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Abstract 18

A repeating triplet-sequence ABA− of non-overlapping brief tones, A and B, is a valued 19

paradigm for studying auditory stream formation and the cocktail party problem. The 20

stimulus is “heard” either as a galloping pattern (integration) or as two interleaved 21

streams (segregation); the initial percept is typically integration then followed by 22

spontaneous alternations between segregation and integration, each being dominant for 23

a few seconds. The probability of segregation grows over seconds, from near-zero to a 24

steady value, defining the buildup function, BUF. Its stationary level increases with the 25

difference in tone frequencies, DF , and the BUF rises faster. Percept durations have 26

DF -dependent means and are gamma-like distributed. Behavioral and computational 27

studies usually characterize triplet streaming either during alternations or during 28

buildup. Here, our experimental design and modeling encompass both. We propose a 29

pseudo-neuromechanistic model that incorporates spiking activity in primary auditory 30

cortex, A1, as input and resolves perception along two network-layers downstream of A1. 31

Our model is straightforward and intuitive. It describes the noisy accumulation of 32

evidence against the current percept which generates switches when reaching a 33

threshold. Accumulation can saturate either above or below threshold; if below, the 34

switching dynamics resemble noise-induced transitions from an attractor state. Our 35

model accounts quantitatively for three key features of data: the BUFs, mean durations, 36

and normalized dominance duration distributions, at various DF values. It describes 37

perceptual alternations without competition per se, and underscores that treating 38

triplets in the sequence independently and averaging across trials, as implemented in 39

earlier widely cited studies, is inadequate. 40
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Author summary 41

Segregation of auditory objects (auditory streaming) is widely studied using ambiguous 42

stimuli. A sequence of repeating triplets ABA− of non-overlapping brief pure tones, A 43

and B, frequency-separated, is a valued stimulus. Studies typically focus on one of two 44

behavioral phases: the early (say, ten seconds) buildup of segregation from the default 45

integration or later spontaneous alternations (bistability) between seconds-long 46

integration and segregation percepts. Our experiments and modeling encompass both. 47

Our novel, data-driven, evidence-accumulation model accounts for key features of the 48

observations, taking as input recorded spiking activity from primary auditory cortex (as 49

opposed to most existing, more abstract, models). Our results underscore that assessing 50

individual triplets independently and averaging across trials, as in some earlier studies, 51

is inadequate (lacking neuronal-accountability for percept duration statistics, the 52

underlying basis of buildup). Further, we identify fresh parallels between evidence 53

accumulation and competition as potential dynamic processes for choice in the brain. 54
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Introduction 55

Stimulus sequences of interleaved A and B pure tones have been widely used in 56

studying segregation of distinct objects in an auditory scene (auditory streaming), in 57

human psychophysics [1–6], invasive neurophysiology [1, 3, 7, 8], or in experiments 58

implementing both [9]. A valued stimulus is triplet-streaming ABA− with the tone 59

frequency difference, DF , as a tunable parameter [10]; Fig 1. For small DF human 60

listeners most likely perceive integration (one galloping rhythm); for DF large, 61

segregation dominates (two simultaneously heard parallel streams). The initial percept 62

is typically integration but within seconds the probability of segregation increases (“the 63

buildup phase”) and perceptual switching eventually occurs (“perceptual bistability”). 64

Alternating percepts have variable durations, described by either gamma or lognormal 65

distributions [2]. Time courses of spiking activity (macaque, primary auditory cortex, 66

A1, [1]) show dynamical features (adaptation over 1-2 seconds) that were interpreted as 67

neural correlates of buildup, although the behavioral and physiological experiments were 68

not conducted together [1, 3]. 69

Dynamics of buildup and/or perceptual alternation for ambiguous auditory stimuli 70

were described by computational models based on signal processing [1, 3, 11–13], 71

competition dynamics [6, 14], coupled-oscillator patterning [15,16], evidence 72

accumulation [5], and statistical descriptions [17]; also reviews by [18] and [19]. 73

However, with few exceptions (e.g. [1, 6]) these models did not incorporate 74

neurophysiological data. Furthermore, experimental and modeling studies primarily 75

focused on either buildup, describing the probability of segregation during short, tens of 76

seconds, trials [1, 3, 4, 20,21], or on the stationary phase of alternations, characterizing 77

the statistics of percept durations over long, several minutes, trials [2, 5, 6]. 78

Here we designed the experiment (30 s trials with many trials per condition/subject) 79

so that we could characterize these features simultaneously. Then we proposed a model 80
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that takes spike-recordings from A1 as input, and accounts for both the behavioral time 81

course of buildup and the observed duration statistics during alternations, over a range 82

of DF values: 3, 5, 7 semitones. Our model is neuromechanistic-like, transforming the 83

neuronal input for processing in two evidence-accumulators downstream of A1. From the 84

input-sensory level, sampling of spike counts across A1-units provides a measure for the 85

contribution of each triplet to the evidence-accumulation stage; if evidence against the 86

current percept exceeds a threshold then a perceptual switch occurs and accumulation 87

resets. This approach parallels in spirit Barniv and Nelken’s model [5] although that 88

was implemented from a Bayesian-viewpoint. Our model is data-driven: input is 89

neural-based; initial parameters are estimated from our behavior data (mean probability 90

of segregation) then fine-tuned to match the gamma-distributed percept durations. 91

We propose that although the model is not competition-based it shares some 92

features of such approaches: Adaptation is key in competition dynamics; evidence 93

accumulation might be viewed as recovery from adaptation. Matching duration 94

statistics with competition requires some balancing of noise and adaptation [22]; its 95

analogue is the interplay between accumulation and noise. Adaptation strength, when 96

set near the boundary between noise-free oscillatory and noise-driven attractor 97

dynamics, constrains dominance durations [23]; comparably, our accumulators have a 98

novel feature of saturation which if set below but near the switching threshold, produces 99

observed statistics only if adequate noise is present. 100

Importantly, our modeling highlights that accounting for the duration statistics of 101

behavioral data is key when studying auditory bistable perception. With quantitative 102

matches to these data the buildup phase is then naturally reproducible by an alternating 103

renewal process [17]. We show that a widely cited signal-detection approach [1, 3, 12, 21], 104

based on treating each triplet independently without accumulation, that overlooked this 105

crucial feature does not account for the single-trial percept duration statistics. We 106
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argue for caution when applying it to test neural-inspired behavioral hypotheses. 107

Results 108

We first outline the rationale for our study and presentation. In behavioral experiments 109

human participants continuously reported their ongoing perception, integration or 110

segregation, which after analysis yielded distributions for percept durations (Section A). 111

We introduce the essence of our EVidence Accumulation (EVA) model in a basic form 112

(Section B.1). With each triplet we suppose there is an incremental urge r, to switch 113

from the current percept/interpretation to the alternate one; r is the “drift” rate for the 114

event sequence that, with zero-mean noise, drives fluctuating accumulation in the EVA 115

model that eventually surpasses threshold. We illustrate that this basic model captures 116

the duration statistics for a chosen case, near-equidominance. We next elaborate the 117

model by formulating a neuronal basis for evaluating r (Section B.2). We utilize the 118

single-unit spike counts for A-tone selective A1 neurons recorded over a range of 119

experimental conditions [1] and applied them to our case of DF=3, 5, 7. The relative 120

responses to B-tones are viewed, according to the population separation hypothesis [7], 121

as evidence for segregation (against integration) when spike counts are generally smaller, 122

or against segregation when larger. A challenge arises. If Nin A1 neurons are recorded 123

the spike count deviates from the mean like 1/
√
Nin. Thus, if Nin is large and one 124

supposes a fixed threshold for signal detection, the classification based on spike counts 125

becomes binary and problematic for resolving a perceptual response that is graded over 126

conditions. Our full EVA model (Section B.3) attempts to meet the challenge by having 127

a two-layer pre-processing stage that includes Nsl units, each of them sampling a few A1 128

neurons (Nin not large). The proportion of Nsl units which respond to thresholded 129

activity over neuronal ensembles in A1 provides the incremental evidence, the value of r, 130

for the accumulator that favors integration. The complementary proportion of Nsl units 131
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that do not respond to thresholded A1 activity provides the incremental evidence to the 132

accumulator against integration. 133

Our approach overcomes two shortcomings of a well-known signal detection model 134

for auditory streaming [1]. The Micheyl et al treatment [1] does not account for 135

single-trial data, the duration distributions which form the basis for computing the 136

buildup function (BUF); it averages across trials, without accumulating evidence 137

event-to-event. The signal detection scheme of Micheyl does not resolve, with Nin large, 138

a family of BUFs that show gradation across conditions. 139

In short, we combined neural data from [1] with behavioral data from our 140

experiments (see Section A) to investigate if the signal detection model when applied on 141

a single-trial basis could yield percept durations in a self-consistent fashion. We found it 142

did not; and moreover that it was unable to fit buildup functions that, for different 143

stimulus conditions, were graded, not widely separated (Section C). We then developed a 144

neural-based evidence accumulation-like explanation of the observed data, as alternative 145

to explicit competition, and with the advantage of being intuitive (Section B). 146

A. Auditory triplet-streaming 147

A.1. Experimental protocol 148

Fifteen human subjects with normal hearing listened to sequences of repeating ABA− 149

triplets and were instructed to continuously report their ongoing percept by selectively 150

pressing one of two different buttons on a keypad. Subjects began reporting their 151

percept typically 2 s after stimulus onset as integration (I; a single, coherent stream 152

ABA−ABA−) or segregation (S; two distinct streams A−A−A−A− and −B−−−B−). 153

Stimuli were sequences of triplets ABA− that consisted of alternating high (A) and low 154

(B) pure tones followed by a 125 ms silent pause ”−” (Fig 1A-B). In total, triplets were 155

500-ms in duration and were repeated 60 times per trial. Tones were separated in 156
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frequency by DF semitones chosen from three conditions (DF= 3, 5, 7) with each 157

condition being presented five times per experimental block (nine blocks total). This 158

resulted in group data (from 15 subjects and 45 trials per subject) with 675 30-s trials 159

for each of three DF values. 160

A.2. Behavioral task performance 161

For each DF condition the buildup function was constructed by computing the 162

probability of segregation from trial-averaging (Fig 1 B-C). The buildup functions 163

started at zero and increased over time before stabilizing to certain DF -dependent 164

asymptotic values, similar to reports by [1, 3, 5, 12]. They started at zero due to the 165

latency period (when no percept was identified) and not because the initial percept was 166

I; see Methods, also [4]. While I first percepts were indeed more likely, S first percepts 167

were reported too. The proportion of segregation as initial percept increased with DF 168

from 103 out of 675 trials at DF=3 to 137 at DF=5 and 220 at DF=7. The 169

probability of segregation increased faster and reached higher levels at larger DF , with 170

transient times of approximately 16, 10, 5 s after stimulus onset and with asymptotic 171

values 0.45, 0.6, and 0.65 at DF= 3, 5, 7 respectively. 172

We computed distributions of normalized phase durations for subsequent durations, 173

separately for each DF , and found them to be gamma-like, consistent with previous 174

results on subsequent percepts [2, 5, 6]. Herein we report that duration distributions of 175

the first percept are also gamma-like (Fig 1C; see also S1 Fig). We used statistical 176

bootstrapping to compute the shape parameter α of each gamma distribution (see 177

Methods), and determined that α ≈ 2 for normalized first durations and α ≈ 2.6 for 178

subsequent durations. The distributions satisfied the scaling property γ1 ≈ 2CV with 179

skewness γ1 and coefficient of variation CV ≈ 0.7 and CV ≈ 0.6 respectively, similar to 180

reports by [24]. For integration, first percept durations were found to be longer in the 181

mean than subsequent percept durations (with statistical significance near 182
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equidominance; p-value of 0.0003 at DF=3 and 0.0184 at DF=5, right-sided Wilcoxon 183

rank-sum test at significance level 5%). Mean durations of first I-percept were 10.9, 5.3 184

and 3.1 s, decreasing with DF= 3, 5, 7 (p-value of 0.0002 when comparing DF=3, 5 185

and 0.0014 for DF=5, 7). Mean durations of first S-percept were 3.5, 6.6, 8.1 s 186

(comparisons did not produce statistically significant differences, possibly due to fewer 187

instances of first S percepts). For subsequent percepts the means were the following: 188

