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Abstract14

Between 10,000 and 600,000 species of mammal virus are estimated to have the15

potential to spread in human populations, but the vast majority are currently cir-16

culating in wildlife, largely undescribed and undetected by disease outbreak surveil-17

lance1,2,3. In addition, changing climate and land use drive geographic range shifts18

in wildlife, producing novel species assemblages and opportunities for viral sharing19

between previously isolated species4,5. In some cases, this will inevitably facilitate20

spillover into humans6,7—a possible mechanistic link between global environmental21

change and emerging zoonotic disease8. Here, we map potential hotspots of viral22

sharing, using a phylogeographic model of the mammal-virus network, and projec-23

tions of geographic range shifts for 3,870 mammal species under climate change and24

land use scenarios for the year 2070. Shifting mammal species are predicted to ag-25

gregate at high elevations, in biodiversity hotspots, and in areas of high human pop-26

ulation density in Asia and Africa, sharing novel viruses between 3,000 and 13,00027

times. Counter to expectations, holding warming under 2°C within the century28

does not reduce new viral sharing, due to greater range expansions—highlighting29

the need to invest in surveillance even in a low-warming future. Most projected vi-30

ral sharing is driven by diverse hyperreservoirs (rodents and bats) and large-bodied31

predators (carnivores). Because of their unique dispersal capacity, bats account for32

the majority of novel viral sharing, and are likely to share viruses along evolutionary33

pathways that could facilitate future emergence in humans. Our findings highlight34

the urgent need to pair viral surveillance and discovery efforts with biodiversity35

surveys tracking range shifts, especially in tropical countries that harbor the most36

emerging zoonoses.37
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Main Text38

In the face of rapid environmental change, survival for many species depends on moving39

to track shifting climates. Even in a best case scenario, many species are projected40

to shift a hundred kilometers or more in the next century9,10. In the process, many41

animals will bring their parasites and pathogens into new environments4,11, creating new42

evolutionary opportunities for host jumps8. Most conceptual frameworks for cross-species43

transmission revolve around how these host jumps facilitate the spillover of new zoonotic44

pathogens into humans12,13,14, but viral evolution is an undirected process15, in which45

humans are only one of over 5,000 mammal species with over 12 million possible pairwise46

combinations16. Despite their indisputable significance, zoonotic emergence events are47

just the tip of the iceberg; almost all cross-species transmission events will occur among48

wild mammals, largely undetected and mostly inconsequential for public health.49

Of the millions of possible pairwise viral exchanges, the vast majority are biologically50

implausible, as host species’ geographic ranges currently do not overlap. However, as51

ranges shift, a small fraction of possible interactions will occur, of which a subset will52

lead to viral establishment in a novel host. Which subset results in establishment de-53

pends on opportunity and compatibility 14,17,18, analogous to exposure and susceptibility54

within populations, and both dimensions pose an important predictive challenge. The55

ability of species to track shifting habitats in a changing climate will determine which56

pairs of species encounter each other for the first time4,19. Habitat selection and be-57

havioral differences can further limit contact, even if species are nominally sympatric19.58

Some viruses may spread environmentally between spatially-proximate species with no59

direct behavioral contact20, but generally, sharing is more likely among species with more60

ecological overlap21. Even among species in close contact, most spillovers are still a dead61

end; progressively smaller subsets of viruses can infect novel host cells, proliferate, and62

transmit onward in a new host18. Their ability to do so is determined by compatibility63

between viral structures, host cell receptors, and host immunity6. Because closely related64

species share both ecological and immunological traits through identity by descent, phy-65

logeny is a strong predictor of pathogen sharing17,22, as well as susceptibility to invasion66

by new viruses23,24,25. In a changing world, these factors should continue to mediate the67

impact of ecosystem turnover on the mammalian virome.68

Although several studies have mapped current hotspots of emerging diseases3,26,27,69

few have modeled them in the context of global change. With the global reassortment70

of animal biodiversity, it is unknown whether bats and rodents will still play a central71

role in viral emergence3,28 (ED Figure 1), or whether hotspots of viral emergence will72

stay in tropical rainforests27,29 which currently harbor most undiscovered viruses3,30.73

