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Abstract 

Phase contrast MRI has been used to investigate flow pulsatility in cerebral arteries, larger cerebral 
veins and the cerebrospinal fluid. Such measurements of intracranial pulsatility and compliance are 
beginning to inform understanding of the pathophysiology of conditions including normal pressure 
hydrocephalus, multiple sclerosis and dementias. We demonstrate the presence of flow pulsatility in 
small cerebral cortical veins, for the first time using phase contrast MRI at 7 Tesla, with the aim of 
improving our understanding of the haemodynamics of this little-studied vascular compartment. An 
automated method for establishing where venous flow is pulsatile is introduced, revealing significant 
pulsatility in 116 out of 146 veins, across 8 healthy participants, assessed in parietal and frontal 
regions. Distributions of pulsatility index and pulse waveform delay were characterized, indicating a 
small, but statistically significant (p<0.05), delay of 59±41 ms in cortical veins with respect to the 
superior sagittal sinus, but no differences between veins draining different arterial supply territories. 
Measurements of pulsatility in smaller cortical veins, a hitherto unstudied compartment closer to the 
capillary bed, could lead to a better understanding of intracranial compliance and cerebrovascular 
(patho)physiology. 
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1 Introduction 

Pulsatility in cerebral veins is thought to be a passive process, a response to intracranial pressure 
changes arising due to arterial pulsatility through the cardiac cycle (Greitz et al., 1992). This normal 
process may be altered in some pathologies, such as normal pressure hydrocephalus, dementias, 
including Alzheimer’s disease, and multiple sclerosis (Bateman, 2000; Greitz, 2004; Mitchell, 2008; 
Henry-Feugeas and Koskas, 2012; Beggs, 2013; Bateman et al., 2016; Rivera-Rivera et al., 2017). 
Non-invasive measurements of venous pulsatility have the potential to provide insight into such 
pathologies. For example, reduced intracranial compliance has been observed in both normal 
pressure hydrocephalus and multiple sclerosis patients (Bateman et al., 2016). Intracranial 
compliance in this context refers to the capacity of the intracranial tissue to dissipate the arterial pulse 
wave, predominantly through cerebrospinal fluid (CSF) movements and the cerebral vasculature.  

Phase contrast MRI (pcMRI) is a powerful tool for measuring blood velocity in cerebral blood 
vessels, and venous pulsatility has been observed previously (Bateman and Loiselle, 2007; Stoquart-
Elsankari et al., 2009; Bateman et al., 2016; Rivera-Rivera et al., 2017) in studies limited to large 
veins, such as the venous sinuses and jugular veins and in large cortical veins, which drain directly 
into the sagittal sinus (Bateman, 2003). Applying these measurements to smaller cortical veins would 
allow changes to be studied in a venous compartment closer to the capillary bed and a better 
understanding to be gained of the functional consequences of venous pulsatility at the tissue level.  

The primary objective of the work presented here is to assess whether pulsatility can be observed in 
small cortical veins. To this end, a cardiac gated 2D phase contrast MRI sequence (a standard vendor 
sequence) was acquired at 7 Tesla. Additionally, we introduce metrics to characterize this pulsatility 
in these veins, some of which are on the spatial scale of, or smaller than the in-plane image 
resolution. As such, we assess whether venous pulsatility can be resolved in small cortical veins by 
surveying over 100 cortical veins in 8 healthy participants and developing methods to characterize 
the pulsatility in these small blood vessels. 

