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Abstract

Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to

reduce impact on its health for a given parasite burden) manifest two different lines of

defence. Tolerance can be independent from resistance, traded-off against it, or the

two  can  be  positively  correlated  because  of  redundancy  in  underlying  (immune)

processes. We here tested whether this coupling between tolerance and resistance

could  differ  upon  infection  with  closely  related  parasite  species.  We  tested  this  in

experimental infections with two parasite species of the genus Eimeria. We measured

proxies  for  resistance  (the  (inverse  of)  number  of  parasite  transmission  stages

(oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of

maximum relative weight loss compared to day of infection on number of oocysts per

gram of feces at the day of maximal shedding for each host strain) in four inbred mouse

strains  and  four  groups  of  F1  hybrids  belonging  to  two  mouse  subspecies,

Mus musculus domesticus and  M. m. musculus.  We  found  a  negative  correlation

between resistance and tolerance against  E. falciformis, while the two are uncoupled

against E. ferrisi. We conclude that resistance and tolerance against the first parasite

species  might  be  traded  off,  but  evolve  more  independently  in  different  mouse

genotypes against the latter. We argue that evolution of the host immune defences can

be studied largely irrespective of parasite isolates if  resistance-tolerance coupling is

absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and

best  studied  in  a  system  with  negatively  correlated  tolerance  and  resistance

(E. falciformis).
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Introduction

Host defence mechanisms evolve to alleviate the detrimental effect of parasites. They

can  be  categorised  into  two  components:  resistance  and  tolerance  (Råberg  et  al.

2009).  Resistance is the ability of  a host  to  reduce parasite burden,  resulting from

defence against parasite infection or proliferation early after infection (Schmid-Hempel

2013). The negative effect of resistance on parasite fitness can lead to antagonistic

coevolution. According to theoretical models, fluctuating host and parasite genotypes

arise, and balancing selection maintains resistance alleles polymorphic (Boots et al.

2008; Roy & Kirchner 2000). Resistance has been the classical "catch all" measure for

host-parasite systems, but recently it has been shown to be incomplete, especially with

respect to potential fitness effects on the host (Kutzer & Armitage 2016; Råberg et al.

2009). 

Disease  tolerance  (not  to  be  confused  from  "immunological  tolerance",

unresponsiveness to self antigens; Medzhitov et al. 2012) is the ability of the host to

limit the impact of parasite on its fitness (Råberg et al. 2009; Vale & Little 2012; Kutzer

&  Armitage  2016).  By  potentially  providing  a  longer-living  niche,  this  defence

mechanism improves,  or  at  least  does  not  deteriorate,  the  fitness  of  the  parasite.

Tolerance alleles are thus predicted by theoretical models to evolve to fixation due to

positive feedback loops (Boots et al. 2008; Restif & Koella 2004; Roy & Kirchner 2000).

From a mechanistic  perspective tolerance alleviates direct  or  indirect  damage (e.g.

excessive  immune  response  underlying  resistance  against  parasites,  called

immunopathology;  Graham et  al.  2005)  caused  by  parasites  (Råberg  et  al.  2009).

Tolerance  mechanisms  include  modulation  of  inflammatory  response  (Ayres  &

Schneider  2012),  tissue  repair  (stress  response,  damage  repair  and  cellular
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regeneration mechanisms; Soares et al. 2017), and compensation of parasite-induced

damage  by  increase  of  reproductive  effort  (Baucom  &  Roode  2011).  Even  in  the

absence  of  parasite  infection,  the  maintenance  of  tolerance  mechanisms  can  be

detrimental  to  other  functions,  ultimately  affecting  host  fitness  (Stowe  et  al.  2000;

Råberg et al.  2009).  The resulting costs of  resistance and tolerance determine the

optimal (steady state and infection inducible) extent of both immune defences (Sheldon

& Verhulst 1996).

Resistance  and  tolerance  can  be  positively  associated  if  they  involve  the  same

metabolic pathway, as was shown in the plant model Arabidopsis thaliana in response

against  herbivory  (Mesa  et  al.  2017).  In  animals,  genetic  association  studies  of

resistance  and  tolerance  of  Drosophila  melanogaster against  the  bacterium

Providencia rettgeri have shown positively correlated genetic effects, as the same loci

were associated with changes of both traits in the same direction (Howick & Lazzaro

2017).

Nevertheless,  resistance  and  tolerance  can  also  be  genetically  and  physiologically

independent,  involving different proximate mechanisms. Lack of correlation between

both  defences  was  shown  for  example  in  monarch  butterflies  (Danaus  plexippus)

infected  by  the  protozoan  parasite  Ophryocystis  elektroscirrha.  This  study  found

genetic  variation  in  resistance  between  butterflies  families,  but  a  fixed  tolerance

(Lefèvre et al. 2010). Similarly, no correlation could be found between resistance and

tolerance for the fish Leuciscus burdigalensis in response to infection with its parasite

Tracheliastes polycolpus. The authors explain the decoupling of both defences by the

fact  that,  in  this  system, tolerance likely  involves wound repair  rather  than immune
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regulation, making resistance and tolerance mechanisms independent (Mazé-Guilmo et

al. 2014).