5.4, 3.4, 3.1 s for I and 4.9, 5.2, 5.6 s for S at DF= 3, 5, 7, showing a decreasing trend 189

for integration between DF=3 and DF= 5 or 7. 190

B. Auditory streaming as an evidence accumulation process 191

Herein we propose an evidence accumulation model that accounts for the observed 192

dynamical features of buildup and alternations: gamma-like distributions for first and 193

subsequent durations, DF -dependent mean durations, and psychometric buildup 194

functions. Data-based [1] estimates of spike counts of neurons in the primary auditory 195

cortex (area A1) are sampled by a population of units and their summed responses lead 196

to a population vote and to an increment of evidence “for” and “against” the current 197

percept. When enough evidence has built up against the current percept, there is a 198

switch to the opposite percept. Current increments can be positive or negative but only 199

when the accumulated evidence is adequate, does a switch occur. 200

B.1. A basic state-dependent model for evidence accumulation 201

Our EVA model describes activity that accumulates and saturates at a target-level, T , 202

just-subthreshold. The activity Xn is updated at the nth triplet according to: 203

Xn+1 = Xn + (T −Xn)r + εn+1 (1)

where T < 1 (assuming a unitary threshold) and where εn+1 ∼ N (0, σ2) are 204

independent random variables (Gaussian noise of zero mean and standard deviation σ). 205
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The activity increments are state dependent and proportional to the difference T −X, 206

with constant rate r. Accordingly, the activity X drifts towards T stochastically if 207

0 < r < 1. Accumulation slows with Xn near T and the activity can cross the threshold 208

only due to noise. At each threshold-crossing Xn is reset to a value XR taken as the 209

initial condition for the subsequent dynamics. The time D between successive threshold 210

crossings represents a percept duration; it equals ND, the number of triplets between 211

threshold crossings multiplied by the onset time from one ABA− to the next (500 ms). 212

Phenomenologically, Eq (1) accounts for the features of the behavioral data 213

described in Section A: the observed DF -dependent mean durations, the gamma-like 214

shape of the distributions for first and subsequent durations, and the time course of the 215

psychometric buildup. As an example, consider DF=5 and take r=0.6, which is the 216

asymptotic, approximate value of the behavioral buildup, near equidominance (Fig 1C; 217

red curve). With initial and resetting conditions X0 = 0.7 and XR = 0.6, and with 218

parameter settings T = 0.9, σ = 0.085, we simulated Eq (1) 675 times. The computed 219

distribution of first integration normalized durations and the corresponding 220

trial-averaged buildup function (Fig 2; right panels) are in agreement with Fig 1C-D. 221

To demonstrate the robustness of the model results and dependence on parameter 222

values, we simulated Eq (1) with various values for target T and noise level σ. The 223

simulations took into account the latency period during each trial, and the proportion 224

of first percepts reported as integration and segregation, during the behavioral 225

experiment at DF=5 (as in Switches and resetting conditions, in Methods). In this way 226

we could assign a “percept”-type identity label to each event between consecutive resets. 227

For any fixed T we found no threshold-crossings when σ was small. Alternations 228

between “percepts” occurred only as σ increased, with dominant durations distributed 229

as follows (e.g. for first I-percept; see Fig 2): normal distributions (region labeled N), 230

gamma-like distributions with shape close to that found experimentally (region G) and 231
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exponential distributions (region E), respectively. The values of σ and T for which 232

numerically generated mean percept durations were within one and two standard 233

deviation(s) of the experimental mean were also calculated (Fig 2; sheets of black dots 234

and gray dots). There is, therefore, a region in the parameter space where critical 235

statistical properties of the behavioral data can be reproduced. 236

B.2. Linking neural data with behavioral data in the EVA framework 237

As in Micheyl et al. [1] we seek to relate perceptual buildup and bistability reported by 238

human subjects during triplet-streaming to animal neural data. Spiking activity evoked 239

by the B-tone was recorded from tone-A-selective neurons in macaque primary auditory 240

cortex, A1 [1]. At any triplet position in the ABA− sequence the mean spike counts, 241

mDF , decreased with increased DF . The time course of mDF exhibited fast adaptation 242

and stabilized by the third triplet [1, Fig.3]. 243

For modeling we assume that individual spike counts are Poisson distributed with 244

means mDF , and that m3 > m5 > m7 for DF=3, 5, 7. The responses of A1 neurons 245

will be processed by downstream neurons whose responses at each triplet then feed into 246

the EVA accumulator. Suppose that Nin A1-neurons activate a neuronal unit 247

downstream if the mean input exceeds a threshold Cth 248

u = H

 1

Nin

Nin∑
j=1

Spkj − Cth

 (2)

where H(·) is a Heaviside function. Such a sampler neuron is binary, taking a value u of 249

0 or 1 with probabilities p and 1− p, for triplets after a brief transient phase of 250

adaptation in A1. In line with the population separation hypothesis [7], when spike 251

counts are large (so u=1) we tag the sampler as evidence for integration; likewise when 252

spike counts are small (u=0), we tag the sampler as evidence against integration. As 253

Nin increases, the averaged spike count variability around the mean mDF decreases 254

inversely with
√
Nin (Fig 3). As such, probabilities pDF obtained from mDF at 255
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different DF=3, 5, 7 vary from values being graded (when Nin is small) to values 256

spread apart (when Nin is large), approaching extreme values of zero or one (when Nin 257

is very large); Fig 3. A suitable variability in the A1-neuronal population can be chosen 258

(more about this later in Sections B.4 and C.1) to ensure that probabilities pDF at 259

DF=3, 5, 7 achieve the graded asymptotic values of the behavioral buildup functions 260

(e.g. 0.45, 0.6, and 0.65 as in Fig 1C). This is an important feature of the EVA model; 261

indeed, without adequate variability in the readout of A1 responses we cannot account 262

for graded BUF levels. 263

A question remains: How can we link the probability of a sampler unit becoming 264

active stimulated by A1-neurons to the neuronal drive of the accumulator, r in Eq (1)? 265

We resolve this problem by including an entire layer of binary units u as above, say Nsl 266

total, and use the percentages pI , pS , as cluster sizes, of active and inactive samplers as 267

input-drive to two accumulators: for and against integration, respectively (Fig 4A). In 268

particular, the output pS of the sampler layer (not binary anymore) is a stochastic 269

process with mean p and variance p(1− p)/Nsl (for justification, see Statistical 270

properties of SL-activation, in Methods). Noteworthy, under this construction, the 271

output pS of the sampler layer (the input to the accumulator “against integration”) 272

takes indeed values very close to r, defined as p, in Eq (1) if Nsl is large enough. 273

B.3. The EVA model 274

Our proposed EVA model is structured as a three-layer network (Fig 4; see details in 275

Methods). It takes Poisson spike counts from tone-A-selective A1-neurons (the Input 276

Layer, IL) [1, 7, 8] and passes them through binary units in the Sampler Layer, SL 277

(Fig 4A). Only spike counts recorded during tone B are included (Fig 4B). Each SL-unit 278

compares the averaged spike count across a small number Nin of input units to a fixed 279

threshold Cth and places the outcome into either state 0 (for S) or 1 (for I). High 280

activation in IL (above Cth) is assumed to support percept I while low activation 281
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facilitates percept S (Fig 4A-B). The proportions pI(t), pS(t) (pS = 1− pI) of SL-units 282

in states 1 and 0, together with stochastic noise terms ξI(t), ξS(t), modulate the 283

activity of the Accumulation Layer, ACC (Fig 4C). Two accumulators representing 284

evidence for the percepts drift towards two targets. Their activities xI , xS are updated 285

at discrete time steps determined by the position t of each triplet in the ABA− 286

sequence. One unit accumulates evidence for the current percept (e.g. xI during 287

integration) in the presence of additive “neural” noise defined by a Gaussian process of 288

strength σI=σf , and approaches target TI=Tf . The other accumulator works against 289

the current percept (xS during integration). It experiences stronger noise level σa, and 290

approaches another target, Ta. Differential noise levels enable the accumulator “against” 291

to be the first to reach the threshold and initiate the switch; meanwhile, the 292

accumulator “for” remains confined to a neighborhood of its target. In the deterministic 293

(noise free) case, alternations between percepts are not possible given that both Ta and 294

Tf are subthreshold targets (Tf < Ta < 1), a distinctive feature of our accumulation 295

model. Instead, the ACC system is bistable with accumulators xI , xS reaching either 296

steady state (Ta, Tf ) or (Tf , Ta) depending on the initial conditions (Fig 4C, dotted 297

lines in blue and red). In the presence of noise, however, the accumulator against the 298

current percept reaches the decision threshold; a switch to the other percept occurs, the 299

accumulators are reset, the targets are swapped (TS=Tf , σS=σf and TI=Ta, σI=σa), 300

then another accumulation cycle begins (Fig 4C, traces for xI , solid blue, and xS , solid 301

red; the percept’s type is identified by the background color, blue for I, red for S. See 302

also S2 Fig). It is essential that the accumulators are subjected to noise in order for the 303

distribution of threshold crossing events idealizing the percept durations to exist. 304

B.4. EVA model captures DF -dependence of mean durations 305

Numerical simulations of the EVA model followed the experimental setup with Ntr=675 306

repetitions (trials) per DF . The model-generated mean durations were computed 307
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separately for each percept type (I, S; first, subsequent) and DF . They approximated 308

well their counterparts from behavioral data (Figs 5B and 6B). They also captured two 309

important DF -related trends reported by other studies. First, near equidominance 310

(DF=3, 5) mean durations of the first I percept were found to be longer than those of 311

subsequent I percepts [2, 6]. Secondly, mean durations for I and S showed a 312

“cross-diagram” like behavior [6, Fig.9B] with equidominance near DF=5. Mean 313

durations for I were greater than mean durations for S when DF low (DF <5), and 314

smaller than mean durations for S when DF large (DF >5), results similar to [6]. The 315

model was robust to noise as demonstrated by 100 Monte Carlo runs of each DF 316

simulation that yielded consistent results in terms of average values and 95% CI 317

(Figs 5B and 6B; error bars). 318

In EVA model, the switch to a new accumulation cycle occurred when the ACC-unit 319

that accumulated evidence against the current percept reached the decision threshold. 320

Target-against Ta, noise level σa, and increment rate pS(t) determined the trajectory of 321

the suppressed unit xS and the length of the corresponding dominant percept I. 322

Similarly, Ta, σa and pI(t) determined the duration of percept S. We studied the effect 323

of Ta and σa on the model-generated mean durations at each DF by varying their 324

values while keeping all other parameters fixed (see Parameter values used in model 325

simulations, in Methods). At a given Ta, EVA model exhibited no alternations if σa was 326

small (Fig 7; region in gray). For moderate σa values, perceptual switches occurred but 327

yielded percepts of mean durations much longer than those found experimentally (in 328

warm colors); then, for larger σa, simulated durations became comparable to (in green) 329

and then much shorter than (in cool colors) the behavioral mean durations. Similar 330

results were obtained for σa fixed when varying Ta. As a general rule, the smaller the 331

target-against, the stronger the noise level had to be in order for the accumulator’s 332

trajectory to be pushed above the threshold and to generate acceptable statistical 333
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approximations of the data (Fig 7, in green; also black dots; within one standard error 334

to the experimental mean, SEM). 335

The decrease in mean durations of I percepts with increasing DF (Figs 5B and 6B, 336

blue) stemmed from the increase in probability of a sampler to support segregation 337

(Fig 8B) which led to an increase of increment rate pS of accumulator xS (see Statistical 338

properties of SL-activation, in Methods). The increasing trend of mean durations of S 339

percept, with DF , could also be associated with the decrease of increment rate pI of 340

accumulator xI . These DF -dependent properties of pS , pI , inherited from A1 spike 341

counts (Fig 8A) enabled the EVA model to capture the correct qualitative trend of the 342

experimental means across all percept-types and DF conditions. Suitable quantitative 343

agreements were then obtained by fine-tuning the value of target-against Ta (Fig 7, red 344

diamond; error between numerical and behavioral results was restricted to 0.1 SEM. See 345

also S3 Fig). 346

B.5. EVA-modeled first and subsequent percept durations match 347

observations 348

The model reproduces an important statistical feature of the behavioral data, the 349

distributions of normalized durations for all first and subsequent I, S percepts at DF= 350