2 Material and Methods 

Eight healthy participants (22-45 years; 4 female/4 male) took part in this study. The School of 
Psychology, Cardiff University Ethics Committee approved this study and subjects gave written 
informed consent prior to participating. This research was performed in accordance with the 
guidelines stated in the Cardiff University Research Integrity and Governance Code of Practice 
(version 2, 2018). Measurements were performed on a whole-body 7 Tesla research MR-system 
(Magnetom, Siemens Healthcare GmbH, Erlangen, Germany) with 32-channel head receive/volume 
transmit (Nova Medical, Wilmington MA). A whole-brain T2*-weighted 3D FLASH localizer image 
(0.6 mm isotropic, TR/TE = 18/11 ms; flip angle = 8°) was acquired for slice planning. A single 
pcMRI slice (0.6x0.6x5 mm; 192 mm FOV; TR/TE=11.55/6.94 ms; flip angle=10°) was positioned 
obliquely, approximately 2 cm above the corpus callosum and covering superior parietal and frontal 
regions (Figure 1a). The position was chosen to maximize the number of veins cutting transversally 
through the slice, with veins identified as hypointense in the localiser image. The pcMRI sequence 
was acquired with a 2D velocity encoding scheme, with venc = 10 cm/s in the through-slice direction. 
The value of 10 cm/s was chosen for sensitivity to slow-flowing small cortical veins (Figure 1b-c). 
An ungated (average over cardiac cycle) dataset was acquired first (24 s) to check slice positioning. 
A cardiac gated pcMRI dataset was acquired using prospective gating triggered using a 
photoplethysmogram with the sensor placed on the subject’s finger. The acquisition window was 
adjusted for each subject’s cardiac cycle duration and was set to be short enough to acquire all the 
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cardiac phases (33-45 cardiac phases per subject, median=38) before the next heartbeat. Note that a 
single cardiac phase took two TRs to acquire (23.1 ms), consisting of a pair of flow-encoded and 
flow-compensated readouts. Three signal averages were acquired for each k-space line, giving an 
approximate acquisition time of 15 minutes. Additionally, 3D (0.6 mm isotropic, 60 slices) T2*-
weighted FLASH (T2*w) and time of flight (TOF) images were acquired with the same centre and 
orientation as the pcMRI slice, for use in distinguishing veins from arteries. T2*w acquisition 
parameters: 192mm FOV; TR/TE=16/10ms; flip angle=8°; GRAPPA 2. TOF acquisition parameters: 
192mm FOV; TR/TE=12/4ms; flip angle=20°; GRAPPA 2. 

 

Figure 1: (A) pcMRI slice positioning for each subject (overlaid on a sagittal cut-through of the whole-brain T2*-
weighted localizer image). (B) Example flow velocity map (mean across cardiac cycle). (C) Windowed version of (B), 

ranging from -1 cm/s to +1 cm/s. 

Blood vessels were segmented using the pcMRI magnitude image (the magnitude of the complex 
difference between flow-compensated and flow-encoded images), averaged across the cardiac cycle. 
A threshold of two standard deviations above the image mean was applied to select small blood 
vessels. Individual vessels were indexed using 8-nearest-neighbour clustering, such that a super-
threshold voxel is included in the same cluster as any of the 8-nearest-neighbour voxels that are also 
above the threshold (Figure 2a-c). Each cluster lying within the brain was manually characterized as 
a vein, an artery, or the superior sagittal sinus (Figure 2d-g). Veins and arteries were distinguished by 
overlaying these clusters onto the T2*w and TOF images, as follows. Veins appear hypointense (short 
T2*) and arteries appear hyperintense (inflow) on the T2*w image. The TOF image provides 
heightened inflow contrast, with arteries appearing bright and the majority of veins are invisible on 
the TOF image. Minimum intensity projections of T2*w (Figure 2e), maximum intensity projections 
of TOF (Figure 2g), both calculated over the extent of the 5mm pcMRI slice, and the original 0.6mm 
slice thickness T2*w (Figure 2f) and TOF images were used to identify whether the cluster 
represented a vein or an artery. Where this was unclear, or a vein and an artery both overlapped with 
the cluster, the cluster was discarded. Finally, veins were sub-divided into larger (3-5mm diameter) 
cortical veins, which appeared at the external cortical surface (hereafter referred to as surface veins), 
of the type reported previously (Bateman, 2003) and smaller cortical veins (~0.6-2mm diameter), 
mostly lying at the intrasulcal cortical surface, which have not been studied previously (Figure 2h). 
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Figure 2: Demonstrating the classification of arteries and veins. (A) Example pcMRI magnitude image. (B) Clusters are 
formed such that each voxel with a pcMRI magnitude greater than two standard deviations above the mean is included in 

the same cluster as any of its 8 nearest neighbours (grey region) that are also above this threshold. In this example, red 
and blue voxels are separate clusters. (C) Example of the resulting cluster index map. (D-F) Example classification of a 
vein (blue) and an artery (red), with blue and red arrows used to identify the same locations across the images. (D) The 