Here, by projecting geographic range shifts and applying fundamental biological rules74
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for cross-species transmission, we predicted how and where global change could create75

novel opportunities for viral sharing. We built species distribution models for 3,87076

mammal species, and projected geographic range shifts based on four paired scenarios77

of climate change (representative concentration pathways, RCPs) and land use change78

(shared socioeconomic pathways, SSPs) by 2070. We treated dispersal potential as an79

additional layer of biological realism, inferring these limits for species based on allomet-80

ric scaling31, and compared predictions with and without dispersal constraints. We used81

these projections to identify where novel range overlap among unfamiliar species (“first82

encounters”) could happen, and used a recently-developed model to predict the proba-83

bility of viral sharing based on geographic overlap and host phylogenetic similarity17.84

(ED Figure 2) This model framework allows powerful inference based on the ∼1% of85

the global mammalian virome that has been described1,3,17. Using this approach, we86

tested the hypothesis that environmental change should drive biotic homogenization of87

mammal communities, exposing mammals to novel viruses, and altering the structure of88

mammal-virus interactions.89

Most mammals are projected to undergo rapid range shifts in the next half century10.90

If range shifts can keep pace with the velocity of climate change32, we predict that the91

vast majority of mammal species (89%–98%) will overlap with at least one unfamiliar92

species somewhere in their future range, regardless of emissions scenario. At the global93

level, community turnover would permit almost 300,000 novel species interactions (ED94

Figure 3). These “first encounters” between mammal species will occur everywhere in the95

world, but are concentrated in tropical Africa and southeast Asia (ED Figure 4). This96

result was surprising, and counter to our expectation that species might aggregate at97

higher latitudes, given that most research has focused on poleward range shifts33,34,35,98

and previous work has anticipated a link between climate change, range shifts, and99

parasite host-switching in the Arctic36,37. However, our findings show that communities100

tend to shift along latitudinal gradients together, with species rarely encountering new101

conspecifics38. In contrast, species will track thermal optima along elevational gradents102

and aggregate in novel combinations in mountain ranges, especially in tropical areas with103

the highest baseline diversity, matching prior predictions39.104

This global re-organization of mammal assemblages is projected to dramatically im-105

pact the structure of the mammalian virome. Accounting for geographic opportunity106

and phylogenetic compatibility, we projected that a total of 279,427 first encounters in107

RCP 2.6 would lead to nearly 12,000 novel sharing events. Assuming that spillover will108

be localized to areas of novel host overlap, we mapped expected viral sharing events, and109

found again that most sharing should occur in high-elevation, species-rich ecosystems110

in Africa and Asia (Figure 1A). If species survive a changing climate by aggregating in111

high elevation refugia, this suggests emerging viruses may be an increasing problem for112
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their conservation40,41. Across scenarios, the spatial signal of expected sharing events is113

nearly identical, and dominated more by the extent of range shifts than by underlying114

community phylogenetic structure (ED Figure 5); at least in our framework, opportunity115

drives spatial patterns more than compatibility.116

Species’ dispersal capacity is likely to constrain range shifts, and therefore to limit117

novel viral exchange. We limited the dispersal potential of flightless species further to the118

restrictions placed on the SDM projections, based on an established allometric scaling119

with body size, trophic rank, and generation time42. Dispersal limits caused significant120

reductions in range expansions across all scenarios, especially warmer ones, and therefore121

drove a reduction in novel interactions. Even in RCP 2.6 (the mildest scenario), limiting122

dispersal reduced the number of first encounters by 60%, and reduced the associated viral123

sharing events by 69%—to a still-staggering 3,600–3,800 projected viral sharing events.124