In other systems, resistance and tolerance have been found negatively correlated. For

example, inbred laboratory mouse strains lose weight upon infection with Plasmodium

chabaudi. The extent of this impact on host health is negatively correlated with the

peak number of parasites found in the blood (Råberg et al 2007), meaning that mouse

strains with higher resistance present lower tolerance. Similarly, infections of sea trout

(Salmo trutta trutta) and Atlantic salmon (Salmo salar) with the trematode Diplostomum

pseudospathaceum showed that resistance and tolerance were negatively correlated

when assessing mean levels of  both traits  in different  host  populations (Klemme &

Karvonen 2016). This is interpreted as a result of trade-off between resistance and

tolerance (Sheldon & Verhulst 1996; Restif & Koella 2004; Råberg et al. 2009).

We have seen that depending on the system studied, resistance and tolerance can be

(1)  uncoupled  (independent),  (2)  positively  correlated  (involving  same  genes  and

mechanisms), or (3) negatively correlated (traded-off).  Theoretical models show that

coupling between resistance and tolerance (or absence thereof) could depend not only

on the host but also on the parasite (Carval  & Ferriere 2010).  Here we tested this

hypothesis.  More  precisely,  we  asked  whether  there  could  be  differences  in  the

resistance-tolerance coupling upon infection of one host type with two closely related

parasite species. To answer this question, we infected four inbred mouse strains and

four  groups  of  F1  hybrids  representative  of  two  house  mouse  subspecies,

M. m. domesticus and M. m. musculus, with two parasite isolates representative of two

naturally  occurring  parasite  species,  the  protozoan  parasites  Eimeria  ferrisi and

E. falciformis (Jarquín-Díaz et al. 2019).  Eimeria spp. are monoxenous parasites that

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.01.24.918144doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918144
http://creativecommons.org/licenses/by/4.0/


expand  asexually  and  reproduce  sexually  in  intestinal  epithelial  cells,  leading  to

malabsorption of nutrients, tissue damage and weight loss (Chapman et al. 2013). The

evolutionary  history  of  these  different  Eimeria species  in  the  two  house  mouse

subspecies is unknown and it is unclear whether subspecies-specific adaptation exists

in one or the other.  We tested if  coupling between resistance and tolerance differs

between  both  parasite  species  and  discussed  the  implication  for  parasite-host

coevolution. 

Material and methods

1. Parasite isolates

The three parasite isolates used in this study were isolated from feces of three different

M. m. domesticus/M. m. musculus hybrid mice captured in Brandenburg, Germany, in

2016 (capture permit No. 2347/35/2014). The parasite isolates belong to both the most

prevalent  Eimeria species in this area, namely  E. ferrisi (isolate Brandenburg64) and

E. falciformis  (isolate  Brandenburg88)(Jarquín-Díaz  et  al.  2019).  Isolate

Brandenburg64 was isolated in a 92% M. m. domesticus individual (hybrid index (HI) =

0.08:  Proportion  of  M. m. musculus alleles  in  a  set  of  14  diagnostic  markers,  see

Balard et al. (2020)) and isolate Brandenburg88 in a 80% M. m. domesticus (HI=0.2).

Pre-patency and the peak day of parasite shedding for these isolates were estimated

during infection in NMRI laboratory mice (Al-khlifeh et al. 2019) which were also used

for serial passaging of the isolates. Previous to the experiment, the isolates had been

passaged respectively 3 and 4 times in NMRI laboratory mice. Parasite infective forms

(oocysts) were recovered by flotation in saturated NaCl solution followed by washing

and observation under light microscope (following the protocol described in Clerc et al.

(2019))  and stored at  room temperature in  1mL of  2% potassium dichromate for  a
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maximum of 2 months before infection of the wild-derived mice. Oocysts were allowed

to sporulate 10 days before infection in a water bath at 30°C.