two clusters of interest (blue and red), overlaid on the pcMRI magnitude image. (E) T2*w minimum intensity projection, 
showing a hypointensity at the blue cluster indicating a vein. (F) Sagittal slice of the T2*w image, centred on the blue 
cluster, showing the trajectory of the hypointense vein through the pcMRI slice (bound by the green lines). (G) TOF 

minimum intensity projection, showing a hyperintensity at the red cluster indicating an artery. (H) Example classification 
map overlaid on the pcMRI magnitude image. Arteries are shown in red and veins were sub-divided into large cortical 

veins, observed at the surface of the brain (yellow) and small cortical veins (blue). 
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For each cluster, flow velocity was calculated as follows from the pcMRI phase images (the phase 
difference between flow-compensated and flow-encoded images). A 10 mm (17x17 voxel) median 
filter was used to remove background phase offsets in the pcMRI phase images (Bouvy et al., 2016; 
Geurts et al., 2018). Voxelwise phase unwrapping was performed in the time (cardiac phase) 
dimension, such that phase jumps greater than π	were	unwrapped.	Such	wrapping	only	occurred	
in	the	superior	sagittal	sinus	and	arteries	with	high	flow	speeds.	Taking	the	spatial	mean	across	
voxels	for	each	cluster,	then	scaling	by	venc/π	to	convert	from	radian	units	to	cm/s	calculated	
the	flow	velocity	component	through	the	slice.	

The sagittal sinus pulse waveform was calculated from where the sagittal sinus cuts through the 
posterior portion of the slice. The top 20 voxels by intensity in the pcMRI magnitude image, 
averaged across the cardiac cycle, were selected. Median filtering and temporal unwrapping of the 
pcMRI phase dataset were performed, as described above. The high flow speed of the sagittal sinus 
meant that the signal phase in most of the voxels wrapped around multiple times. In this study, the 
sagittal sinus waveform was required for assessing timing differences, rather than absolute flow 
speeds, therefore unwrapping in space was performed to move the signal phase from all 20 voxels 
into the same wrapping point, rather than the true flow speed. The posterior portion of the sagittal 
sinus flowed superior to inferior, encoding a negative signal phase. Therefore, unwrapping in space 
was accomplished by subtracting 2π from any voxels with positive signal phase.	Taking a median 
across the 20 voxels and scaling by venc/π to convert from radian units to cm/s calculated the sagittal 
sinus pulse waveform.	

Venous pulse waveforms were characterized firstly by detecting the presence of pulsatility based on a 
statistical criterion, then by calculating pulsatility index (PI) and temporal lag of the waveform 
relative to the sagittal sinus. In order to assess whether a waveform was pulsatile, we define a 
statistical parameter, pulsatility contrast to noise ratio (PCNR), as follows. It was assumed that lower 
frequency cardiac cycle-locked variations in the flow waveform were pulsatility, whereas higher 
frequency variations were noise. Waveforms were low-pass filtered (Savitzky-Golay; 3rd order, 15 
timepoint frame size). The velocity range (Δv) was taken as the range of this filtered waveform. 
PCNR was defined as the ratio of Δv and the standard deviation of the residuals between unfiltered 
and filtered timepoints (res) – see equation 1 and Figure 3: 

𝑃𝐶𝑁𝑅 = !"
!

!!! !"#!!!
!!!

 Equation 1 

PCNR is analogous to a t-statistic and, unlike PI, PCNR is not biased by low mean values. A 
statistical criterion for pulsatility was set as PCNR > 3.9 based on Monte Carlo simulations of the 
PCNR null distribution (see Figure 3), such that a threshold of PCNR > 3.9 corresponds to p<0.01. PI 
was calculated as Δv / mean(|v|). 
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Figure 3: (a) Demonstrating definition of the PCNR parameter (see equation 1), with filtered curve (line) overlaid on 
original waveform (dots). PCNR is the ratio of the range of the curve Δv and the standard deviation of the residual (res). 
(b) Monte Carlo simulations, calculating PCNR from Gaussian noise waveforms. The 99th percentile corresponding to 

PCNR > 3.9, whilst the distribution remains unaffected by changes in noise level or number of timepoints (data not 
shown). (c) example waveform which is not classed as pulsatile (PCNR ≤ 3.9) and (d) one that is (PCNR > 3.9). 