Because trophic position and body size determine dispersal capacity, carnivores account125

for a disproportionate number of first encounters, while ungulates and rodents have126

slightly fewer first encounters than expected at random (ED Figure 6) Spatial patterns127

also changed dramatically when dispersal constraints were added, with the majority of128

first encounters and cross-species viral transmission events occurring in southeast Asia129

(Figure 1B, ED Figures 4, 5). This viral sharing hotspot is driven disproportionately130

by bats, because their dispersal was left unconstrained; we made this choice given their131

exclusion from the original study31, genetic evidence that flight allows bats—and their132

viruses—to circulate at continental levels43,44, and data suggesting that bat distributions133

are already undergoing disproportionately rapid shifts45. Bats account for 87% of first134

encounters after constraining dispersal, and dominate the spatial pattern, with most of135

their first encounters restricted to southeast Asia (Figure 2).136

Bats’ unique capacity for flight could be an important and previously unconsidered137

link between climate-driven range shifts and future changes in the mammal virome.138

Even non-migratory bats can regularly travel hundreds of kilometers within a lifetime,139

far exceeding what small mammals might be able to cover in 50 years; half of all bat140

population genetic studies have failed to find any evidence for isolation by distance46.141

This unique dispersal capacity has inevitable epidemiological implications, with recent142

evidence suggesting that continental panmixia may be common for zoonotic reservoirs,143

and allow viral circulation at comparable scales43,44,47. We found that a staggering144

number of studies have also identified ongoing rapid range expansions in bat species145

around the world45,48,49,50,51,52,53,54,55, with little mention in the broader climate change146

or emerging disease literature. If flight does allow bats to undergo more rapid range147

shifts than other mammals, we expect they should drive the majority of novel cross-148

species viral transmission, and likely bring zoonotic viruses into new regions. This could149

add an important new dimension to ongoing debate about whether bats are “special”150
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due to their higher viral richness, higher proportion of zoonotic viruses, and potentially151

unique immune adaptations3,56,57,58,59.152

More broadly, climate-driven changes in the mammalian virome are likely to cascade153

in future emergence of zoonotic viruses. Among the tens of thousands of expected viral154

host jumps, some of the highest-risk zoonoses or potential zoonoses are likely to find155

new hosts. This may pose a threat to human health down the road: the same general156

rules for cross-species transmission explain spillover patterns for emerging zoonoses60,61,157

and the viral species that make successful jumps across wildlife species have the highest158

propensity for zoonotic emergence3,7,28. Just as simian immunodeficiency virus emer-159

gence in chimpanzees and gorillas facilitated the origin of HIV, or SARS-CoV spillover160

into civets allowed a bat virus to reach humans, these wildlife-to-wildlife host jumps may161

be evolutionary stepping stones for the ∼10,000 to 600,000 potentially zoonotic viruses162

that are currently circulating in mammal hosts1.163

To illustrate this problem, we constructed a sub-network of 13 possible Zaire ebolavirus164

hosts in Africa, and projected possible first encounters involving these species (Figure165

3A-C). We project these 13 species to encounter 3,604 new mammals in RCP 2.6, with166

a modest reduction to 2,586 species by dispersal limits. These first encounters are pre-167

dicted to produce 87 new viral sharing events that might include ZEBOV, and which168

cover a much broader part of Africa than the current zoonotic niche of Ebola62. Hu-169

man spillover risk aside, this could expose several new wildlife species to a deadly virus,170

historically responsible for sizable primate die-offs63. Moreover, for zoonoses like Zaire171

ebolavirus without known reservoirs, future host jumps would only complicate urgent172

efforts to trace the source of spillover and anticipate future emergences64,65. Ebola is173

far from unique: with 5,762–11,122 first encounters between bats and primates alone174

leading to an expected 57–181 new viral sharing events across scenarios (Figure 3D),175

many potential zoonoses are likely to experience new evolutionary opportunities because176

of climate change.177

Future hotspots of novel assemblages and viral evolution are projected to coincide178

areas of high human population density, further increasing vulnerability to potential179

zoonoses. First encounters are disproportionately likely to occur in areas that are pro-180

jected to be either human settled or used as cropland, and surprisingly less likely to181

occur in forests, which current literature highlights as producing most emerging diseases182