3, 5, 7. Histograms were drawn and fitted by gamma probability density functions of 351

shape parameters α (see Eq (3) in Methods) whose values agreed with those from the 352

behavioral experiment. The shape of distributions was tested and confirmed statistically 353

by 100 Monte Carlo runs of the model for each DF condition separately (Figs 5B and 354

6B; error bars indicate 95% CI around α-mean values). Exemplar distributions for first 355

and subsequent durations are shown in Figs 1D and 6B at DF=5. For other DF values, 356

see S1 Fig. 357

Since alternations were caused in the model by the accumulator that gathered 358

evidence against the current percept, the distribution of threshold crossing event times 359
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depended on Ta and σa. In particular, for a given Ta, EVA model generated percept 360

durations that were normally distributed for σa small (Fig 7, region N; α was much 361

bigger than 3) and exponentially distributed for σa large (Fig 7, region E; α was close 362

to 1). For intermediate σa, the distributions were gamma-like matching those fit to the 363

observed data (Fig 7, region G; model-generated α values were similar to those 364

determined from experiments, αexp, at relative error up to 20-30%). The closer Ta was 365

to the decision threshold 1, the easier it was to find σa that yielded gamma-like 366

distributions. With decreasing Ta, the transition to a narrower region G was either 367

sharp-edged (e.g. DF = 7, first I) or rather smooth (DF = 7, first S). Percept 368

durations that approximated well both the distribution shape and the mean duration of 369

the experimental data were obtained by using parameters from region G that 370

overlapped with the black dotted sheet. 371

B.6. EVA model captures DF -dependence of stream segregation buildup 372

The model-generated buildup functions captured both the rising and the asymptotic 373

phases of the behavioral buildup for each DF= 3, 5, 7 (Fig 1D). These trends were a 374

consequence of already having simulated percept durations and percept means well-fit 375

to behavioral data, in accordance with previous works describing the buildup of stream 376

segregation as a byproduct of an alternating renewal process [17]. 377

B.7. Computational advantages of the EVA model 378

The model is pseudo-neuromechanistic; it takes A1 responses as input, it allows for 379

attractor-states, and it includes accumulators that are saturating akin to synaptic 380

currents. The spike counts are in accordance with neurophysiological data from A1 [1] 381

and provide input to the computation of perception dominance downstream, as in the 382

conceptual population-separation model of [7] and in competition-based model of [6]. 383

The model incorporates fast habituation (after one triplet or so, Fig 4B) as in [1, Fig.3] 384
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and it accounts for the decrease in response amplitudes and in spatial activity patterns 385

evoked by tone B at tone A tonotopic locations observed as DF increases [1, 7]. Indeed, 386

if most of tone-A-selective A1-neurons are active, the model predicts a large proportion 387

of samplers in SL to be active (pI large) and thus favors I percept. If the opposite 388

happens and A1 is mostly inactive, a large proportion of samplers are inactive (pS is 389

large) and the model favors S percept. Activation in IL decreases with larger DF (fewer 390

IL-units have mean spike counts above threshold Cth) and so does pI(t); Fig 4A-B, 391

compare DF= 3, 5, 7; see also [1, Fig.3] and [7, Fig.11]. This affects the dynamics of 392

the accumulators since xI(t), xS(t) gather evidence about percepts with increment rates 393

proportional to pI(t), pS(t) respectively, while also being modulated by a certain level 394

of noise (Fig 4C, Eqs). 395

The accumulators resemble discrete time versions of the leaky integrate-and-fire 396

neuron model with conductance-based synaptic input [25], dV = (VR − V )Ddt+ noise. 397

The voltage-like variable (here, normalized, by the threshold value for switching) has a 398

maximum amplitude of one. The reversal potential VR is set to either target Ta or Tf 399

depending on the type of the dominant percept and the type of the accumulator. The 400

synaptic drive D consists of feedforward input from SL and is analogous to the 401

reciprocal of the time constant. Finally, Gaussian white noise represents input from 402

other brain sources or internal to ACC. Its strength σ needs to reach an appropriate 403

level for the statistics of percept durations generated by the EVA model to match the 404

behavioral data (see Methods). 405

Our EVA model is data-driven. Initial conditions are set using the latency periods 406

and the proportion of first S-percepts from the experimental data. Poisson spike counts 407

of IL neuronal units at each triplet t and semitone difference DF are generated using 408

mean values mt;DF derived from macaque A1 multi-unit spiking neural data [1] 409

(Fig 8A). Parameters Nin and Cth are obtained by least-squares fit between the 410
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probability of a sampler to support an S percept and the behavioral buildup at all three 411

DF values (Fig 8B; see also Methods). Neuronal granularity as a suitable substrate for 412

perceptual representations [24] is implemented through SL. The number of samplers is 413

chosen flexibly from a wide range of values (Nsl ≥ 1; here Nsl=20). There are few other 414

free parameters, Ta, σa, Tf , σf , b (baseline), but only the former two are major players 415

in fitting the model to data (as shown in Sections B.4 and B.5). 416

C. Signal detection algorithm yields fast buildup and unrealistic 417

percept durations 418

C.1. Modeling the buildup with Micheyl’s model for auditory streaming 419

The signal detection algorithm of Micheyl et al. [1] (see also [26,27]) has been 420

extensively cited in the auditory streaming research [3–6,12,21] in regard to computing 421

time-varying probabilities of stream segregation from neuronal responses in A1. The 422

model was based on choosing a threshold number, Cth, for mean spike count (first, 423

trial-averaged; then averaged across sampled neurons) to classify each triplet as I or S; 424

doing this for each ABA− in the sound sequence generated a time course, a 425

“neurometric” function. Briefly, for a given triplet position, a probability distribution 426

was constructed for the B-tone responses measured at and convolved over A1 neurons 427

whose best frequency was that of the A-tones. The area under the probability 428

distribution to the right of Cth determined the probability that tone B was detected 429

and, consequently, that the triplet belonged to I percept; the complementary 430

probability was associated with S percept. The algorithm classified each triplet 431

independently and assumed no memory among nearby triplets. 432

A simplified view of this procedure is to consider the distribution of trial-averaged 433

counts for the neurons as straddling the mean for each triplet in the time course of an 434

ABA− sequence [1, Fig.3]. Conceptually, one chooses a level Cth that will cut across 435
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the distributions, say for DF=3, and correspond to low probability of S for early time 436

and correspond to the asymptotic level (from behavior) for late time (e.g. Cth, thin 437

horizontal line, in S4 Fig). This classification could likely provide a decent fit for DF=3 438

but for DF=6 the spike counts will fall below the threshold, leading to an overestimate 439

of probability of S. The remaining cases will yield extreme classifications: for DF=1, 440

spike counts for each triplet in the sequence will be above Cth and probability of S will 441

be estimated as near zero; for DF=9, all spike counts will be below Cth (except maybe 442

for the initial triplet) and therefore probability of S will be near one for the time course. 443

The spread of the behavioral time courses in [1, Fig.4], one lying intermediate for DF=3 444

and the others at very low or quite high levels, provided an opportunity for reasonable 445

fitting with a single Cth level [1]. For details on numerical fitting with such signal 446

detection algorithm, see S4 Fig. 447

In the case of our data, the conditions were DF= 3, 5, 7 and the behavioral buildup 448

functions lay in more intermediate levels and clustered around the asymptotic value of 449

0.5 (Fig 1C; also Fig 8B, dotted lines). It thus became challenging to fit the buildup 450

functions (especially the early, slower rising portions for multiple DF values, 3 and 5 451

semitones) using Micheyl’s model with a unique Cth. 452

We attempted to meet this challenge by applying the signal detection algorithm to 453

our behavioral data while using interpolated and Poisson distributed spike counts based 454

on the neural data from [1]. The approach was equivalent to the computation of the 455

probability of a sampler to support segregation from the EVA model, observing only the 456

input layer, IL, and passing its output through one single sampler, Nsl=1. While the 457

mean spike counts over a pool of Nin A1-neurons did not change significantly with Nin, 458

the standard error to the mean did (Fig 8A). The decrease in the spike count error to 459

the mean made the horizontal line Cth intersect fewer local distributions and biased the 460

data-fitting towards the behavioral curve for a certain DF , at the expense of others. 461
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Choosing more A1 neuronal units (larger values of Nin; Fig 8A) led to larger spread in 462

the simulated neurometric functions and poorer fitting (Fig 8B; at DF= 5, 7 the 463

neurometric functions (solid lines) plateaued at probability approximately 1 after 464

triplet-sequence onset, as Nin increased; e.g. case Nin=100). The best approximation of 465

the asymptotic levels of the behavioral buildup for all DF conditions was found at a 466

relatively low Nin however the rising transients of the neurometric functions were still 467

much faster than in the experiment. 468

C.2. Modeling percept durations with Micheyl’s model 469

We extended the work from [1] by using the signal detection algorithm to generate 470

“percepts” and characterize their distributions. For each DF , adjacent triplets of the 471

same type (I or S) were grouped together to create percept phase durations and 472

construct frequency graphs (Fig 9). Theoretical calculations showed that subsequent 473

percept durations generated by Micheyl’s model were exponentially distributed, as 474

opposed to gamma-like. During subsequent durations we could assume that the buildup 475

functions of stream segregation had reached an asymptotic level p (Fig 9A-B, upper 476

panel) and that the activity in the A1 pool was independent at each triplet. Then the 477

probability that percept S consisted of n-triplets could be calculated as 478

Prob(DS) = pn(1− p) = (1− p)en ln p, depending exponentially on n. Likewise the 479

probability that I consisted of n-triplets was Prob(DI) = p(1− p)n = pen ln(1−p). 480

Similar results were obtained from numerical simulations of Micheyl’s model. The 481

probability density functions were found to be discrete versions of exponential curves 482

and the mean durations were small at about 1 s (Fig 9A-B, middle and lower panels), 483

suggesting that the signal detection algorithm is not appropriate to describe perceptual 484

alternations and percept durations, key aspects of bistable stream segregation. 485

(Compare to Fig 1C; also S1 Fig and [2, 5, 6].) 486
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Discussion 487

We developed a new evidence accumulation model for auditory streaming of triplet 488

sequences ABA−ABA− . . . that takes as input neuronal responses of primary auditory 489

cortex, A1 (macaque, [1]). Our neural-like model accounts for the (human) behavior we 490

observed under three conditions (tone frequency difference, DF ). During trials, subjects 491

reported spontaneous alternations (bistability) between integration, I, and segregation, 492

S. The first percept was usually I; the probability of S built up over time rising from 493

near zero and plateaued within a few seconds to a level that increased with DF . In the 494

model, switching between I and S occurred when noisy accumulation of evidence 495

against the current percept exceeded threshold. Our simulations matched both buildup 496

time-courses and percept-duration distributions. 497

Our model draws inspiration from the population separation hypothesis of [7] and 498

focuses primarily on the B-tone responses of A-tone selective neurons. Micheyl et al [1] 499

used similar principles to compute “neurometric” functions for segregation buildup. 500

Their signal-detection model was applied to A1 and to sub-cortical neuronal spike count 501

data to conclude that perceptual organization of auditory streams was present in early 502

stages of the auditory pathway [3, 21]. It treated each triplet as independent of the 503

previous ones, without an accumulation process from triplet to triplet. The only time 504

dependent mechanism was adaptation of A1 neurons that was nearly complete after 2-3 505

triplets – too fast to account for buildup. Herein we show that Micheyl’s model behaves 506

as if classification is like coin-tossing with possible bias. Simulated durations are 507

therefore like run-lengths in coin-tossing, exponential-like and very brief, contrary to the 508

observed data (gamma or lognormal-like). 509

Our approach underscores the essential significance of duration distributions as 510

characterizations of streaming and switching, a constraint overlooked by previous 511

analysis [1]. It emphasizes that neuronal-based modeling of behavioral data that goes 512
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beyond trial-averaged behavior may need to involve an evidence accumulation process in 513

order to account for the statistics of single trials. 514

Novel features 515

Our model is intuitively straightforward. It describes the accumulation of evidence, 516

incremental from each triplet, for or against the current percept. The estimated 517

A1-spike counts are passed through a sampler layer, SL, each of whose units sample a 518

few A1-neurons. SL-units vote 1 or 0 if the summed spike counts for the current triplet 519

are above or below threshold. The fraction pI (pS) of sampler-votes 1 (0) represents the 520

net output which favors integration (segregation), transmitted to the accumulators. 521