Temporal lag was calculated relative to the superior sagittal sinus by calculating the peak cross-
correlation between the unfiltered vein and sagittal sinus flow velocity waveforms, as demonstrated 
in Figure 4. For comparison, the temporal lags and PCNR of artery cluster waveforms were also 
calculated by the same method as for veins. PI was not assessed for arteries because the 10 cm/s venc 
was optimized for the flow speed of small veins. Higher arterial flow speeds caused signal phase 
wrapping, resulting in inaccurate mean flow velocity and PI estimates for arteries. 

 

Figure 4: Demonstrating the calculation of the temporal 
lag of each blood vessel, relative to the superior sagittal 
sinus. For this example, flow velocity waveforms are 
shown for the superior sagittal sinus and a small vein from 
a single subject. The lag of the pulse waveform of each 
blood vessel was calculated as the peak cross-correlation 
with the sagittal sinus waveform, as shown by the vertical 
dashed line. 
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To explore spatial variations in the venous pulsatility characteristics, vessels were considered 
according to the local feeding arterial territory in which they lay, i.e. anterior, left-middle, right-
middle or posterior cerebral artery. Feeding arteries from the four vascular territories were clearly 
separable in the TOF image and four regions were manually drawn at the level of the pcMRI slice, 
making reference to literature example arterial territory maps such as those found in Mut et al. (2014) 
and Hart et al. (2018). Vessel clusters lying within each region were labeled accordingly. 

3 Results 

146 veins were identified across the 8 subjects (range 12-26 veins per subject), of which 116 showed 
pulsatility (range 8-21 veins per subject), determined by PCNR > 3.9. Subject-averaged venous flow 
velocity waveforms are presented in Figure 5 for all veins that show pulsatility. The equivalent plot 
for the remaining veins with PCNR ≤ 3.9 is presented in Supplementary Figure S1. When these ‘non-
pulsatile’ veins are averaged together within each subject, pulsatility appears present in 4 of the 
subjects. This suggests that at least some of these ‘non-pulsatile’ veins are pulsatile and could be 
resolved with a higher signal-to-noise ratio. For comparison, out of the 432 arteries identified, 385 
showed pulsatility. Sub-dividing the veins, 59 out of 69 identified surface veins (3-5 mm diameter) 
and 57 out of 77 smaller cortical veins (<2 mm diameter) were pulsatile. Qualitatively, there was no 
clear trend in the orientation, tortuosity or location of the non-pulsatile veins. 

 

Figure 5: Cardiac cycle synchronized venous blood flow time-courses for each subject (mean across all pulsatile cortical 
veins; N.B. does not include the venous sinuses). 

The distributions of PCNR, PI and temporal lag across all veins from all subjects are presented in 
Figure 6, split into smaller and surface veins. The distributions appear skewed, so summary values of 
PI and temporal lag were calculated for each subject by taking the median across vessels. These 
summary values are reported as follows: PI = 0.30±0.05 (mean±standard	deviation	across	
subjects)	when all veins were combined. PI values sub-divided into small cortical veins and larger 
surface veins are presented in Figure 7. A comparison of PI between small cortical veins and larger 
surface veins did not reach significance (t(7) = 1.56; p = 0.16; 2-tailed paired t-test across 
participants). For	all	veins	combined temporal lag = 59±41	ms	and	for	arteries	temporal	lag	=	
23±105	ms,	both	with	respect	to	the	superior	sagittal sinus.	Temporal	lag	values sub-divided into 
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small cortical veins and larger surface veins and for arteries are presented in Figure 7. Small cortical 
veins (t(7) = 3.43; pcorr = 0.044) and all veins combined (t(7) = 4.11; pcorr = 0.018) showed a 
significant delay with respect to the superior sagittal sinus, when temporal lag was compared to zero 
with a 2-tailed t-test and Bonferroni corrected for 4 comparisons (small veins, surface veins, all veins 
combined and arteries). For completeness, the temporal lags of surface veins (t(7) = 3.21; pcorr = 
0.059) and arteries (t(7) = 0.62; pcorr > 1) were not significantly different from the superior sagittal 
sinus. A comparison of temporal lags between smaller cortical veins, larger surface veins and arteries 
did not reach significance (F(2,21) = 0.57; p = 0.58). 