(Figure 4)27. This finding is consistent for bats and non-bats, and may be an accident183

of geography, but more likely represents the tendency of human settlements to aggre-184

gate on continental edges and around biodiversity hotspots66. Regardless of mechanism,185

we predict that tropical hotspots of novel viral sharing will broadly coincide with high186

population density areas in 2070, especially in the Sahel, the Ethiopian highlands and187

the Rift Valley, India, eastern China, Indonesia, and the Philippines (Figure 4). Some188
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European population centers also land in these hotspots; recent emergences in this re-189

gion like Usutu virus67 highlight that these populations can still be vulnerable, despite190

greater surveillance and healthcare access. If range-shifting mammals create ecological191

release for undiscovered zoonoses, populations in these areas are likely to be the most192

vulnerable.193

Whereas most studies agree that climate change mitigation through reducing green-194

house gas emissions will prevent extinctions and minimize harmful ecosystem impacts,195

our results suggest that mitigation cannot reduce the likelihood of climate-driven viral196

sharing. Instead, the mildest, slowest scenarios for biotic homogenization appear likely197

to produce the most cross-species viral transmission: when climate velocity is lowest,198

species can successfully track shifting climate optima, leading to more range expansion,199

and more first encounters. Accounting for dispersal limits, species gained an average200

of 75% range in the mildest pathway (RCP 2.6); in comparison, only 28% of species201

experienced a net expansion in the most extreme pathway (RCP 8.5), for an average of202

21% range gain. (ED Figure 3A) In fact, in the warmest scenario, up to 326 species lost203

their entire range, with 168 attributable to dispersal limits alone. As a result, there were204

5% fewer first encounters in RCP 8.5 compared to RCP 2.6, and unexpectedly, a 2%205

reduction in the connectivity of the future global sharing network. (ED Figure 3B,D)206

Overall, our results indicate that a mild perturbation of the climate system could create207

thousands of new eco-evolutionary opportunities for viruses. We caution that this does208

not imply a possible upside to catastrophic warming, which will be accompanied by mass209

defaunation, devastating disease emergence, and unprecedented levels of human displace-210

ment and global instability. Rather, our results highlight the urgency of better wildlife211

surveillance systems and health infrastructure as a form of climate change adaptation,212

even if mitigation efforts are successful and global temperatures stay under +2°C.213

Our study establishes a macroecological link between climate change and cross-species214

viral transmission. In practice, the patterns we describe are likely to be complicated by215

several ecological factors, including the temperature sensitivity of viral host jumps68;216

the possibility that defaunation especially at low elevations might interact with disease217

prevalence through biodiversity dilution and amplification effects, not captured by our218

models69; or temporal heterogeneity in exposure (hosts might exchange viruses in passing219

but not overlap by 2070, especially in warmer scenarios). Future work can also expand220

the scope of our findings to other host-parasite systems; our novel approach, which221

combines viral sharing models with massive species distribution modeling pipelines, is222

readily applied to other datasets. Birds have the best documented virome after mammals,223

and changing migration targets in a warming world may be especially important targets224

for prediction. With amphibians facing disproportionately high extinction rates due225

to a global fungal panzootic, and emerging threats like ranavirus causing conservation226
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concern, viral exchange among amphibians may be especially important information for227

conservation practitioners70. Finally, marine mammals are an important target given228

their exclusion here, especially after a recent study implicating reduced Arctic sea ice in229

viral sharing among sympatric pinnipeds and sea otters—a result that may be the first230

proof of concept for our proposed climate-disease link71.231

Because hotspots of cross-species transmission are predictable, our study provides232

the first template for how surveillance could target future hotspots of viral emergence in233