After multiplicative weighting, pI , pS are used together with additive noise to update 522

the accumulators. Of significance, the weighting factor is state dependent, proportional 523

to the difference, T−x, between the current accumulator value x and a target T . 524

Accumulation slows when x is closer to T and, importantly, we can choose T<1 in which 525

case our model mimics noise-driven attractor competition dynamics [23]. Further, if T is 526

close to one (i.e. accumulation saturates below, near threshold), gamma-like distributed 527

threshold-crossing times are more robustly obtained with modest noise levels [22,28]. 528

State-dependent dynamics of stochastic accumulators in the framework of bistable 529

perception were highlighted in other previous works [24,29]. Our approach implements 530

several distinctive features: a link to spike count neural data, an intuitive equation for 531

the accumulator (see Eq 1, basic model for behavior), and a theoretical framework that 532

goes beyond equidominance by looking at graded responses across multiple stimuli 533

conditions. 534

Our model is a hybrid: it incorporates some neuro-based phenomenology (A1 535

neuronal responses as input, saturating driving force, escape dynamics) but it is 536

non-committal to specific neuronal mechanisms of inhibition and adaptation. Moreover, 537
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key parameters are not directly linked to neuromechanistic processes but rather 538

determined by fitting model dynamics (simulated threshold-passage times) to observed 539

duration distributions. 540

Duration distributions underlie buildup 541

Buildup functions (BUFs) for behavioral data are based on trial-averaging of ongoing 542

reporting of percepts; the buildup functions can be well-reproduced by an alternating 543

renewal process applied to the percept duration distributions [17], in spite of 544

disregarding the small inter-duration correlations. Our EVA model, using neural data as 545

input, as well reflects a choice process, a neuronal computation, based on single-trials. 546

From the EVA-simulated switch times we computed the “percept” duration 547

distributions and generated BUFs that compared well with the behavioral data. The 548

single-trial percept durations are the critical observations for a model to match in order 549

to characterize streaming dynamics for stimuli with constant parameter values such as 550

DF . We conclude that trial-averaging of the spike counts, especially from too early in 551

the cortical pathway, and a triplet-based signal detection scheme [1], washes out the 552

dynamical aspects of accumulating neuronal computations that underlie perceptual 553

multi-stability. Model-based analyses of trial-averaged neuronal responses that show 554

ramping behavior in decision-making tasks have recently come under scrutiny by 555

consideration of single-trial data [30]. Arguments were made, admittedly still under 556

debate [31,32], that trial-averaged smooth time courses of evidence accumulation during 557

decision-making might arise from temporally “discrete steps” rather than from 558

continuous ramping dynamics. We suggest that care be exercised when making 559

interpretations from trial-averaged neuronal responses, neuronal ramping or neuronal 560

BUFs, to consider that such averaging may overlook the discrete event nature of 561

perceptual switching and/or decision-making that involve 562
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evidence-accumulation/competition. 563

Fitting of model to data 564

We assigned different values of noise and targets to “against” and “for” accumulators to 565

ensure switching was caused by the against-unit crossing the decision threshold. 566

Intuitively, as the accumulator-against saturates around target-against Ta 567

(subthreshold), enough noise σa guarantees threshold-crossing. The closer Ta is to one, 568

the less noise is required to produce alternations. Within the switching domain different 569

combinations of Ta and σa yield different distributions and means of percept durations. 570

Our model reproduces the experimental data when Ta, σa are taken from a restricted 571

parameter region. With Ta constant across conditions we captured the observed trend of 572

mean durations although some values were off. With fine-tuning of Ta across conditions 573

(but σa constant) we match the observed duration distribution shapes and means. This 574

approach is analogous to obtaining the proper balance between noise and adaptation 575

necessary for alternations in other models for bistable perception [22,33]. Noteworthy, 576

our model shows switching behavior when tuned in other parameter regimes, including 577

with Ta>1. However, in such a drift-dominated regime although noise is not needed for 578

alternations, we found that matching the statistical features and behavioral trends 579

required a substantially higher (unacceptable) noise level (not shown here). 580

Comparison with other models 581

Barniv and Nelken (2015) and Cao et al (2016) also modeled auditory bistable 582

perception as evidence accumulation based. The former’s model used Bayesian 583

assignments of B-tones to either the same class as A-tones (integration) or to a different 584

class (segregation). Its noise-free version shows periodic alternations, as does our system 585

for Ta>1, but the dynamics do not reset. Instead, our accumulators undergo 586
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discontinuous resetting after each switch. Most importantly, in contrast to [5], the 587

parameters in our model are interpretable, functionally if not physiologically. Cao et al. 588

formulated a stochastic accumulator that reproduced (like ours) several scaling 589

properties of bistable behavior but without a description of switching and of, possibly 590

asymmetric, alternations. Our work differs from both models by incorporating directly 591

A1-spiking data as input. In this sense it is more akin to [6], a literal competition model. 592

Notably, our approach predicts that neuronal computation for percept representation 593

and evidence accumulation takes place beyond A1; its input (activity from A1 devoid of 594

switch-dynamics) implicitly includes inhibition, adaptation and noise that occur within 595

A1 and preceding stages. 596

Dynamic competition models commonly include two or more units representing 597

response patterns associated with different percepts, and share mechanistic features of 598

mutual inhibition, adaptation, and noise [6, 14]. In our two-process model only one 599

percept is currently dominant thereby realizing mutual exclusivity. However, inhibition 600

is not explicitly invoked; rather, our model performs as if a firm choice is made at the 601

switch time, further accumulation of evidence in favor of the fresh percept is prevented; 602

the in-favor accumulator is reset and targeted to a low value, Tf , despite continued 603

incoming evidence from SL. 604

In oscillator-based alternations, switching may be determined by strongly rising 605

adaptation in the dominant unit, leading to “release” from inhibition, or by stronger 606

recovery from adaptation in the suppressed unit, leading to “escape” from 607

inhibition [34–37]. Our model has no explicit adaptation variable as negative feedback. 608

However, the accumulation of evidence against the current percept may be viewed as 609

recovery of salience of the non-dominant percept. The rise and eventual take-over of 610

dominance is therefore analogous to the escape from suppression in competition models. 611

In such models if adaptation is weak, changes in dominance may be represented by 612
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noise-driven switches between stable states in attractor state dynamics [22,23]. These 613

insights motivated our choice of an evidence-against accumulator that saturates 614

just-subthreshold. Dominance durations are longer with reduced noise, and no switches 615

occur in the noise-free idealization. Further, gamma-like duration distributions are more 616

robustly obtainable with this mechanism: rise to saturation and wait for switch-favoring 617

fluctuations to induce a switch. Satisfactory results are also obtainable with Ta>1, but 618

if Ta exceeds threshold by too much, acceptable duration statistics seemed to require 619

strong noise, and accumulator time courses were noise-dominated. 620

Bistable perception for ambiguous visual displays was modeled by [38] as a 621

continuous time accumulation of binary (bistable) units becoming active with 622

state-dependent transition rates between the active and inactive states. Our modeling 623

shares a key feature: saturation to a level that strongly affects the percept durations; 624

saturation near/below threshold underlies escape-like dynamics with gamma-like 625

duration distributions. Distinguishing from [38], our model is event-based 626

(discrete-time) with stimuli-induced positive increments and additive zero-mean noise 627

that allow positive/negative increments, not a Markov model. It is applied directly to 628

the neural data and includes saturation with noise-driven attractor dynamics as in 629

competition models. 630

Limitations, extensions, predictions 631

Reports on triplet-streaming are conflicted about correlations between successive I, S 632

durations, showing either statistical independence [2] or small positive correlations [5]. 633

In our model both accumulators are reset after a switch approximately to target Tf so 634

correlation between successive percepts is weak. However, we could likely match the 635

reported correlations [5] by changing the resetting to generate continuous dynamics of 636

accumulators. 637
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Alternations between percepts are generated by the evidence that accumulates 638

against the current percept. Its dynamics depends primarily on the distance to target 639

Ta and on input p from the sampler layer, with Ta assumed relatively constant across 640

conditions. Alternatively, one might choose Ta as a DF -dependent parameter and keep 641

p unchanged. Such an approach suggests an interpretation of the target, with nearness 642

to threshold, reflecting a combination of condition-dependent input and inhibition, and 643

possibly excitation (in-line with a population separation hypothesis [7]). Then p, as 644

constant and independent of DF , can be viewed as rate of recovery from adaptation. 645

However, to establish a derivable connection between Ta and the experimental condition 646

and A1 spiking activity presents challenges. 647

In our model the number of A1 neurons that are sampled by each SL-unit is much 648

lower than the number of recorded units used in the signal detection approach in [1] 649

(Nin=5 vs 91 cortical neurons). We found that the granularity of sampling A1 by a unit 650

in the sampler layer is important in order to preserve sufficient variability in the 651

averaged spike count over trials and thereby obtain graded BUFs across different DF 652

conditions. Perhaps the constraint on Nin derives from our assumption of statistically 653

independent A1 neurons. As shown by [27], trial-to-trial variability in spike counts for 654

Nin small, if spikes are statistically independent, is equivalent to the variability over a 655

much higher number of A1 neurons if correlations exist within the pool. We did not have 656

access to the original spike times from [1] to verify this hypothesis; we only extracted 657

mean spike counts from the published data. However, this observation is supported by a 658

subsequent study by Micheyl et al [12] and could be explored in future simulations; 659

when spike counts from a subset of 30 cortical neurons (or even just one neuron) out of 660

91 were analyzed with the signal-detection model, the resulting neuronal-based BUFs 661

were less widely spread across conditions, matching the graded behavioral BUFs from a 662

different subject pool (see [12, Fig.5], compare with Figs 3 and 8 for our model). 663
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Our model could be extended to mimic the transient behavior of buildup by relaxing 664

the constraints on initial conditions and treating the baseline as DF -dependent. Two 665

hypotheses may be tested: that integration emerges with first percept probability as in 666

the behavioral data and that early adaptation of A1-responses accounts for longer first, 667

than subsequent, I-durations [39]. 668

With minimal modifications to our model we could test for behavior at other DF 669

values or for dependence on presentation rate. Assuming lower target-against levels Ta 670

for faster presentations, we predict at constant DF similar mean I-durations but longer 671

S-durations, and higher probability of segregation [6]. With increased presentation rate 672

mean spike counts for B-tones will decrease [8] and lead to lower vote counts pI and 673

lower effective accumulation rate, TapI . Although pS (=1-pI) would increase, the 674

increase would be compensated by the decreased Ta leaving TapS relatively unchanged. 675

To conclude, we propose an evidence accumulation model for auditory bistable 676

perception with neurally-plausible mechanisms that accounts for statistics of behavioral 677

data. In principle, it could be extended to study dynamics induced by transient 678

perturbations (deviants/distractors; [39]) or associated with multiple percepts [14]; 679

implementations of such generalizations remain as open topics for future research. 680

Methods 681

Experimental design and statistical analyses 682

Participants 683

Fifteen human subjects with normal hearing (8 female and 7 male; ages 18-45 yrs.; 684

median 22 yrs.) were included in the behavioral study. They listened to sequences of 685

repeating ABA− triplets and were instructed to continuously report their ongoing 686

percept by selectively pressing one of two different buttons on a keypad. Subjects began 687
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reporting their percept typically 2 s after stimulus onset as integration (I; a single, 688

coherent stream, the galloping pattern ABA−ABA−) or segregation (S; two 689

simultaneous distinct streams A−A−A−A− and −B−−−B−); Fig 1 A-B. 690

Stimuli 691

Stimuli were 30-s long sequences of triplets ABA− that consisted of alternating high (A) 692

and low (B) pure tones gated with 10 ms raised cosine ramps and followed by a 125 ms 693

silent pause ”−”; Fig 1A. In total, triplets were 500-ms in duration and were repeated 694

60 times per trial. Tones were separated in frequency by DF semitones chosen from 695

three conditions (DF= 3, 5, 7) with each condition being presented five times per 696

experimental block. To prevent habituation to a certain frequency, for each DF the 697

tones were generated by roving through variants of frequencies taken 0, ±1 or ±2 698

semitones apart from their geometric mean (middle pair in the list below); see also [4]. 699