 

Figure 6: Histograms of (left) PCNR, (middle) PI and (right) temporal lag for small veins (top) and surface veins 
(bottom). For PCNR, all veins are included, whereas for PI and temporal lag, only pulsatile veins (PCNR >3.9) are 

included. The dashed line in the left panels corresponds to the PCNR = 3.9 threshold. The dashed line in the right panels 
indicates zero lag compared to the superior sagittal sinus. 

Temporal lag compared across the four vascular territories (median across vessels within each 
subject, one-way ANOVA across subjects) did not show significant inter-regional differences for 
either veins (F(3,27) = 0.39; p = 0.76) or arteries (F(3,28) = 0.13; p = 0.94). Vein PI compared across 
the four vascular territories did not reach significance (F(3,27) = 0.68; p = 0.57). Note that no 
pulsatile veins were identified in one territory (anterior cerebral artery) for a single subject, so this 
was treated as missing data in each ANOVA. Histograms of temporal lag for all veins and all arteries 
across all subjects are presented split into vascular territories in Figure 8. 
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Figure 7: Boxplots for (A) pulsatility index (PI) and (B) 
temporal lag, relative to the superior sagittal sinus. Boxes 
show median and interquartile range across subjects and 
each subject’s data (median across vessels) is presented as 
a dot. * Bonferroni-corrected p <0.05 that the temporal lag 
is different from zero. 

4 Discussion 

We have directly observed pulsatility in small cortical veins using pcMRI at 7T with venc= 10 cm/s. 
Although a similar observation has been made previously in similar-sized cerebral arteries	(Bouvy	et	
al.,	2016;	Schnerr	et	al.,	2017;	Geurts	et	al.,	2018),	we	believe	this	to	be	the	first	reported	
observation	of	pulsatility	in	small	cortical	veins,	upstream	of	the	large	cortical	veins	draining	
directly	into	the	superior	sagittal	sinus	reported	previously	(Bateman, 2003). We extend this 
novel finding by surveying 146 veins across 8 subjects and develop methods to characterize 
pulsatility in these blood vessels, which are on the order of the 0.6 mm in-plane voxel size. 116 out of 
these 146 veins (79%) were characterized as pulsatile. Finally, we survey the distribution of PI and 
temporal lag across this healthy population of cortical veins. 

This work establishes that small cortical veins are pulsatile, however, it does not establish how these 
measurements vary across a healthy population, or to what extent this pulsatility can be perturbed, 
either with physiological stimulus or pathophysiology. The observation of pulsatility is robust across 
the large number of veins studied, observed in 116 of the 146 veins studied and seen in multiple 
veins in all 8 subjects studied. Therefore the data presented here introduces the phenomenon of 
pulsatile small cortical veins and future studies are required to establish test-retest reproducibility and 
perturbations of the phenomenon. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.912329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.912329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   Pulsatility in small cortical veins 

 
10 

 

Figure 8: Histograms of temporal lag for all pulsatile veins (PCNR > 3.9) and all pulsatile arteries (PCNR > 3.9) within 
each vascular territory. For reference, the dashed line marks zero lag with respect to the superior sagittal sinus. Vascular 
territories are characterised by the regions broadly supplied by the anterior cerebral artery (ACA), left- and right- middle 

cerebral artery (L MCA; R MCA) and posterior cerebral artery (PCA). An example territory map overlaid on TOF 
maximum intensity projection is shown at the centre, with colour of each territory matching the histograms for vessels 

