( Caliper LifeSciences, Inc,
Waltham, MA). p16/Ink4a-Luc+/- female mice were in-
jected. intraperitoneally with D-Luciferin (150 mg/kg,
Gold Biotechnology), 3 minutes later anesthetized with
isoflurane and imaged using a 20-second integration time
and medium binning. Data were quantified as the sum of
photon flux recorded from both sides of each mouse using
Living Image software (Perkin Elmer, Waltham, MA.).

D. Dimensionality reduction with PCA

Principal component analysis (PCA) was performed
with Python [57] and Scikit-learn package [58]. First,
we applied PCA transformation on the entire training
dataset. However, the principal components were dom-
inated by the difference of mice strains. Animals of the
same strains were clustered on the plot of the first prin-
cipal component against the second one. We removed
strain difference by subtracting mean values of CBC fea-
tures calculated for the earliest age available for the se-
lected strain from values of CBC features of all animals
for this strain. For the simplicity we restricted our anal-
ysis to 30 strains, which were presented in the Peters4
dataset.

E. Statistical analysis of mortality data

The death records for animals linked with the MPD
dataset Peters4 were also available in MPD as the dataset
named Yuan2 [59]. The Spearman’s rank correlation test
was performed with Python and SciPy package [60]. The

FIG. 8: Network architecture of nonlinear auto-encoder
(AE) with the embedded modes identication. The

network is composed of AE, projector, linear dynamics
and auxiliary decoder blocks. The AE block encodes

input of 12 CBC parameters to the 4dimensional vector
and then reconstructs back the original input. The AE

consists of fully connected dense layers and residual
network blocks (ResNet ), which adds nonlinear
rectication transformations. The AE is trained

simultaneously on cross-sectional and longitudinal
datasets. The projector block takes a 4−dimensional

vector as an input and transforms it to a scalar z, which
we refer to as dFI. During training, a pair of vectors is
fed to the inputs: one yn for the present state of the

system and one yn + 1 for the future state. The linear
dynamics block solves the equation of rst-order

autoregressive processes and predicts the future state
zn + 1 . The auxiliary decoder block reconstructs the
original 12−dimension CBC vector from the output of

the linear dynamics block utilizing the decoder from the
AE block.

analysis was performed for two cohorts of mice. The first
cohort included all animals from the Peters4 dataset with
mortality data from Yuan2. The second cohort included
animals from the Peters4 dataset with the measurements
of body weight and IGF1 serum level taken from MPD
dataset named Yuan1 [26].
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FIG. 9: Schematic of residual network (ResNet) blocks.
These consist of two fully connected dense layers with

activation function of rectied linear unit (ReLU). Input
and output are interconnected by applying element-wise

addition.

F. Neural network structure

The neural network was designed to handle a spe-
cific problem: the disbalance of samples with longitu-
dinal and cross-sectional measurements. As inputs, the
network has three 12-dimensional vectors: one for the
cross-sectional dataset, and two others for the longitudi-
nal dataset corresponding to the present state and future
state of a sample. Inputs pass through the encoder part
of the auto-encoder block and then split up (see Fig. 8).
Cross-sectional samples are directed to the decoder part,
while longitudinal samples in the compressed representa-

tion are passed for the training autoregression part. Such
data flow allows the auto-encoder to be deeper and train
without overfitting by using more samples from a larger
cross-sectional dataset. The auto-encoder has the archi-
tecture of a linear stack of fully connected dense layers
and residual network blocks (ResNet) [61]. Dense layers
have a trainable weight matrix W, bias vector b, and
linear activation function by default. The ResNet block,
shown in Fig. 9, is a stack of two dense layers with an
activation function of rectified linear unit (ReLU)[62], in-
put and output are linked by applying element-wise addi-
tion. ResNet blocks add nonlinear rectification transfor-
mations to the original input, helping to learn non-linear
transformations. To prevent overfitting, we applied L2
regularization of factor 0.01 to model weights W.
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