2. Mouse groups

We used four wild-derived inbred mouse strains from which we generated four groups

of F1 hybrids. Hybrids between M. m. domesticus and M. m. musculus are used in the

present study solely to increase statistical power for comparisons among strains (such

as resistance-tolerance correlations). In the future, analyses of a hybrid effect (Balard

et al. 2020) could investigate tolerance and resistance employing a larger panel of such

hybrid strains allowing statistical analysis of an outbreeding effect. Two parental strains

represented  M. m. domesticus:  SCHUNT (Locality: Schweben, Hessen, Germany [N:

5°0  26’,  E:  9°  36’]  (Martincová  et  al.  2019))  and  STRA (Locality:  Straas,  Bavaria,

Germany  [N:  50°  11’,  E:  11°  46’]  (Piálek  et  al.  2008),  and  two  derived  from

M. m. musculus:  BUSNA (Locality: Buškovice, Bohemia, Czech Republic [N: 5°0 14’,

E:  1°3  22’]  (Piálek  et  al.  2008))  and  PWD (Locality:  Kunratice,  Bohemia,  Czech

Republic [N: 5°0 01’, E: 14 2°9’] (Gregorová and Forejt 2000)). These four strains were

fully inbred, i.e. passing more than 20 generations of brother–sister mating . The four

groups of F1 hybrids consisted of two intrasubspecific hybrids (SCHUNTxSTRA and

PWDxBUSNA) and two intersubspecific hybrids (STRAxBUSNA and SCHUNTxPWD)

(Figure 1).  Age of  the mice at  the time of  infection ranged between 5.6 and 21.4

weeks,  with the mean for each eight mouse group ranging between 10.5 and 14.7

weeks. All mouse strains and F1 hybrids were obtained from the Institute of Vertebrate

Biology of the Czech Academy of Sciences in Studenec (license number 61974/2017-

MZE-17214; for further details on strains see https://housemice.cz/en).
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Parasites of the  Eimeria genus are known to induce host immune protection against

reinfection (Rose, Hesketh, and Wakelin 1992; Smith and Hayday 2000). To ensure

that our mice were Eimeria-naive, mouse fecal samples were tested before infection for

the presence of Eimeria spp. oocysts by flotation in saturated NaCl solution followed by

washing and observation under light microscope.

3. Experimental infection

Mice were kept in individual cages during infection. Water and food (SNIFF, Rat/Mouse

maintenance feed 10 mm) were provided ad libitum supplemented with 1 g of sunflower

and barley seeds per day. Mice were orally infected with 150 sporulated oocysts of one

Eimeria isolate suspended in 100μl phosphate-buffer saline (PBS) and monitored daily

until their sacrifice by cervical dislocation at time of regression of infection (reduction of

oocyst output).  Individuals presenting severe health deficiency and/or a weight loss

approaching 18% relative  to  their  starting  weight  were  sacrificed earlier  at  defined

humane end points (experiment license Reg. 0431/17). Weight was recorded and feces

collected on a daily basis. Fecal pellets were collected every day from each individual

cage and suspended in 2% potassium dichromate. Parasite oocysts were recovered

using NaCl flotation (see above).

All individuals were negative for  Eimeria at the beginning of our experiment (before

infection of first batch, as described in the next paragraph). In total, 143 mice were

infected. Mice were randomly allocated to experimental groups ensuring homogeneous

distribution of ages and sexes between groups. Our experiments were conducted in

four  (partially  overlapping)  consecutive  batches for  logistical  reasons.  The first  two

batches were infected with E. ferrisi isolates (Brandenburg64), the third and fourth by

one E. ferrisi isolate (Brandenburg64) and one E. falciformis isolate (Brandenburg88).
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Our  experimental  design  is  summarized  in  Table  1 (chronology  of  experimental

batches can be scrutinized in Appendix 1).

Nematode infection is common in breeding facilities (Baker, 1998) and could interact

with  Eimeria (Clerc et al. 2019). We surveyed for their presence and nematode eggs

(Syphacia sp. and Aspiculuris sp.) were observed in flotated feces of mice belonging to

all genotypes before the experiment. Despite treatment of the first infection batch of

mice (B1, 12 mice) with anthelminthics (Profender®, Bayer AG, Levekusen, Germany)

following the protocol of  Mehlhorn et al.  (2005),  nematodes were still  detected with

PCR (following the protocol of (Floyd et al. 2005)) in randomly sampled fecal samples a

week later. We therefore decided not to treat mice of the following infection batches.

Moreover, we observed Eimeria oocysts in the feces of 28 mice belonging to the last

experimental batch (batch B4) at the day of infection, likely due to cross-contamination

between batches. For following statistical analyses, we considered along with the full

data set (N=143) a conservative data set in which cross-contaminated animals and

animals  treated  by  anthelminthic  were  removed  (N=103).  Results  obtained  on  the

conservative  data  set  can  be  found  in  Appendix  2  and 3. Despite  differences  in

significance due to a lower statistical power, the main conclusions of our analyses were

consistent with those obtained on the main data set.