from that territory. 
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Our measurement of small vein pulsatility can be applied to provide new information for 
understanding the role of veins in pathologies with altered intracranial haemodynamics and 
compliance. Normal pressure hydrocephalus is associated with decreased intracranial compliance 
(Bateman, 2000; Bateman and Loiselle, 2007; Wagshul et al., 2011; Beggs, 2013; Bateman et al., 
2016), which manifests in the sagittal sinus pulse waveform as a decrease in arteriovenous delay 
(AVD). Similar evidence for decreased intracranial compliance has been observed in multiple 
sclerosis (Bateman et al., 2016) and Alzheimer’s Disease (Rivera-Rivera et al., 2017). Proposed 
pathophysiological mechanisms for this decreased intracranial compliance include impaired CSF 
outflow or absorption (Greitz, 2004), venous hypertension (Bateman, 2008; Wagshul et al., 2011; 
Beggs, 2013), or breakdown of the Windkessel mechanism leading to the pulse wave propagating 
through the capillary bed (Bateman, 2008; Beggs, 2013). Our measurement of small vein pulsatility 
can be used to study these pathophysiological mechanisms closer to the level of the capillary bed, 
whereas the venous sinuses and jugular veins are further downstream. 

The results presented here have the potential for informing the future study of venous function, 
intracranial pulsatility and compliance (Wagshul et al., 2011). These parameters can be measured 
using direct intracranial pressure measurements of pressure pulsatility, or using transcranial Doppler 
ultrasound or pcMRI to measure flow pulsatility. Short of invasive intracranial pressure 
measurements, intracranial compliance is typically inferred either through measurements of arterial 
and venous flow-velocity pulse waveforms, using the AVD as a surrogate measure of compliance 
(Bateman et al., 2016), or through comparing arterial and CSF pulse waveforms (Baledent et al., 
2001) and fitting a transfer function to calculate intracranial pressure (Alperin et al., 2000). The AVD 
method is typically calculated based on measurements in large blood vessels feeding and draining the 
brain, such as the carotid arteries and venous sinuses. Therefore it is sensitive to any changes in 
arterial, venous and microvascular compliance. The method using measurements of CSF flow 
velocity relies on measuring low flow velocities in CSF, with the associated lower signal-to-noise 
ratio. The small veins that are the focus of this study are closer to the tissue of interest than the 
venous sinuses or cerebral aqueduct. 

To place our results in context with the literature, venous flow speeds observed of the order 1 cm/s 
are within the range predicted previously (Piechnik et al., 2008), and flanked by flow velocity values 
reported in basal ganglia and centrum semiovale arteries (Bouvy et al., 2016; Geurts et al., 2018). 
The pulsatile waveforms of the veins observed here have a similar shape to those reported in basal 
ganglia and centrum semiovale arteries (Bouvy et al., 2016). Cortical vein PI = 0.30±0.05 is within 
the range of 0.2-0.5 reported previously in the superior sagittal sinus (Stoquart-Elsankari et al., 2009; 
Rivera-Rivera et al., 2017) and the PI values of 0.40±0.09 and 0.28±0.07 reported previously in basal 
ganglia and centrum semiovale arteries, respectively (Bouvy et al., 2016). To put these PI values into 
perspective, internal carotid artery PI of 0.8-0.9 has been reported previously (Rivera-Rivera et al., 
2017; Bouillot et al., 2018). 

Pulsatility was characterized in 146 veins, allowing an initial survey of PI and temporal lag to be 
performed. Both showed non-Gaussian distributions, with positive skews (Figure 6). To further 
assess these distributions, comparisons were made in PI and temporal lag by sub-dividing veins into 
small cortical veins and larger surface veins, and in temporal lag by comparing veins to arteries. 
Vessels were also sub-divided by vascular territory. To avoid confounding comparisons by mixing 
intra- and inter-subject variability, summary statistics of median across veins for each subject were 
used for these comparisons, which did not reach significance. The small number of subjects 
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combined with inter-subject variability (Figure 7) limit the power of these comparisons to detect 
small differences. However, Figures 7 and 8 do suggest hints of small veins having higher PI than 
surface veins and of an earlier arterial and later venous temporal lag (with their modes lying either 
side of zero in Figure 8). A limitation of the temporal lag measurement is the sensitivity of the cross-
correlation to noise in the superior sagittal sinus waveform, which has potential to introduce subject-
specific bias in the temporal lag reported. This could explain the large variance in artery temporal 
lags observed in this study (Figures 7b and 8). For example, the second histogram peak at ~ 200 ms 
in arterial temporal lag is largely due to a single subject, which could be driven by a noisy sagittal 
sinus waveform. 