wildlife. In the next decade alone, over a billion dollars could be spent on a proposed234

global effort to identify zoonotic threats before they spread from wildlife reservoirs into235

human populations2. These efforts are being undertaken during the greatest period236

of global ecological change recorded in human history, and in a practical sense, the237

rapid movement of species and formation of no-analog communities poses an unexpected238

challenge for virological research. While several studies have addressed how range shifts239

in zoonotic reservoirs might expose humans to novel viruses, few have considered the fact240

that most new exposures will be among mammal species. Tracking spillover into humans241

is paramount, but so is tracking of viral sharing in wildlife, and targeting surveillance in242

hotspots of future sharing may help researchers identify host jumps early on.243
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Methods244

In this study, we develop global maps for terrestrial mammals that model their eco-245

logical niche as a function of climate and habitat use. We project these into paired246

climate-land use futures for 2070, with dispersal limitations set by biological constraints247

for each species. We predict the probability of viral sharing among species pairs us-248

ing a model of the mammalian viral sharing network that is trained on phylogenetic249

relatedness and current geographic range overlaps. With that model, we map the pro-250

jected hotspots of new viral sharing in different futures. All analysis code is available at251

github.com/cjcarlson/iceberg.252

Mapping species distributions253

We developed species distribution models for a total of 3,870 species in this study, divided254

into two modeling pipelines based on data availability (ED Figures 8, 9).255

Data Collection256

We scraped the Global Biodiversity Informatics Facility (GBIF) for mammal occurrence257

records, and developed species distribution models for all 3,870 species with at least 3258

unique terrestrial presence records on a 25 km by 25 km grid (one unique point per grid259

cell). This grain was chosen based on the availability of future land use projections (see260

below). Spatial and environmental outliers were removed based on Grubb outlier tests261

(p-value of 1e-3)72.262

Poisson point process models263

For 3,088 species with at least 10 unique presence records, Poisson point process models264

(closely related to Maxent) were fit using regularized downweighted Poisson regression73
265

with 20,000 background points fit with the R package glmnet74,75,74. The spatial do-266

main of predictions was chosen based on the continent(s) where a species occurred in267

their IUCN range map. We trained species distribution models on current climate data268

using the WorldClim 2 data set76, using mean annual temperature, mean diurnal temper-269

ature range, annual precipitation, precipitation seasonality, and precipitation in warmest270

quarter/ (precipitation in warmest quarter + precipitation in coldest quarter). These271

predictors were chosen based on having global correlations <0.7 among one another.272

These candidate predictors were further filtered on a species-by-species basis, retaining273

the maximum number of predictors with correlation <0.7 within the domain where the274

model was fit.275
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Models were fit with 5-fold cross validation, where folds were assigned based on spa-276

tial clusters to remove the influence of spatial autocorrelation on cross-validation perfor-277

mance statistics. Linear (all species), quadratic (species with >100 records), and product278

(species with >200 records) features were used. The regularization parameter was de-279

termined based on 5-fold cross-validation with each fold, choosing a value 1 standard280

deviation below the minimum deviance77. This resulted in five models per species which281

were then combined in an unweighted ensemble. Continuous predictions of the ensemble282

were converted to binary presence/absence predictions by choosing a threshold based on283

the 5th percentile of the ensemble predictions at training presence locations.284

When models were projected into the future, we limited extrapolation to 1 standard285

deviation beyond the data range of presence locations for each predictor. This decision286

balances a small amount of extrapolation based on patterns in a species niche with287

limiting the influence of monotonically increasing marginal responses, which can lead to288

statistically unsupported (and likely biologically unrealistic) responses to climate.289