4. Statistical analyses

4.1. Choice of proxies for resistance, impact of parasite on host and tolerance

As resistance is  the  capacity  of  a  host  to  reduce its  parasite  burden,  it  is  usually

estimated by the inverse of infection intensity (Råberg et al. 2009). Pre-patency (the

time to shedding of infectious stages, so called oocysts) is longer for E. falciformis (7
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days)  than  for  E. ferrisi (5  days)  (Al-khlifeh  et  al.  2019).  Therefore,  as  a  proxy  of

(inverse of) resistance we used the number of oocysts per gram of feces (OPG) at the

day of maximal shedding. Using the Spearman’s non-parametric rank correlation test,

we found this  measurement  to  be  tightly  correlated  with  the  sum of  oocysts  shed

throughout  the  experiment  (Spearman’s  ρ=0.93,  N=168,  P<0.001).  Due  to  the

aggregation  characteristic  of  parasites  (Shaw  and  Dobson  1995),  the  appropriate

distribution  for  maximum  number  of  OPG  was  found  to  be  the  negative  binomial

distribution. This was confirmed based on log likelihood, AIC criteria and goodness-of-

fits plots (density, CDF, Q-Q, P-P plots; R packages MASS (Venables & Ripley 2002)

and fitdistrplus (Delignette-Muller & Dutang 2015)). We confirmed the fit of our models

by assessing the uniformity of the distribution of model residuals.

Both  parasite  species  provoke  inflammation,  cellular  infiltration,  enteric  lesions,

diarrhea, and ultimately weight loss (Ankrom, Chobotar, and Ernst 1975; Ehret et al.

2017; Schito, Barta, and Chobotar 1996; Al-khlifeh et al. 2019). Therefore, the impact

of  parasites  on  host  health  was  measured  as  the  maximum  relative  weight  loss

compared to day 0 (body weight measured at the start of the experimental infection).

For mice sacrificed at humane end points before the end of the experiment, the last

weight of the living animal was used. This weight (loss) can be expected to be a very

conservative  estimate  for  our  analyses  (rendering  tolerance  conservatively  low  for

these animals, which might have lost more weight if not sacrificed).

Tolerance is usually defined as a reaction norm, i.e. the regression slope of host fitness

(or health condition if that is the parameter of interest) on infection intensity per host

genotype (Simms 2000;  Råberg et  al.  2009).  Thus tolerance was assessed as the

slope of maximum relative weight loss compared to day 0 on number of OPG at the
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day of maximal shedding, within each mouse group and for each parasite isolate. A

steep slope indicates a low tolerance (high weight lost for a given parasite burden).

4.2.  Statistical  comparison  of  resistance,  impact  on  health  and  tolerance  in

E. ferrisi and E. falciformis 

The comparison between E. ferrisi and E. falciformis was performed using respectively

the isolates Brandenburg64 and Brandenburg88 with which we infected all our eight

mouse groups (see Table 1). Maximum OPG and relative weight loss were modelled

separately as a response of mouse group, parasite isolate and their interaction. We

used a negative binomial generalised linear model for maximum OPG, and a linear

model for relative weight loss. Tolerance was assessed by modelling relative weight

loss as a response of maximum OPG interacting with mouse group, parasite isolate

and the interaction of the two latter. As each mouse was controlled against itself at the

start of the experiment, before losing weight or shedding parasites, we performed a

linear regression with null intercept. To test the significance of the marginal contribution

of each parameter to the full model, each parameter was removed from the full model,

and the difference between full and reduced model was assessed using likelihood ratio

tests (G). 

For each of our models that showed a significant interaction term, we also asked within

each parasite isolate if the response differed between mouse groups using likelihood

ratio tests (G) as described above. In the case of a non-significant interaction term, we

performed  post-hoc  tests  corrected  for  multiple  testing  (Tukey  Honest  Significant

Differences  (HSD))  to  compare  within  all  pairwise  comparisons  between  groups

(parasite isolate-mouse strain).
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Of note, four mice infected with E. falciformis isolate Brandenburg88 did not shed any

oocysts as death occurred at or one day before the peak of oocysts shedding in other

mice.  For  this  reason,  we  modelled  maximum OPG  when  mice  infected  with  this

parasite  were  included  using  a  zero-inflated  negative  binomial  (ZINB)  generalised

linear model, after verifying that it provided a better fit than the simple negative binomial

based on log likelihood and AIC criteria.

4.3. Test of coupling between resistance and tolerance

We tested coupling between resistance and tolerance for  E. ferrisi and  E. falciformis

using the isolates Brandenburg64 and Brandenburg88 and our eight mouse groups. To

test such coupling, one can assess the strength of correlation between measure of

resistance  and  measure  of  tolerance  (Råberg  et  al  2007).  Of  note,  tolerance  (in

absolute value) is measured as the slope α  of the linear regression of parasite load (x)

on maximum relative weight loss (y) of equation y = α  x + β (α  being the slope and β

the intercept, 0 in our case). Therefore, tolerance is expressed as α  = y/x – β/x. As x

and y/x are by definition not independent, testing the correlation between resistance

and tolerance can lead to spurious correlation (Brett 2004). To alleviate the dangers of

this statistical artifact, we additionally tested differences in resistance, impact on health

and tolerance between mouse groups separately (as described before, see 4.2) and

also  the  underlying  correlation  between  mean  parasite  load  (x)  and  mean  relative

weight loss (y). We use the terminology "coupling" (between resistance and tolerance)

to describe genotype-level  correlation between tolerance and resistance additionally

supported by the absence of positive correlation between health-effect and resistance.