Frequencies (fA, fB), in Hz, were chosen as: (494, 415), (523, 440), (554, 466), (587, 494) 700

or (622, 523) Hz at DF=3; (523, 392), (554, 415), (587, 440), (622, 466), (659, 494) at 701

DF=5; and (554, 370), (587, 392), (622, 415), (659, 440), (698, 466) at DF=7. Stimuli 702

were digitally generated in Matlab at 48 kHz sampling rate and were delivered through 703

earphones in a soundproof isolated room. Subjects had the sound volume adjusted to 704

their comfortable hearing level. 705

Experimental protocol 706

Each subject performed 9 experimental blocks. Each DF condition was randomly 707

presented 5 times per experimental block, using different combinations of frequencies for 708

tones A and B, without repetition (see Stimuli). A Latin square design was used to 709

determine the order of presentation of each condition in each block. This resulted in 710

group data with 675 30-s trials for each of three DF values. The frequency separation 711

values (DF= 3, 5, 7) were chosen to fall within the range of ambiguity of the van 712
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Noorden diagram in which listeners can perceive both integration and 713

segregation [10,40]. All subjects underwent a training session in which they were given 714

verbal explanations and auditory illustrations of the two possible percepts, and they 715

practiced distinguishing between them. Then, during the recording session, listeners 716

were instructed to press and hold one key on a keypad when they perceived stimuli as I, 717

and to release it while pressing another key when they perceived stimuli as S, and so on. 718

They were encouraged to respond as soon as they heard the change in percept. The 719

key-response data were converted to binary vectors with value 0 assigned to I (and to 720

the latency period defined as the time before identification of either percept) and 1 to S, 721

for further analysis. Experiments were performed in a dedicated soundproof booth in 722

the Human Brain Research Laboratory, Neurosurgery Department at The University of 723

Iowa. Written informed consent was obtained from all subjects. Research protocols were 724

approved by the University of Iowa Institutional Review Board. 725

Build-up functions and the latency period 726

The time course of S percept after stimulus onset was computed from key-pressed data, 727

0 for I and 1 for S. Those were sampled at 1 ms to create vectors of binary values 728

corresponding to appropriate percept type at a particular time instance. At each DF 729

condition, binary vectors were averaged across 675 trials to obtain the build-up function 730

of S; bootstrapping was also used to compute the 95% confidence interval (CI) around 731

the mean (Fig 1 B-C). The time course of I was computed with the same procedure but 732

over key-pressed data labeled as 1 for I and 0 for S. At a particular time t, the 733

proportion of trials classified as I, S or neither (during the latency period/the first few 734

seconds after stimulus onset) were pint(t), pseg(t) and pLat(t), and summed up to 735

pint(t) + pseg(t) + pLat(t) = 1. The first percepts were typically I. However, for larger 736

values of tone frequency separation, subjects tended to report S as first percept more 737

often which led to an increase in pseg(t). 738
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First durations and subsequent durations 739

All complete percept durations across trials and conditions were included in the 740

behavioral analysis. Unfinished percepts and button presses recorded after the end of 741

stimulus presentation were discarded. For each DF= 3, 5, 7, the statistics was 742

evaluated over four subsets of data, separately: first I, first S, subsequent I and 743

subsequent S. For each DF and each of these four percept types, the mean dominance 744

duration was computed in two steps: first, it was computed per subject, say µi for 745

subject i = 1, ..., 15; then the mean duration µ of the group data was defined (and 746

reported) as the unweighted average across all subjects, µ = (µ1 + µ2 + · · ·+ µ15)/15 747

(e.g. Fig 1C; mean µ is shown for first duration distributions at DF=5). By this 748

approach, any potential bias of the calculation towards fast switchers who might 749

contribute more durations to the pool and concurrently spend less time in a particular 750

percept, was mitigated. Error bars at 95% CI of the mean were also determined; error 751

bars corresponded to 1.96 SE; standard error SE= stdexp/
√

15 was computed from the 752

standard deviation stdexp over the group of means µi. For analysis of grouped data we 753

used subject-specific normalized (by individual subject mean) percept durations as 754

follows: at each DF condition and each percept type (first/subsequent, I/S), any raw 755

percept duration D of subject i was normalized by the corresponding mean µi to 756

D̃ = D/µi. Histograms of normalized phase durations D̃ for each DF condition and 757

percept type were computed and fit by gamma distributions with density functions 758

f(D̃|α, µ̃) =
α/µ̃

Γ(α)

(
αD̃/µ̃

)α−1
e−αD̃/µ̃, µ̃ ≈ 1. (3)

Mean µ̃ was well-fit to 1 due to normalization. Then the coefficient of variation 759

CV = 1/
√
α and the skewness γ1 = 2/

√
α depended exclusively on the shape parameter 760

α. If α was large then (3) was equivalent to a normal distribution. If α ≈ 1 then (3) 761

was equivalent to an exponential distribution. On the other hand, for α ≈ 2 (as 762

observed for first durations in behavioral data) and α ≈ 2.6 (as observed for subsequent 763
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durations), the distributions satisfied the scaling property γ1 = 2CV with CV ≈ 0.7 764

and CV ≈ 0.6 respectively. The latter case was similar to the findings of [24] that 765

described the statistics of percept durations for other examples of perceptual bistability. 766

Distribution testing of phase durations 767

The fitting of the experimental (and numerical) data was obtained by calculating the 768

values of α and µ̃ with the Maximum Likelihood Estimation (MLE) algorithm. The 769

goal was to determine α and µ̃ that yielded the maximum product
∏
k yk of all yk 770

gamma-likelihood values of the normalized percepts D̃k counted by index k for each run 771

of the experiment. This was equivalent to maximizing the log-likelihood 772

LL = ln
∏
k yk =

∑
k ln yk =

∑
k

(
(α− 1) ln D̃k − α

µ̃ D̃k + α ln α
µ̃ − ln Γ(α)

)
based on 773

formula (3). The optimization of LL was implemented numerically with MATLAB 774

function fminsearch. Distribution testing on normalized durations was done by 775

statistical bootstrapping. We generated 10000 bootstrapping sets of gamma 776

distributions with fitted parameters α and µ̃ and constructed the distribution of 777

maximum log likelihood values for those sets. The test statistics LL was compared to 778

this distribution to obtain the probability of log likelihood to be less than LL (the 779

p-value). The normalized durations were well fit by a gamma distribution with the 780

optimal values α and µ̃ (as null hypothesis) at significance level 0.05 if p-value ≥ 0.05. 781

Statistical analysis of model-generated data 782

The histograms of first and subsequent durations I and S in trials generated by the 783

model (see below), and their fitting by gamma distributions, were computed in a similar 784

manner as for the experimental data. Likewise, build-up functions for the model were 785

constructed as those for the behavioral data. 786
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The evidence accumulation model 787

Our proposed EVA model is a feedforward network of 3 layers: the input layer of 788

spiking units, the sampler layer of binary response units, and the accumulation layer of 789

two accumulators. The time-unit of the model is discrete and defined as the position of 790

the triplet in the auditory sequence. Every DF -dependent numerical simulation of the 791

EVA model consisted of Ntr=675 repetitions (trials) to mimic the setup from the 792

behavioral experiment. The trials were then used to generate the statistics of the 793

percept durations in terms of mean values, shape of distributions, and buildup functions. 794

Finally, in order to test for the model’s robustness in the presence of noise (not for 795

sensitivity to model parameter values), this numerical procedure was run 100 times for 796

each DF= 3, 5, 7 condition separately, and the results were characterized by averaged 797

values and their 95% CI. 798

Input layer (IL) 799

The IL-units were assumed to be tone-A selective neurons from primary auditory cortex 800

(A1) as described in [1]. The averaged (over trials) spike counts mt,DF of the IL-units 801

were derived from data (see section Data-driven parameters for EVA model) and 802

depended on the position t of the triplet in the ABA− sequence (t=1, . . . , 60 for a 803

60-triplet long stimulus; 30 s in duration) and on the semitone difference DF . The 804

model was simplified by focusing only on the spike counts during the B-tone 805

presentation at A-tone selective neurons in A1. As reported by multi-unit recordings in 806

monkeys, such A1-neurons adapted strongly and rapidly during presentation of 807

triplet-repeating auditory sequences [1, total of 91 neurons]. Temporal correlations 808

between the means of an A1-neuron from triplet to triplet were captured in the model 809

by the trend of mt,DF that decreased exponentially with t (Fig 4B). Trial-to-trial 810

variability of the dynamics of IL units as well as unit variability in IL during a single 811
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trial were implemented using Poisson point processes. (We used this approach because 812

we could extract mean spike counts from published data of [1] but did not have access 813

to the original spike times.) For an A1-neuron with mean spike count λ=mt,DF we 814

supposed that its instantaneous spike count k (k = 0, 1, 2, . . .) at triplet t and condition 815

DF , was randomly generated from a Poisson distribution with probability 816

P (X = k) = λk e−λ/k!. The Poisson spike counts are generated independently for each 817

neuronal unit in IL, each triplet and each semitone difference condition. Note that the 818

model could be generalized by assuming neuronal heterogeneity, with averaged spike 819

counts mj
t,DF at neuron j chosen from a normal distribution N (mt,DF , st,DF ) of mean 820

mt,DF and standard deviation st,DF derived from [1]. However, the impact of 821

heterogeneity on the model’s outcome would be negligible given that EVA model was 822

formulated to use mean spike counts over IL neuronal pools as input rather than mean 823

spike counts of individual neurons (see below). 824

Sampler layer (SL) 825

The SL-units were tasked with summating and classifying spike counts from subsets of 826

Nin IL units (A1-neurons). Consider that a trial of length Nt (Nt=60 triplets) during a 827

certain DF condition was simulated by EVA model: each sampler summed the input of 828

a pool of Nin neuronal units from IL; weighted by Nin, this gave the mean spike count 829

for B-tones of the corresponding pool of A-tone selective A1-neurons, 830

X̄t = (
∑Nin

j=1X
(j)
t )/Nin for triplet t; then X̄t was compared to a DF -independent, fixed, 831

neuronal threshold Cth. If the averaged spike count was large (X̄t ≥ Cth) then the 832

subset activity was high and the pool was assumed to support, for this triplet, the 833

integration percept I. The sampler’s response at triplet t was classified as “1”. If the 834

averaged spike count was small (X̄t < Cth), the subset activity was low and the IL-pool 835

was said to support the segregation percept S. The sampler’s response was classified as 836

“0” (Fig 4A). Therefore, at each triplet t, each sampler behaved like a biased coin being 837
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flipped with probabilities p0;t,DF and p1;t,DF over the binary probability space of 0 and 838

1. Since neuronal units in each IL-pool followed independent Poisson distributions of 839

parameters mt,DF , the pool itself was also a Poisson process defined by the product 840

Ninmt,DF . Then, the samplers were binary signal detectors with probabilities 841

p0;t,DF = Prob
(
X̄t < Cth

)
=

∑
0≤k<CthNin

(
Ninmt,DF

)k
e−Ninmt,DF

k!
(4)

and p1;t,DF = 1− p0;t,DF calculated over 675 repetitions of the model in order to 842

maintain similarities to the behavioral experiment, and with expected value and 843

variance E[X̄t] = p1;t,DF and V ar[X̄t] = p1;t,DF ( 1− p1;t,DF ). 844

Three DF -independent parameters were associated with SL: Nin, the number of A1 845

inputs to a sampler unit; Cth, the neuronal counting threshold that categorizes 846

ensemble activity in A1 as high (class 1) or low (class 0); and Nsl, the number of 847

neuronal units in SL. The values of Nin and Cth were obtained by least-squares fit 848

between probabilities p0;t,DF and the “asymptotic” levels 0.45, 0.6, 0.65 of the 849

psychometric buildup functions (last 15 seconds of trial duration) for all DF= 3, 5, 7 850

(Fig 8B; also section Data-driven parameters for EVA model). The psychometric 851

buildup represented the fraction (over the trials) of the segregation percept S reported 852

by all subjects at each time point and DF during the 30-s long trial. Through this 853

optimization procedure (Fig 8B; optimal values obtained for Nin = 5, Cth = 4.21) 854

probabilities p0;t,DF of a sampler to be in a state that supported percept S were 855

estimated – at least for triplets several seconds from the stimulus onset – as 856

p0;t,DF ≈ pseg;DF = 0.4, 0.6, 0.75 at DF = 3, 5, 7. (5)

The inclusion of the sampler layer in the model (Nsl > 1) ensured neuronal granularity 857

that was found by other studies to be a suitable substrate for perceptual 858

representations [24]. In particular, at each triplet t, some of the Nsl samplers were in 859

class 0 showing low A1 spiking and thereby associated with segregation [1, 7] while 860
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others were in class 1 supporting integration. The percentages pS(t) and 861

pI(t) = 1− pS(t) of such samplers were taken herein as stochastic (over trials) output of 862

SL (Fig 4A). 863

Accumulation layer (ACC) 864

The accumulation layer consisted of two units whose dynamic states xI and xS changed 865

from triplet to triplet according to Eqs 866

xI(t+ 1) = xI(t) + (TI − xI(t)) pI(t) + σIξI(t),

xS(t+ 1) = xS(t) + (TS − xS(t)) pS(t) + σSξS(t).