Range bagging models290

For an additional 783 rare species (3 to 9 unique points on the 25 km grid), we produced291

species distribution models with a simpler range bagging algorithm, a stochastic hull-292

based method that can estimate climate niches from an ensemble of underfit models78,79,293

and is therefore well suited for smaller datasets. From the full collection of presence294

observations and environmental variables range-bagging proceeds by randomly sampling295

a subset of presences (proportion p) and a subset of environmental variables (d). From296

these, a convex hull around the subset of points is generated in environmental space. The297

hull is then projected onto the landscape with a location considered part of the species298

range if its environmental conditions fall within the estimate hull. The subsampling is299

replicated N times, generating N ‘votes’ for each cell on the landscape. One can then300

choose a threshold for the number of votes required to consider the cell as part of the301

species’ range to generate the binary map used in our downstream analyses. Based on302

general guidelines in78 we chose p = 0.33, d = 2, and N = 100. We then chose the voting303

threshold to be 0.165 (=0.33/2) because this implies that the cell is part of the range304

at least half the time for each subsample. Upon visual inspection, this generally lead to305

predictions that were very conservative about inferring that unsampled locations were306

part of a species distribution. The same environmental predictors and ecoregion-based307

domain selection rules were used for range bagging models as were used for the point308

process models discussed above. This hull-based approach is particularly valuable for309

poorly sampled species which may suffer from sampling bias because bias within niche310

limits has little effect on range estimates.311
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Model validation312

PPM models performed well, with a mean test AUC under 5 fold cross-validation (using313

spatial clustering to reduce inflation) of 0.77 (s.d. 0.13). The mean partial AUC eval-314

uated over a range of sensitivity relevant for SDM (0.8-0.95) was 0.8 (s.d. 0.08). The315

mean sensitivity of binary maps used to assess range overlap (based on the 5% training316

threshold used to make a binary map) was 0.89 (s.d. 0.08). Range bagging models were317

difficult to meaningfully evaluate because they were based on extremely small sample318

sizes (3-9). The mean training AUC (we did not perform cross-validation due to small319

sample size) was 0.96 (s.d. 0.09). The binary maps had perfect sensitivity (1) because320

the threshold used to make them was chosen sufficiently low to include the handful of321

known presences for each species. One way to assess how much we inferred the range322

for these species is to quantify how much of the range was estimated based on out mod-323

els, based on the number of (10km) cells predicted to be part of the species range even324

when it was not observed there. The mean number of cells inferred to contain a presence325

was 253 (s.d. 448); however, the distribution is highly right skewed with a median of326

94. This indicates that the range bagging models were typically relatively conservative327

about inferring ranges for poorly sampled species.328

Habitat range and land use329

We used the Land Use Harmonization version 2.0 (LUH2) gridded dataset to capture330

global patterns in land cover for the present and future80. These data are derived from331

an integrative assessment model that pairs land use scenarios with representative con-332

centration pathways. For the current models, we used historical land-use maps (LUH2333

v2h), which are intended for use over the period 850 to 2015 C.E.81. To capture species’334

habitat preference, we collated data for all 3,870 mammal species from the IUCN Habitat335

Classification Scheme version 3.1. We then mapped 104 unique IUCN habitat classifi-336

cations onto the eight land use types present in the LUH dataset. For 962 species, no337

habitat data was available, or no correspondence existed between a land type in the IUCN338

scheme and our land use data; for these species, land use filters were not used. Filtering339

based on habitat was done conservatively: species were allowed in current and future340

ranges to exist in a pixel if any non-zero percent was assigned a suitable habitat type;341

almost all pixels contain multiple habitats. In some scenarios, human settlements cover342

at least some of a pixel for most of the world, allowing synanthropic species to persist343

throughout most of their climatically-suitable range. For those with habitat data, the344

average reduction in range from habitat filtering was 7.6% of pixels.345
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Refining the dataset346

Of the 3,870 species for which we generated distribution models, 103 were aquatic mam-347

mals (cetaceans, sirenians, pinnipeds, and sea otters), and 382 were not present in the348

mammalian supertree that we used for phylogenetic data82. These species were ex-349

cluded. Aquatic species were removed using a two-filter approach, by cross-referencing350

with Pantheria83. These results were verified by checking no species only had marine351

habitat use types (see ‘Habitat range and land use’). We also excluded 246 monotremes352

and marsupials because the shape of the supertree prevented us from fitting satisfactory353