Correlations were tested using Spearman’s rank correlation. 

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.01.24.918144doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918144
http://creativecommons.org/licenses/by/4.0/


After testing the resistance-tolerance coupling separately in both parasites, we tested

the statistical difference in the relationship between (1) health-effect and resistance and

(2) tolerance and resistance in the two Eimeria species infections. To achieve this aim,

we used the mean values predicted by our three models (see 4.2) for each eight mouse

groups to perform first a linear regression of the mean predicted relative weight loss as

a response of  the  mean predicted OPG, parasite  isolate  and their  interaction,  and

second a linear regression of the mean predicted tolerance value as a response of the

mean predicted OPG, parasite  isolate  and their  interaction.  The significance of  the

marginal contribution of each parameter to the full model was assessed by removing

each parameter from the full model, and the difference between full and reduced model

was assessed using likelihood ratio tests (G).

All analyses were performed using R version 3.5.2 (R Development Core Team 2013)

(negative  binomial:  function  glm.nb  from  R  package  MASS  (Venables  and  Ripley

2002); ZIBN: function zeroinfl from R package pscl (Jackman 2020; Zeileis, Kleiber,

and Jackman 2008); linear model: function lm from R core package stats; mean and

95% confidence intervals: function ggpredict from R package ggeffect (Lüdecke 2018)).

Graphics were produced using the R package ggplot2 (Wickham 2016) and compiled

using the free software inkscape (https://inkscape.org).

Results

1. General

Parasites of all isolates successfully infected all mouse groups (at the exception of 5

individuals infected with the E. falciformis isolate Brandenburg88 that died or had to be

sacrificed due to a strong weight loss before the peak of shedding for this parasite),
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meaning  that  no  "qualitative  infection  resistance"  (sensu (Gandon  and  Michalakis

2000)) was detected. For E. ferrisi isolate Brandenburg64, the pre-patent period was 5

days post infection (dpi) and the median day of maximal oocyst shedding was 6 dpi

(standard deviation sd=0.9). The median day of maximum weight loss was 5 dpi for

both isolates (sd=1.7). For E. falciformis isolate Brandenburg88 pre-patency was 7 dpi,

median day of  maximal  shedding was 8  dpi  (sd=1.3)  and median day of  maximal

weight loss 9 dpi (sd=1.6)(Figure 2). Of note a considerable number of mice infected

with this isolate (13 out of 56 = 23% ) died or had to be sacrificed at humane end points

less  than  3  days  after  the  oocysts  shedding  peak  for  the  group,  all  belonging  to

M. m. musculus subspecies (PWD, BUSNA, or their F1 PWDxBUSNA; 5 died at dpi 8,

5 at dpi 9, 3 at dpi 10).  E. falciformis isolate Brandenburg88 was more lethal for the

M. m. musculus mice strains than for the other strains ( χ7
2= 31.96, P<0.001; Table 2).

2.  Comparison  of  resistance-tolerance  coupling  between  E. ferrisi and

E. falciformis 

2.1. Differences in resistance and tolerance between mouse groups depends on

the parasite

Considering  all  mice  infected  with  either  E. ferrisi isolate  Brandenburg  64  and

E. falciformis isolate Brandenburg 88, we found our proxy for (inverse of) resistance

(maximum number of OPG) to be statistically different between mouse groups, parasite

isolates and their  interaction (LRT: mouse groups: G=55.5,  df=28, P<0.01; parasite

isolates: G=40.5, df=16, P<0.001; interaction: G=27.9, df=14, P=0.015). Results were

similar  for  our  proxy  for  tolerance  (LRT:  mouse  groups:  G=28.4,  df=14,  P=0.01;

parasite isolates: G=20.1 df=8, P=0.01; interaction: G=18.8, df=7, P<0.01). Our proxy

for impact on weight (maximum relative weight loss) was significantly different between
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mouse groups and parasite isolates, but not for their interaction (LRT: mouse groups:

G=44.9, df=14, P<0.001; parasite isolates: G=33, df=8, P<0.001; interaction: G=7.5,

df=7, P=0.38). For the latter model, impact on weight, post-hoc tests showed that the

only statistical differences between two mouse groups within a parasite infection were

found in E. falciformis infection, between PWD and STRA (Tukey HSD test, p-value =

0.02),  PWD and  STRAxBUSNA  (Tukey  HSD  test,  p-value  =  0.03)  and  PWD  and

SCHUNTxPWD (Tukey HSD test, p-value = 0.02). No difference was found within one

mouse group between the two parasite isolates at the 0.05 significance threshold. 