An interesting finding is that the flow waveform from the superior sagittal sinus leads the flow 
waveform of small cortical veins, despite being downstream of these veins. A possible explanation 
for this is that the velocity wave-front propagates back upstream from the superior sagittal sinus 
towards the smaller veins sampled. This observation, along with the small arterial waveform leading 
that of the superior sagittal sinus, would be consistent with the effect of the arterial pressure wave, 
and associated increase in arterial volume, resulting in a decrease in superior sagittal sinus volume 
first, followed by the smaller veins. Such a mechanism implies transmission of the arterial pressure 
pulse through the brain tissue. An alternative explanation of direct transmission of the arterial 
pressure pulse through the arteries, through the capillaries and on to the veins (Hahn et al., 1996; 
Rashid et al., 2012) is perhaps less likely given the observations. 

Technical considerations of this study include partial volume errors, arising due to the focus on small 
veins whose diameter is on the order of the in-plane voxel size and considerably smaller than the 
slice thickness, resulting in veins occupying only a fraction of the voxel volume. This produces a 
large uncertainty in the cross-sectional area, which would be required for measurements of absolute 
flow and stroke volume in the veins. Furthermore, most vessels will not pass perpendicularly through 
the image slice, and thus not parallel to the flow encoding direction, reducing the detectability of 
motion. These partial volume considerations are likely to reduce the detection of pulsatility rather 
than to result in false positives. In addition, compliance-based changes in this voxel volume fraction 
across the cardiac cycle will result in changes in the signals measured that are not directly related to 
flow speed. This could bias PI measurements. Changes in cross-sectional area across the cardiac 
cycle have been observed in the middle cerebral artery (Warnert et al., 2016), but to best of our 
knowledge have not been reported in the small cortical veins and arteries studied here. Cortical veins 
may be expected to show a smaller change in cross sectional area than cortical arteries (Lee et al., 
2001; Kim et al., 2007; Chen and Pike, 2009, 2010; Wesolowski et al., 2019). 

Use of 10 cm/s venc maximized dynamic range for measuring flow speed in the slow-flowing cortical 
veins at the expense of being able to quantify flow in blood vessels supporting faster flow, such as 
arteries and the sagittal sinus. Future studies interested in all of these blood vessels will either need to 
include multiple acquisitions with different venc values optimized for each type of blood vessel, or 
work to find an intermediate venc, sacrificing contrast for slow flowing veins to ensure the signal does 
not wrap in faster flowing blood vessels. The manual identification of veins and arteries is subject to 
inter-observer differences and is labour intensive. The small number of subjects studied here means 
that inter-subject variability cannot be reliably assessed in this study. Cerebral blood pressure is 
modulated by factors such as age, gender, hydration level and caffeine intake, so these would also 
need to be controlled for when investigating inter-subject variability. 

This study acquired three signal averages for each k-space line, making acquisition time 
approximately 15 minutes. However, the signal-to-noise ratio was more than sufficient to clearly 
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resolve pulsatility in small cortical veins, so a single average could be used in future, reducing the 
acquisition time to 5 minutes. Employing acceleration techniques, such as parallel imaging and view 
sharing, could further shorten the acquisition time. This study uses a 2D acquisition and a single venc 
direction, which limits the coverage of small veins, so future work will assess undersampled 3D 
pcMRI approaches (Rivera-Rivera et al., 2017). 

In conclusion, we report the first observation of pulsatility in small (~0.6-2mm) cortical veins in-vivo 
in humans. We present methods to characterize pulsatility in small blood vessels and present a survey 
of the distributions of pulsatility in cortical veins in the healthy brain. This measurement has 
implications for studies of cerebral venous function and offers the potential for more detailed 
investigation of cerebral haemodynamics, cerebral compliance and intracranial pressure. 

5 Abbreviations 

AVD  - Arteriovenous delay 

PCNR  - Pulsatility contrast to noise ratio 

CSF  - Cerebrospinal fluid 

pcMRI  - Phase contrast MRI 

PI  - Pulsatility index 

TOF  - Time of flight angiography 

venc  - Velocity encoding gradient cutoff velocity 
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