(6)

The accumulator for xI gathered evidence that favored integration (through input pI(t) 867

from SL) while the accumulator for xS gathered evidence that favored segregation 868

(through input pS(t) from SL). Importantly, their states were influenced by the 869

perceptual context as well (Fig 4C, solid lines in blue and red illustrated traces for xI 870

and xS ; the background color showed the percept’s type, blue for I and red for S). In 871

particular, if segregation was the current dominant percept then xI accumulated 872

evidence against segregation and aimed to reach target TI=Ta; simultaneously, xS 873

accumulated evidence for the current percept and it drifted instead towards target 874

TS=Tf . Discrete-time Gaussian white noise processes σIξI(t), σSξS(t) with zero mean 875

and standard deviations σI=σa and σS=σf , interacted with the stochastic inputs from 876

SL to produce certain levels of fluctuations. The additive stochastic terms in ACC were 877

target-dependent with σa > σf for Ta > Tf (Fig 4C). On the contrary, if the current 878

percept was integration then xI accumulated evidence for I and approached TI=Tf 879

while xS accumulated evidence against I and approached TS=Ta. The level of local 880

noise was adjusted accordingly to values σI=σf and σS=σa. 881
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Switches and resetting conditions 882

In the experiment, subjects identified the dominant percept by pressing a certain button 883

on the keypad. Equivalently, in EVA model, the switch from one dominant percept to 884

the next occurred when either xI(t) or xS(t) crossed the ACC threshold set to 1. Herein, 885

the alternations were initiated by the accumulator that observed how many samplers in 886

SL opposed the current percept at each triplet t. Its trace was attracted to target Ta 887

that lay near the threshold, then was pushed across the threshold by the noise of 888

strength σa. In the meantime, the accumulator in favor of the current percept hovered 889

around Tf with fluctuations set by σf . For example during percept I, accumulator xS 890

was the first to reach threshold 1 producing a switch to percept S; then, during S, xI 891

reached threshold 1 leading to another switch to subsequent percept I, and so on 892

(Fig 4C). At every change in percept, the accumulators were reset to new levels x+I , x+S . 893

These were defined as x−∗ where x−∗ was the value that the evidence-for accumulator x∗ 894

(∗ = I, S during current percept I, S respectively) reached just before the switch. 895

The simulations took into account the proportion of first percepts reported as 896

segregation at each DF during the behavioral experiment as well as the latency period 897

during each trial. The initial conditions of the accumulators were set to a 898

DF -independent baseline value b and kept constant during the entire latency period 899

(calculated in length of TLat triplets) of any given trial. We defined xI(t) = xS(t) = b for 900

all triplets t between 1 and TLat; then at t = TLat the type of the current first percept, 901

I or S, was imported from the behavioral data; the dynamics of the accumulators for 902

t ≥ TLat were then determined according to Eqs (6) and the associated reset conditions. 903

The choice of parameters (σf small) and of reset conditions (x+a = x+f = x−f where 904

xa, xf are accumulators “against” and “for” the dominant percept) ensured that the 905

switch was triggered by the dynamics of xa. Rare events when xf might have crossed 906

the threshold ahead of xa were disregarded. Another possible implementation of 907
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resetting would allow for correlations between consecutive percepts; it could depend on 908

each accumulator state just before a switch, a simple interchange of roles such that 909

ACC variables remained continuous, x+f = x−a = 1, x+a = x−f (not shown in this paper). 910

Model analysis 911

Parameter values used in model simulations 912

All figures for the full EVA model (Figs 1, 4 – 8, and S1 Fig – S3 Fig, S5 Fig), were 913

generated with the following parameter values: 914

Nin = 5, Cth = 4.21, Nsl = 20, b = 0.7, Tf = 0.6, σa = 0.085, σf = 0.03 915

and decision threshold θ = 1, unless otherwise stated in their caption. (For parameter 916

values mt,DF associated with IL, see Data-driven parameters for EVA model.) Target 917

Ta was initially chosen equal to 0.9 and then was fine-tuned to best fit the mean 918

dominance durations of the first and subsequent integration and segregation percepts 919

from the behavioral data – within ±10% standard error (SE) of the experimental mean 920

values (Figs 5 and 6; also S5 Fig). Its values changed with DF , and with classification 921

(first or subsequent) and type (I or S) of the percept. We used the notation TaI1 for 922

“target against integration, first percept”, TaS1 for “target against segregation, first 923

percept”, TaI2 for “target against integration, subsequent percepts”, and TaS2 for 924

“target against segregation, subsequent percepts”, respectively. Therefore, in the model, 925

whenever acting as target-against, TS = TaI1 or TaI2 while TI = TaS1 or TaS2. In 926

simulations we used the following values (see red diamonds in Fig 7): 927

At DF=3: TaI1 = 0.8273, TaS1 = 0.9273, TaI2 = 0.8924, TaS2 = 0.8924; 928

At DF=5: TaI1 = 0.9000, TaS1 = 0.8909, TaI2 = 0.9288, TaS2 = 0.9106; 929

At DF=7: TaI1 = 0.9348, TaS1 = 0.8773, TaI2 = 0.9242, TaS2 = 0.9318. 930
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Selection of target-against Ta values 931

The mean duration µ obtained by numerical simulations of EVA model was compared 932

to its behavioral counterpart µexp for first and subsequent I, S percepts, and each 933

DF= 3, 5, 7. Behavioral results from 15 subjects were characterized by group mean 934

data µexp and 95% CI with CI corresponding to 1.96 SE (Fig 5A and Fig 6A, lower 935

panel). Then the model was considered to provide a good approximation of the 936

experimental data if µ belonged to a narrow band within 1 SE from µexp (Fig 7, green 937

region and black dots). This was equivalent to the relative error 938

|µ/µexp − 1| ≤ CV/
√

15 where CV = stdexp/µexp was the coefficient of variation 939

computed over the group of subjects. Parameters Ta, σa used for the numerical 940

simulations of EVA model (Fig 7, red diamond) were chosen as follows: σa = 0.085 was 941

kept fixed while values of Ta were determined by restricting the error magnitude to only 942

10% SE (i.e. |µ− µexp| ≤ 0.1 SE); then, among the latter set we selected the value Ta 943

that yielded the least error in shape of the gamma-fit distributions (see Eq (3)). 944

Statistical properties of SL-activation 945

At any fixed triplet position t in the ABA− sequence presentation, each of the Nsl 946

samplers was equivalent to an independent Bernoulli process (during repeated trials) 947

with probability of success p1;t,DF and probability of failure p0;t,DF = 1− p1;t,DF . 948

Likewise, the state of SL described a binomial process equivalent to the random 949

variable, over trials, Nsl pI(t) where pI(t) represented the percentage of samplers in 950

class 1 that favored integration at triplet t. The stochastic process had mean Nsl p1;t,DF 951

and variance Nsl (1− p1;t,DF ) p1;t,DF . As a result, the first two moments of the output 952

pS(t) and pI(t) of SL were well-approximated, for sufficiently large triplet-indexes 953
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(t ≥ 30; see Eq (5) and Fig 8B, 2nd panel), by 954

E
[
pS(t)

]
= pseg;DF , E

[
pI(t)

]
= 1− pseg;DF ,

V ar
[
pS(t)] = V ar

[
pI(t)] =

1

Nsl
(1− pseg;DF ) pseg;DF .

(7)

In particular, for large Nsl the variance of pS(t) and pI(t) became negligible while their 955

means remained unchanged. 956

Selection of noise level σa 957

Our EVA model features accumulation that could saturate, given that target-against Ta 958

was assumed to be subthreshold (Ta < 1). Hence the noise level σa has to be sufficiently 959

large in order for the trajectory of the accumulator drifting towards Ta to reach the 960

ACC-threshold. A theoretical lower-bound estimate for σa was obtained by assuming 961

Nsl large and focusing only on the properties of the subsequent percept durations. 962

Under such assumptions, pS(t) and pI(t) were approximately constant as demonstrated 963

by Eqs (5) and (7). Then, after each switch, both accumulators satisfied an equation of 964

the form Xn+1 = Xn + (T −Xn)p+ εn+1 with X0 ≈ Tf ; T , σ taken as either Ta, σa or 965

Tf , σf ; and independent random variables εn+1 ∼ N (0, σ2); see also Eq 1 in Section 966

B.1. Such an equation describes a stationary first order autoregressive model with 967

parameter λ=1-p [41]. Therefore, at the nth triplet during a percept immediately 968

following a switch, the states of the accumulators followed a normal distribution with 969

mean E[Xn]=T -(T -Tf )λn and variance V ar[Xn]=σ2(1− λ2n)/(1− λ2). In particular, 970

at the nth triplet during integration, the mean and variance of xS (xI) that 971

accumulated evidence against (for) the percept were E[xS ] = Ea, V ar[xS ] = Va, 972

E[xI ] = Ef , V ar[xI ] = Vf where 973

Ea = Ta − (Ta − Tf )pn, Va =
1− p2n

1− p2
σ2
a, Ef = Tf , Vf =

1− (1− p)2n

1− (1− p)2
σ2
f

with p = 1− pseg;DF . Then at the nth triplet during segregation they were E[xI ] = Ea, 974

V ar[xI ] = Va, E[xS ] = Ef , V ar[xS ] = Vf with Ea, Va, Ef , Vf defined as above but 975
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computed with p = pseg;DF . Given that 3 times the standard deviation from the mean 976

accounts for 99.73% of values in a normal distribution, if σa was too small the 977

accumulators could cross the threshold 1 only with very small probabillity. From the 978

calculation above, a lower bound for σa in the model was estimated at σa > σa,min with 979

σa,min = (1− Ta)
√

1− p2M/3, where pM was the maximum of pseg;DF and 1− pseg;DF 980

for all DF= 3, 5, 7. For example, if Ta = 0.9 then a necessary condition for switching 981

was σa > 0.022. 982

Statistical properties of ACC-activation 983

As explained in the previous section, for small σa the accumulators in the EVA model 984

could not cross threshold 1 (Fig 7; na, gray region). Numerical simulations showed that 985

when σa increased to the right of curve σa = σa,min in the (σa, Ta)-plane, alternations 986

between percepts occurred and the dominant durations were distributed according to: 987

normal distributions at σa small (the parameter α in Eq (3) was very large) or to 988

exponential distributions at σa large (α in (3) was near 1); see Fig 7, regions labeled “N” 989

and “E”, respectively. At intermediate values σa, the distributions were gamma-like 990

with shape close to that found experimentally (Fig 7, region labeled “G” between the 991

two white curves). In the latter case, parameter α in (3) was either near 2 (for first 992

percept durations) or near 2.6 (for subsequent durations), and it differed from αexp by 993

relative error up to 20%, |α/αexp − 1| ≤ 0.2 (except for first and subsequent I at DF=7 994

at which the range for α was extremely narrow and we allowed for a larger error, up to 995

30% instead). The range for σa that led to gamma-like distributions varied slightly with 996

Nsl with the biggest difference being identified at Nsl = 1; see S3 Fig. 997

Data-driven parameters for EVA model 998

Parameter mean values mt,DF were used to generate Poisson spike counts of IL-units at 999

each triplet t (t = 1, 2, . . . , 60) in the ABA− sequence and for each semitone difference 1000
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DF=3, 5, 7; see section Input Layer and Eq (4). They were derived from multi-unit 1001

spiking neural data recorded from macaque monkey primary auditory cortex A1 by [1], 1002

using a procedure that combined exponential fitting with numerical interpolation. First, 1003

mean spike counts mt,DF at A-tone selective neurons in A1 during presentation of tones 1004