We found that the mean predicted number of  OPG varies with the mean predicted

relative weight loss (LRT: G=10, df=2, P<0.01), differs between both parasites (LRT:

G=8.9, df=2, P=0.012), and more importantly we found a significant interaction term

(LRT: G=8.3, df=1, P<0.01). This means that the relationship between mean health-

effect and mean resistance differs between the two Eimeria species infections. Then,

we performed a linear regression of the mean predicted tolerance for each eight mouse

groups as a response of the mean predicted OPG, parasite isolate and their interaction.

In this case we found that the mean number of OPG varies along with tolerance (LRT:

G=8.5,  df=2,  P=0.01)  but  does not  statistically  differ  between both  parasites  (LRT:

G=1.1, df=2, P=0.57), and the interaction term was not found significant (LRT: G=0.03,

df=1, P=0.86). In this respect, the correlation between resistance and tolerance was not

found to significantly differ between both parasites. Following these results, we looked

at the coupling of resistance and tolerance within each of the two isolates.

2.2. Resistance and tolerance to E. ferrisi isolate Brandenburg64 are uncoupled

We  tested  coupling  between  resistance  and  tolerance  for  E. ferrisi isolate

Brandenburg64 in our eight mouse groups. First,  we tested whether our proxies for
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resistance  and tolerance were  different  between the  mouse  groups.  We found the

maximum number of OPG to be statistically different between mouse groups (LRT:

G=26.6,  df=7,  P<0.001;  Figure  3A). Tolerance was not  found to  significantly  differ

between mouse groups for this parasite isolate (LRT: G=6.8, df=7, P=0.45; Figure 3B).

We  found  a  non  significant  positive  correlation  between  resistance  (inverse  of

maximum number of OPG) and impact on health (maximum weight loss) (Spearman’s

ρ=0.69, P=0.07, N=8;  Figure 3C).  Moreover,  we did not find a correlation between

resistance (inverse of maximum number of OPG) and tolerance (inverse of slope of

maximum weight loss on maximum OPG) (Spearman’s ρ=0, P=1, N=8; Figure 3D).

In conclusion, we did not find indications of resistance-tolerance coupling for E. ferrisi

isolate Brandenburg64, the different mouse groups infected by this parasite presenting

a similar level of tolerance while showing an effect of quantitative resistance on health.

2.3. Coupling between resistance and tolerance to E. falciformis

We then tested coupling between resistance and tolerance for  E. falciformis isolate

Brandenburg88 in our eight mouse groups. First, we tested if our proxies for resistance

and  tolerance  were  different  between  the  mouse  groups.  We found  the  maximum

number  of  OPG to  be  statistically  different  between  mouse  groups  (LRT:  G=28.6,

df=14,  P=0.012;  Figure  4A).  Contrary  to  our  results  on  E. ferrisi isolate

Brandenburg64,  the  tolerance  slopes  for  E. falciformis isolate  Brandenburg88  were

different between mouse groups (LRT: G=13.9, df=7, P=0.05; Figure 4B).

We detected a strong negative correlation between (inverse of) resistance (maximum

number of OPG) and tolerance (inverse of slope of maximum weight loss on maximum

OPG)  (Spearman’s  ρ=-0.95,  P=0.001;  Figure  4D).  This  result  was  robust  to  the
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exclusion of the extreme point corresponding to mouse strain PWD (point 8 in Figure

4D; Spearman’s ρ=-0.93, P<0.01).

We conclude that this correlation is unlikely a statistical artifact, as (1) mouse groups

present statistically different values of resistance and tolerance (see 2.1) and (2) we

found a (non significant) negative correlation between resistance (inverse of maximum

number of OPG) and impact on health (maximum weight loss) (Spearman’s  ρ=-0.5,

P=0.22;  Figure 4C), indicating that mouse groups losing more weight also shed less

parasites.

We conclude that our results indicate the presence of negative resistance-tolerance

coupling for E. falciformis isolate Brandenburg88.

Discussion

In this study, we assessed resistance and tolerance to two closely related parasites,

E. ferrisi and E. falciformis, in four mouse strains and their intra- and intersubspecific

hybrids. Understanding this coupling has two major implications: 

From a practical  "measurement"  perspective we can ask whether  tolerance can be

predicted from resistance, as the latter is easier to measure (e.g. in field sampling).