A, B and A in ABA− were extracted from [1] for each triplet t ≤ 20 in the sequence 1005

and for each DF=1, 3, 6, 9; See scatter points in [1, Fig.3]; also S4 Fig. The mean spike 1006

counts at each tone decreased from value m1,DF measured at the first triplet to some 1007

level m∗DF at which they stabilized after a few seconds since stimulus onset. They were 1008

fitted by functions 1009

mt,DF ≈ m∗DF + (m1,DF −m∗DF )e−1.1(t−1) (8)

with parameters m∗DF chosen to minimize the least-squares error between the extracted 1010

mean spike counts mt,DF and the corresponding exponential curve ( S4 Fig, solid 1011

curves). In particular, significant differences in mean spike counts at different DF 1012

values were observed only during tone-B presentation with fitting (8) achieved for 1013

parameter values m1,1 = 7.25, m1,3 = 6.25, m1,6 = 6, m1,9 = 5.25 (according to data 1014

from [1]) and m∗1 = 6.09, m∗3 = 4.57, m∗6 = 3.95, m∗9 = 3.44 respectively. Secondly, 1015

simulations of EVA model were performed for DF= 3, 5, 7 instead of 1, 3, 6, 9, and for 1016

a total of 60 rather than 20 triplets. We implemented these constraints in two steps: for 1017

DF=3 we chose the mean spike counts mt,DF as in [1] for t ≤ 20 and as m∗DF for 1018

t > 20. Then for DF=5 and DF=7 and each triplet t we defined the mean spike counts 1019

by interpolation using the power function mt,DF = atDF
bt whose coefficients at, bt 1020

satisfied the least-squares fit between this curve and the points (DF , mt,DF ) defined by 1021

(8) for all DF=1, 3, 6, 9 at any fixed t. 1022

The mean spike counts for B-tones of any pool of A-tone selective IL neuronal units, 1023

as well as the standard error to the mean, were computed from simulation of Poisson 1024

processes with parameter mt,DF while varying Nin (Fig 8A). Then a threshold value 1025
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Cth was chosen to minimize the squared differences error between the model-based 1026

probabilities (4) of a sampler to support the segregation percept for all DF=3, 5, 7 and 1027

the behavioral buildup functions, applied to the last 30 triplets (15 seconds) of the 1028

stimulus (Fig 8B). The pair of parameter values Nin = 5, Cth = 4.21 that generated the 1029

minimum error was then used in numerical simulations of the EVA model. 1030

EVA model versus classical drift-diffusion models 1031

To gain some intuition about the accumulation process in our EVA model and about 1032

the timing of switch events, we considered an approximation of the stochastic Eqs (6) in 1033

continuous time. For that, we assumed the drift in (6) to be constant and neglected its 1034

dependence on activity x. Then percept durations corresponded to the first-passage 1035

time of the ACC-unit that accumulated evidence against the current percept. Its 1036

equation could be interpreted as the constant-drift continuous-time diffusion model 1037

(DDM) dx = γadt+ σa dWt with positive drift rate γa, noise amplitude σa, Gaussian 1038

white noise dWt, and decision threshold θ = 1. In this DDM, the likelihood of 1039

first-passage at time t follows an inverse Gaussian distribution [28] with density function 1040

f(t) = 1

σa

√
2πt3

exp
(
− (t−1/γa)2

2t(σ2
a/γ

2
a)

)
and mean 1/γa, variance γa + σ2

a, and coefficient of 1041

variation CV =
√

1/γa + σ2
a/γ

2
a. Moreover, the inverse Gaussian resembles a gamma 1042

distribution for large CV but converges to a normal distribution as σa decreased in 1043

relation to drift rate γa [28]. To some extent, the dynamics of the discrete-time ACC (6) 1044

share similarities with DDM above. Numerical simulations of our EVA model showed 1045

that gamma-like distributions of percept durations were possible only for σa chosen in a 1046

restricted parameter range, given fixed targets Ta and Tf (see section Statistical 1047

properties of ACC-activation). Outside this range, percept durations followed either 1048

normal distributions (for lower values of σa) or exponential distributions (for larger 1049

values of σa). However, the accumulation process in the EVA model is different than in 1050
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the DDM for several reasons: Eqs (6) are discrete-time drift diffusion models; they 1051

include leakage; their deterministic version admits bistable non-oscillatory solutions (no 1052

threshold crossing); and the input drive from SL is itself stochastic with fluctuations 1053

described by (7). 1054
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Supporting information 1164

S1 Fig. The evidence accumulation (EVA) model captures experimental 1165

mean duration (µ) and shape of gamma-like distributions (α) for first and 1166

subsequent percept durations at other DF values. Distributions of normalized 1167

phase durations are shown for A: DF=3 and B: DF=7. They are obtained from 1168

numerical simulations of the EVA model (columns 2,4) and compared to those derived 1169

from behavioral data (columns 1,3). 1170

S2 Fig. Exemplar time courses of accumulators in the EVA model, shown 1171

for DF=3 (top) and DF=7 (bottom). In only a few trials, 103 out of 675 for 1172

DF=3 and 220 out of 675 for DF=7, the first percept is segregation (see panels 2,4). 1173

During a cycle, the suppressed unit accumulates evidence against the current percept 1174

until it reaches the switching threshold. Then, a perceptual switch occurs and 1175

accumulators are reset to the same value. In the noise free case, the accumulators 1176

stabilize to their corresponding target values and there are no alternations. Such 1177

trajectories are depicted by dashed lines. 1178

S3 Fig. Mean percept durations (µ) and shape parameter values (α) in 1179

the EVA model are largely unaffected by changes in Nsl, the number of 1180

units in the sampler layer. Some important differences occur, however, at Nsl = 1 1181

(e.g. for subsequent durations). A two-parameter response diagram of the dependence of 1182

µ and α on target-against Ta and noise strength σa is shown for DF=5 and varying Nsl 1183

for A: first percepts and B: subsequent percepts. All parameters are chosen as described 1184

in Methods, except for Nsl (here Nsl = 1, 5 or 10). For comparison, see Fig 7, middle 1185

column; Nsl = 20 at DF=5. Red diamonds correspond to same parameter choices as in 1186

Fig 7 for Nsl = 20, as well. The heat map represents the ratio µ/µexp between 1187

model-generated µ and mean duration µexp from the behavioral data. Regions of no 1188
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alternations (na) are colored in gray. Mean durations are much longer than their 1189

experimental counterparts µexp (region in warm colors), much shorter than µexp (region 1190

in cool colors), or close to µexp (within one standard error to µexp; in green; black dots 1191

depict a discrete selection of values in the green region). The distributions of normalized 1192

percept durations are characterized by three distinct regions: for small σa the 1193

distributions are normal (region N, to the left of dashed-white line; α� 3); for large σa 1194

the distributions are exponential (region E, to the right of solid-white line; α near 1); 1195

for intermediate values σa the distributions are gamma-like with shape close to that 1196

found experimentally (region G, between white contours; α ≈ 2 for first percepts and 1197

α ≈ 2.6 for subsequent percepts; α differs from αexp by relative error up to 20% except 1198

for integration at DF=7 where it is up to 30%). As in Fig 7, middle column, the 1199

intersection of white contours with the sheet of black dots identifies parameter values 1200

that yield well-fit data. Note that at Nsl = 1 this intersection is empty for both 1201

subsequent percepts I and S (panel B, first column). 1202

S4 Fig. The signal detection algorithm for constructing a neurometric 1203

function (the probability of segregation as a function of time) generates 1204

acceptable buildup fits at DF= 1, 3, 6, 9. For comparison, see Micheyl et al 1205

(2005) [1]. Upper panel: mean spike counts mt;DF (scatter points) at A-tone selective 1206

neurons in A1 during tone B were extracted from [1, (Fig.3A)]. They correspond to 1207

conditions DF=1 (blue), 3 (green), 6 (red), 9 (cyan), based on 10 s (20 triplets) long 1208

trials. The mean spike counts decrease exponentially and stabilize within a few seconds 1209

(solid curves for the exponential fits). The algorithm generates spike counts during 1210

B-tone by using Poisson processes of means mt;DF , and then average them over Nin 1211

neuronal units. The average values of the mean spike counts, including asymptotic 1212

values (written in parenthesis) at each DF , and the standard error to the mean (SEM) 1213

are computed over 675 trials. Lower panel: The signal detection algorithm constructs 1214
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neurometric functions using numerical data from all Nin neuronal units. Parameters 1215

Nin and Cth are chosen to yield SEM similar to those observed in the spike count 1216

data [1, (Fig.3A)] and to yield the least-squares error of the experimental buildups 1217

(dashed, extracted from [1, (Fig.4)] and the computer-simulated neurometric functions 1218

(solid) for DF= 1, 3, 6, 9. The best approximation is obtained for Nin = 30, Cth = 4.64. 1219

Note: Statistics of percept durations were not reported in [1]; this prevented us from 1220

comparing these aspects of behavioral data from [1] to our numerically-generated 1221

duration distributions at DF=1, 3, 6, 9. 1222

S5 Fig. EVA model with fixed target-against value Ta across all 1223

conditions and percept types captures some, but not all, characteristics of 1224

perceptual alternations. For comparison, mean durations and shape parameter α of 1225

gamma distributions are shown for A: Experimental data; B: EVA model with 1226

optimized values for target-against (see Methods, Parameter values used in model 1227

simulations). EVA-generated results are identical to those in Figs 5 and 6; and 1228

C: Non-optimized EVA simulated with Ta = 0.9 across all DF= 3, 5, 7 and first and 1229

subsequent I, S. All other parameters are as in panel B. The mean durations from 1230

simulations follow the trend of experimental data which is decreasing/increasing with 1231

DF for I/S respectively. However, they fail to approximate well the entire set of 1232

behavioral data (e.g. approximations of mean first durations at DF=3 and DF=7 are 1233

inaccurate). On the other hand, gamma-fit shape values α are comparable to those from 1234

panels A and B. This is not surprising given that α depends mostly on the noise-level 1235

σa, as shown in Fig 7. 1236
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Fig 1. Stimulus, buildup, and distribution of first percept durations in

auditory streaming of triplets. A: Stimulus paradigm (left) used for behavioral

experiments and corresponding percept types (right). Stimulus consists of sequences of

high (A) and low (B) pure tones presented as repeated triplets ABA− where ’−’

denotes silent gap. Depending on DF between tones A and B, there are two

fundamental percepts: integration (I; blue), one connected stream with galloping

rhythm, and segregation (S; red), two parallel streams of high tone A−A−A−A− and

low tone −B−−−B−− occurring simultaneously. B: Computation of the buildup

function (time course of probability of S) obtained by determining the frequency of

occurrence of S over all trials at each time point τ up to 30 s (45 trials for each DF and

subject; 15 subjects). Non-S includes both latency (gray) and I (blue) states. Due to

latency, the buildup function always starts at 0 even though the first percept is not

necessarily I. For example, in Trial 2, the first percept is S. C: Experimental-based

psychometric buildup function (upper panel) and distribution of first percept durations

(middle and lower panels). Buildup functions are computed for DF=3 (green), 5 (red),

and 7 (cyan). The error bars indicate 95% CI around the mean using statistical

bootstrapping. Durations are normalized by dividing by mean duration. Likelihood

ratio test confirms that normalized first percept durations are gamma distributed –

shown here at DF=5 for I (N=533, p=0.49) and S (N=114, p=0.47). The shape

parameters α, obtained by Maximum Likelihood Estimation (MLE), and the mean

durations µ are indicated in the graphic. D: Model-based simulated buildup function

(upper panel) and distribution of normalized first percept durations (middle and lower

panels). Buildup functions from the evidence accumulation model (EVA; solid) closely

resemble those from the behavioral experiment (dashed, also in C). Normalized first

percept durations are gamma distributed (shown at DF=5). Similar results are

obtained for other DF values; see S1 Fig.
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Fig 2. A basic state-dependent model for evidence accumulation yields

percept durations that are gamma-like distributed and with mean values

similar to those observed in behavioral data. To demonstrate the robustness of

the model results and dependence on parameter values we simulated Eq (1) with various

values for target T and noise level σ. Shown for DF=5 with r = 0.6: (Left)

Two-parameter response diagram of the first I-percept with respect to T and σ. There

is no switch for very small noise levels (na; gray area). Threshold-crossing activity

appears with increased noise and leads to percept durations that are distributed

according to normal distributions (region N), gamma-like distributions (region G

between the black dashed and black solid curves), or exponential distributions (region

E). Parameter values that lie on the sheets of black and gray dots yield numerically

generated first integration mean durations within one and two standard deviation(s) of

the experimental mean. (Right) Insets are shown for T = 0.9, σ = 0.085 (black diamond

in the diagram): computed distribution of first integration normalized durations and the

early phase of numerical buildup obtained during one simulation run of Eq (1) are in

agreement with behavioral data. For simplicity, the drift rate r was kept constant to 0.6

between all threshold crossings.
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Fig 3. Linking neural data with behavioral data in the EVA framework.