Many studies assess the impact of parasites on host fitness based on resistance. If, as

we found in the present study, resistance and tolerance are decoupled this can be

misleading. In our host system, the house mice, for example, it has been shown that

hybrids  between  M. m. domesticus and  M. m. musculus are  more  resistant  to

parasites (Baird et al. 2012; Balard et al. 2020), including Eimeria, but tolerance could

not be measured under natural conditions (Balard et al. 2020). The effect of parasites

on host fitness in the evolution of the house mouse hybrid zone is thus still  rather
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ambiguous  (Baird  and  Goüy  de  Bellocq  2019).  We  show  that  careful  distinction

between parasite species is necessary when analysing parasite host interaction (see

also Jarquín-Díaz et al. 2019) and that it is indispensable to measure both resistance

and tolerance in Eimeria infections of house mice.

In this work we used the concept of tolerance as used originally in the plant literature

and later on transferred to animal studies (Fineblum and Rausher 1995). This concept

of  tolerance  can  be  criticised,  as  it  links  tolerance  mathematically  to  resistance.

Nevertheless, we argue that this view is biologically meaningful considering resistance

and tolerance as a double defence system, one step limiting the parasite multiplication,

the other limiting the impact of this multiplication on fitness-related traits. To limit the

possibility  of  statistical  artifact,  our  approach  did  not  only  consist  in  calculating

correlations  between  resistance  and  tolerance,  but  also  in  testing  differences  in

resistance,  impact  on health and tolerance.  Of  note,  a positive correlation between

mean health-effect and mean resistance of each host strains could indicate some host

strains having few parasites-few effects on health,  and others more parasites-more

effects on health; This configuration would limit the possibility of detecting an actual

resistance-tolerance  trade-off  by  lack  of  a  full  range  of  resistance  values.  For  this

reason,  our  approach  consisted  in  testing  the  "coupling"  between  resistance  and

tolerance,  that is (1) a  genotype-level  correlation between tolerance and resistance

additionally supported by (2) the absence of positive correlation between health-effect

and resistance.  We argue that  this  additional  step  increases the  confidence in  the

presence  of  a  biologically  meaningful  negative  correlation  between  resistance  and

tolerance, likely implying a trade-off.
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Differences between parasite species could explain the evolution of different strategies:

E. ferrisi commits to sexual reproduction after a relatively short time with few cycles of

asexual expansion (Al-khlifeh et al. 2019; Ankrom, Chobotar, and Ernst 1975), while

E. falciformis has a relatively longer life cycle (Al-khlifeh et al. 2019; Haberkorn 1970).

As E. ferrisi infections do not reach extremely high intensities, high tolerance might be

the optimal strategy for both house mouse subspecies. Resistance could then evolve

relatively freely without any major impact of the parasite on the hosts’ health. In the

case of E. falciformis, the long life cycle might lead to high tissue load. Tissue damage

is observed during sexual reproduction for this parasite (Ehret et al. 2017) and might

mean  that  a  certain  level  of  resistance  is  required.  On  the  other  hand,

immunopathology has been observed in advanced E. falciformis infections (Stange et

al. 2012). These intrinsic characteristics of E. falciformis might lead to multiple different

optima for resistance and tolerance, leading to a trade-off.

More generally,  from an evolutionary perspective,  coupling between resistance and

tolerance  might  help  determine  if  coevolution  between  host  and  parasite  can  be

expected:  a  host-parasite  system  in  which  one  finds  negative  coupling  between

tolerance and resistance would be an especially promising system for studies of host-

parasite coevolution. Indeed, coevolution in host-parasite systems is often assumed but

rarely proven (Woolhouse et al. 2002). Janzen (1980) notes that not all parasite-host

systems  are  coevolving.  The  presence  of  efficient  host  defences  against  a  given

parasite is not necessarily produced in response to this parasite specifically and the

parasite  does  not  necessarily  respond  specifically.  In  the  mouse-E. ferrisi system,

where  resistance  and  tolerance are  decoupled,  host  and parasite  fitness  might  be

decoupled  as  a  result,  making  host-parasite  coevolution  less  likely.  In  the  mouse-
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E. falciformis system we found a negative coupling between tolerance and resistance,

making coevolution between host and parasite more likely.

In conclusion, we show that the coupling between resistance and tolerance can differ

between closely related parasite species and we argue that this trait of a host-parasite

system determines the questions to be best approached with a particular parasite.
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Tables

Table 1. Infection experiment design.

Table 2. Contingency table: number of mice and status at dpi 11 for each mouse group

upon infection with E. falciformis isolate Brandenburg88.
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Figures 

Figure 1. Parasite isolates and mouse wild-derived strains. (A) Map showing locations at

which mice were collected for breeding of mouse strains and isolation of parasites. The purple

line is an estimation of the center of the house mouse hybrid zone between M. m. domesticus

and  M. m. musculus based on sampling and genotyping of mice in this area (Balard et al.

2020; Ďureje et al. 2012; Macholán et al. 2019). (B) The eight mouse groups (parents and F1s)

used in our experimental infections.
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Figure  2.  Parasite  density  (A)  and  host  relative  weight  (B)  during  Eimeria infection.