Individual spike counts of A1 neurons are assumed to be Poisson with means mDF such

that m3 > m5 > m7 for DF=3, 5, 7. Averaged spike counts over Nin A1-neurons,

< Spk >= 1
Nin

∑Nin

j=1 Spkj , are normal-like distributed with means mDF and standard

deviation decreasing inversely with
√
Nin; shown in gray (DF=3), black (DF=5) and

light-gray (DF=7) for Nin=10 (upper panel) and Nin=100 (lower panel). At each

triplet, < Spk > activates a sampler unit downstream if it exceeds a threshold Cth

(solid black, vertical line). The area under the probability distribution to the left of Cth

(white-dots pattern; DF=5) determines the probability p of the sampler neuron to be

inactive (0); the complementary probability 1− p is for the sampler to be active (1). For

each Nin, the threshold Cth was chosen such that p = 0.6 at DF=5, which is the

asymptotic, approximate value of the corresponding behavioral buildup near

equidominance (see Fig 1C; red curve). Probabilities p obtained at different DF vary

from values being graded when Nin is small (Nin=10), to values spread apart

approaching zero or one when Nin is large (Nin=100). A suitable variability in the

A1-neuronal population is key if aiming to account for graded BUF levels observed in

behavioral data (Fig 1C).
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Fig 4. Accumulation model as feed-forward auditory network of 3 layers.

A: State of neurons at triplet t in the input layer and sampler layer of the evidence

accumulation model. Input layer comprises A1 units with (triplet- and DF -dependent)

mean spike counts presented in panel B. Sampler layer has Nsl=20 binary neuronal

units, either in state 1 (blue; favoring I percept) or state 0 (red; favoring S percept).

Each unit samples a small number of input units (Nin=5) and the averaged spike count

across the units is compared to Cth (see panel B) to determine the unit’s appropriate

perceptual state. B: Mean spike counts (scatter plot) for tone B of tone-A-selective

neurons, and exponential fit (solid) of mean spike counts. These values are interpolated

for our specific DF=3,5,7 using data from cortical area A1 of awake macaque extracted

from [1]. A Poisson spike count is generated using the mean value at each triplet.

Asymptotic values of mean spike count (printed in parenthesis next to corresponding

DF values) are used to generate spike counts after the 20-th triplet. Poisson spike

counts are averaged across sets of Nin=5 neuronal units, and the resulting values are

subject to a binary neural threshold Cth (black horizontal line). The error bars indicate

the standard errors of the mean spike counts. C: Accumulation layer has 2 accumulators

drifting over successive triplets towards their own target values Ta and Tf where

Ta > Tf . Their activities are governed by input factors from the sampler layer and

stochastic factors. The noise level depends on the target (σa > σf ). During a cycle, the

suppressed unit accumulates evidence against the current percept. A switch to the other

percept occurs when the accumulator of the suppressed unit reaches the switching

threshold of 1. A new cycle starts, with accumulators reset to appropriate values, and

targets values switched to corresponding perceptual states. Shown for DF=5. For other

DF values, see S2 Fig. For the complete list of parameter values, see Methods – section

Parameter values used in model simulations.
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Fig 5. EVA model yields realistic first percept durations. A: Mean percept

durations (top) and fitted α value (bottom) from gamma distribution of first I (blue)

and first S (red) percepts from behavioral experiment for DF=3,5,7. The error bars

indicate 95% CI around the mean and are obtained from statistical bootstrapping (see

Methods). The mean durations of I decrease with DF while those of S increase with

DF . The shape parameters α from gamma-fit using MLE for DF=3,5,7 are also

presented here. There is no observed trend for α values. B: Mean percept durations

(top) and fitted shape parameter α (bottom) from gamma distribution of first I (blue)

and first S (red) states from EVA model. The error bars are 95% CI obtained from 100

Monte Carlo runs to show the robustness of the model. The mean values of duration

follow the similar trend as those from experiment. Also, the shape parameters show a

close resemblance to those from the experiment. Related results are included in S5 Fig.
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Fig 6. EVA model yields realistic subsequent percept durations and

distributions. A: Distribution of normalized subsequent percept durations (top) and

other properties (bottom) from behavioral experiment. (Top) Likelihood ratio test

confirms that both subsequent I (blue; N=1642, p=0.49) and S (red; N=1785, p=0.49)

percepts follow a gamma distribution, shown here for DF=5. The shape parameters α

computed using MLE, and the mean durations µ are shown in the graphic. (Bottom)

Mean subsequent durations for I (blue) and S (red) for DF=3,5,7. The error bars

indicate 95% CI around the mean, computed using statistical bootstrapping (see

Methods). Similar to the first percept, mean durations of subsequent I and S show a

“cross-diagram” like behavior [6, Fig.9B] with equidominance near DF=5; the ratio

between mean durations for I and S percepts changes from larger than 1 to smaller

than 1 when crossing DF=5, near equidominance. The shape parameters α from MLE

for DF=3,5,7 are also presented, and no trend for α values is found. B: Distribution of

normalized subsequent percept durations (top) and properties (bottom) from EVA

model. (Top) Normalized subsequent percepts are gamma distributed for DF=5 with

mean durations µ and shape parameters α shown in the figure; similar results are

obtained for other DF values, see S1 Fig. (Bottom) Mean percept durations and fitted

shape parameters α for DF=3,5,7 from EVA model. Mean subsequent durations follow

the same trend and the shape parameters have similar values as compared to those from

the experiment. The error bars are 95% CI obtained from 100 Monte Carlo runs of the

model. The result shows the robustness and consistency of the model. Related results

are shown in S5 Fig.
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Fig 7. Dependence of mean percept durations and shape of distributions

on target Ta and stochastic term σa, in the EVA model. Diagrams show the

difference between the mean duration µ derived from numerical simulations of the model

and mean µexp from the behavioral data, represented as ratio µ/µexp; see the color

scheme. Results are shown for A: first and B: subsequent integration and segregation

percepts at conditions DF= 3,5,7. Given a fixed value for Ta, the dynamics changes

from no alternations between percepts at small σa (na; in gray); to alternations of mean

durations much longer than the experimental mean (region in warm colors); to mean

durations that approximate well the corresponding experimental values (within one

standard error to µexp; in green; black dots depict a discrete selection of values in the

green region); then, to mean durations much shorter than µexp (region in cool colors).

In each diagram, σa, Ta that were used to generate model-based results are identified by

a red diamond (see Methods, σa = 0.085, Ta varies). Besides mean durations, the

shapes of the gamma-like distributions that fit normalized percept durations depend on

Ta and σa as well (α is the shape-parameter in the gamma-fit; see Eq (3) in Methods).

There are three main regions that characterize α and they are delineated by the

dashed-white and solid-white curves. Low-level of noise σa yields normal distributions

(region N, to the left of dashed-white line; α� 3) while high-level of noise yields

exponential distributions (region E, to the right of solid-white line; α near 1). For

intermediate level of noise, the distributions are gamma-like with shape close to that

found experimentally (region G, between white contours; α ≈ 2 for first percepts and

α ≈ 2.6 for subsequent percepts; α differs from αexp by relative error up to 20% except

for integration at DF=7 where it is up to 30%). The parameter range where both

model-generated mean duration and shape of distribution are good approximations of

their corresponding experimental observations is found at the intersection of region G

with the sheet of black dots. Related results are shown in S3 Fig.
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Fig 8. Parameter fitting for input and sampler layers in the EVA model.

The signal detection algorithm for constructing a neurometric function (the probability

of a sampler to support the segregation percept) utilizes spike count time courses as

shown in panel A (data extracted from [1] and interpolated for the cases DF=3, 5, 7);

see below for more detail. The behavioral buildup functions (dashed, in panel B) occupy

intermediate ranges of probability of S, and show slow initial rise for DF=3, 5. The

simulated functions (solid, in panel B) do not capture the slow-rising phase of behavior

buildup, and the spread between the neurometric curves increases unacceptably at

larger Nin. For an optimal choice of parameters Nin, Cth, the algorithm yields well-fit

asymptotic values of behavioral data. A: Mean spike counts mt;DF are interpolated at

DF=3, 5, 7 st from data in [1], and then extended for triplets t ≤ 60; see Methods.

(Note: In [1, Fig.3] mean spike count data were shown for A-tone selective neurons in

A1 during triplet tones at DF=1, 3, 6, 9. They decreased exponentially and stabilized

within a few seconds. Mean spike counts changed with DF only during B-tone.) Herein,

spike counts during B-tone are generated using Poisson processes of means mt;DF

(DF=3, 5, 7) and then averaged over Nin neuronal units of the input layer IL (e.g.

Nin= 1, 5, 30, 100). The average values of the mean spike counts and the standard error

to the mean (SEM) are computed over 675 trials. Averages, including asymptotic values

(written in parenthesis, at each DF ), do not change with Nin but SEM decreases with a

factor of 1/
√
Nin. B: The signal detection algorithm [1] generates neurometric functions

using numerical data from IL-pools of Nin neuronal units; parameter Cth is chosen to

yield the least-squares error of the experimental buildups and the computer-simulated

neurometric functions for DF=3,5,7. If Nin is small the neurometric curves tend to

bunch together due to overlapping and large SEM regions across conditions. As Nin

gets bigger, the neurometric curves are pushed apart. The best approximation to the set

of psychophysical buildups is obtained for Nin = 5, Cth = 4.21.
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Fig 9. Signal detection algorithm adapted from [1] yields exponential

distributions and unrealistic mean durations of percepts. (Top) Binary

threshold Cth is chosen to yield the least-squares error between neurometric buildups

(solid) and behavioral buildups (dashed) at DF=3,5,7. Poisson spike counts are

averaged across a sample of Nin=5 neuronal units and compared to Cth to classify a

triplet either as I or S. Trial-averaging the S-tagged responses produces the

neurometric functions. The threshold value is determined by least-squares fit for A: the

first 15 seconds of the stimulus to match the transients, or for B: the last 15 seconds of

the stimulus to match the asymptotic level of the behavioral buildup; See also Fig 8.

(Bottom) Trial-by-trial applications of the signal detection algorithm from [1] with

A: Cth=4.01 and B: Cth=4.21 yield exponentially distributed subsequent percept

durations for I (blue) and S (red). Their mean values µ are significantly smaller than

those reported in the experiment. Note: Same parameter values Nin=5, Cth=4.21 were

used in the EVA model for activation of the sampler layer SL (Fig 4A-B) and obtain

gamma-like distributions of percepts (Figs 1D and 6B).
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Fig 3
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A. BEHAVIORAL EXPERIMENT B. EVIDENCE ACCUMULATION MODEL

Fig 5
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A. BEHAVIORAL  EXPERIMENT B. EVIDENCE ACCUMULATION MODEL
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A. LEAST - SQUARES FIT, 0 ≤ 𝜏 ≤ 15 B. LEAST - SQUARES FIT, 15 ≤ 𝜏 ≤ 30

Probability Density Function: DF=5 Probability Density Function: DF=5 
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A. Probability Density Function: DF=3 B. Probability Density Function: DF=7
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Latency Integration Segregation 𝑥𝑆𝑥𝐼
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A. First Percept: DF=5

B. Subsequent Percept: DF=5
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Fig S4
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A. BEHAVIORAL EXPERIMENT B. EVIDENCE ACCUMULATION MODEL C. MODEL WITH FIXED TARGET “AGAINST”
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June 11, 2020 74/74

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.01.24.917799doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.917799