Parasite density is calculated as number of oocysts detected (in millions) per gram of feces,

host relative weight is calculated as the percentage of weight compared to day 0. Mean and

95% CI are plotted for each parasite isolate. All mouse groups are pooled for each parasite

isolate.
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Figure  3.  No  indication  of  resistance-tolerance  coupling  for  E. ferrisi isolate

Brandenburg64. Colors  represent  mouse  subspecies  (blue:  M. m. domesticus,  red:

M. m. musculus, purple: Mmd-Mmm). Left side: comparison of maximum oocysts per gram of

feces used as a proxy for (inverse of) resistance (A) and tolerance (B) between mouse groups

estimated by the slope of the linear regression with null intercept modelling maximum relative

weight loss as a response of maximum oocysts per gram of feces, a steep slope corresponding

to a low tolerance. Maximum number of OPG differs between mouse groups, but tolerance is

similar.  Right side: non significant positive correlation between mean maximum oocysts per

gram of feces and mean relative weight loss (C) and absence of correlation between maximum

oocysts per gram of feces used as a proxy for (inverse of) resistance and tolerance (D); Grey

error bars represent 95% confidence intervals. Our results do not support coupling between

resistance and tolerance E. ferrisi isolate Brandenburg64.
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Figure  4.  Coupling  between  resistance  and  tolerance  for  E. falciformis isolate

Brandenburg88. Colors  represent  mouse  subspecies  (blue:  M. m. domesticus,  red:

M. m. musculus, purple: Mmd-Mmm). Left side: comparison of maximum oocysts per gram of

feces used as a proxy for (inverse of) resistance (A) and tolerance between mouse groups

estimated by the slope of the linear regression with null intercept modelling maximum relative

weight loss as a response of maximum oocysts per gram of feces, a steep slope corresponding

to a low tolerance (B). Maximum number of OPG and tolerance differ between mouse groups.

Right side: non significant negative correlation between mean maximum oocysts per gram of

feces and mean relative weight  loss (C) and strong positive correlation between maximum

oocysts  per  gram  of  feces  used  as  a  proxy  for  inverse  of  resistance  and  tolerance

(corresponding to a negative correlation between resistance and tolerance) (D); Grey error bars

represent  95% confidence  intervals.  Our  results  support  coupling  between  resistance  and

tolerance E. falciformis isolate Brandenburg88.
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Appendix:

Appendix 1. Chronology of experimental infections.
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Appendix  2.  No  indication  of  resistance-tolerance  coupling  for  E. ferrisi isolate

Brandenburg64  in  the  conservative  dataset. Colors  represent  mouse  subspecies  (blue:

M. m. domesticus,  red:  M. m. musculus,  purple:  Mmd-Mmm).  Left  side:  comparison  of

maximum oocysts  per  gram of  feces used  as  a  proxy  for  (inverse  of)  resistance  (A)  and

tolerance (B) between mouse groups estimated by the slope of the linear regression with null

intercept modelling maximum relative weight loss as a response of maximum oocysts per gram

of feces, a steep slope corresponding to a low tolerance. Maximum number of OPG differs

between mouse groups, but tolerance is similar. Right side: positive correlation between mean

maximum  oocysts  per  gram  of  feces  and  mean  relative  weight  loss  (C)  and  absence  of

correlation  between maximum oocysts per  gram of  feces used as a proxy for  (inverse of)

resistance and tolerance (D); Grey error bars represent 95% confidence intervals. Our results

do not support coupling between resistance and tolerance E. ferrisi isolate Brandenburg64.
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Appendix  3.  Coupling  between  resistance  and  tolerance  for  E. falciformis isolate

Brandenburg88  in  the  conservative  dataset. Colors  represent  mouse  subspecies  (blue:

M. m. domesticus,  red:  M. m. musculus,  purple:  Mmd-Mmm).  Left  side:  comparison  of

maximum oocysts  per  gram of  feces used  as  a  proxy  for  (inverse  of)  resistance  (A)  and

tolerance (B) between mouse groups estimated by the slope of the linear regression with null

intercept modelling maximum relative weight loss as a response of maximum oocysts per gram

of  feces,  a  steep slope  corresponding  to  a  low tolerance.  Maximum number  of  OPG and

tolerance  differ  between  mouse  groups.  Right  side:  non  significant  negative  correlation

between mean maximum oocysts per gram of feces and mean relative weight loss (C) and

strong positive correlation between maximum oocysts per gram of feces used as a proxy for

inverse  of  resistance  and  tolerance  (corresponding  to  a  negative  correlation  between

resistance and tolerance) (D); Grey error bars represent 95% confidence intervals. Our results

support coupling between resistance and tolerance E. falciformis isolate Brandenburg88.
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