GAMM smooths to the phylogeny effect, leaving 3,139 non-marine Eutherian mammals354

with associated phylogenetic data.355

Predicting future species distributions356

We modeled a total of 16 possible futures, produced by four paired climate-land use357

change pathways and two optional filters on species ranges (habitat preferences and dis-358

persal limits). The full matrix of possible scenarios captures a combination of scenario359

uncertainty about global change and epistemological uncertainty about how best to pre-360

dict species’ range shifts. By filtering possible future distributions based on climate, land361

use, and dispersal constraints, we aimed to maximize realism; our predictions were con-362

gruent with extensive prior literature on climate- and land use-driven range loss84,85,86.363

Climate and land use futures364

Species distribution models were projected for 2070 using climate models, and then spa-365

tially filtered by land use projections. Climate and land-use future pathways are coupled366

by the Land Use Harmonization 2.0 integrative assessment model87,81, such that every367

future has a representative concentration pathway (RCP) for climate and a shared so-368

cioeconomic pathway (SSP) for land use. For climate we used the HadGEM2 Earth369

System Model projections for 2070, with the four standard RCPs: 2.6, 4.5, 6.0, and 8.5370

(where the values represent added W/m2 of solar radiation by the end of the century371

due to greenhouse gas emissions). These were respectively paired with SSP 1 (“Sustain-372

ability”); SSP 2 (“Middle of the Road”); SSP 4 (“Inequality”); and SSP 5 (“Fossil-Fueled373

Development”).374

These pairings can be thought of as a gradient of scenarios of global change with differ-375

ent levels of severity and sustainability. Not all scenarios are possible; the four we selected376

are drawn as some of the most representative from an underlying “scenario matrix” that377

includes every possible parameterization, some of which are entirely incompatible88. (For378

example, in the vast majority of integrative assessment models, decarbonization cannot379
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be achieved fast enough in the SSP 5 scenario to achieve RCP 2.6.) As pairs, SSP-RCP380

narratives can be merged to create overall narratives about how global change could look.381

For example, in SSP 1-RCP 2.6, a global transition to renewable energy and mitigation of382

climate change corresponds to sustainable population growth and economic development.383

Driven by international cooperation on climate agreements, afforestation and bioenergy384

cropland become major land uses, while tropical deforestation is strongly reduced. In385

contrast, in SSP 5-RCP 8.5, business-as-usual development leads to catastrophic levels386

of warming, unsustainable population growth and increasing poverty, and massive land387

conversion89,90.388

Limiting dispersal capacity389

Not all species can disperse to all environments, and not all species have equal disper-390

sal capacity—in ways likely to covary with viral sharing properties. We follow a rule391

proposed by Schloss et al.31, who described an approximate formula for mammal range392

shift capacity based on body mass and trophic position. For carnivores, the maximum393

distance traveled in a generation is given as D = 40.7M0.81, where D is distance in kilo-394

meters and M is body mass in kilograms. For herbivores and omnivores, the maximum395

is estimated as D = 3.31M0.65.396

We used mammalian diet data from the EltonTraits database91, and used the same397

cutoff as Schloss to identify carnivores as any species with 10% or less plants in their398

diet. We used body mass data from EltonTraits in the Schloss formula to estimate399

maximum generational dispersal, and converted estimates to annual maximum dispersal400

rates by dividing by generation length, as previously estimated by another comprehensive401

mammal dataset92. We multiply by 50 years and use the resulting distance as a buffer402

around the original range map, and constrain possible range shifts within that buffer. For403

420 species with missing data in one of the required sources, we interpolated dispersal404

distance based on the closest relative in our supertree with a dispersal velocity estimate.405

Qualified by the downsides of assuming full dispersal93, we excluded bats from the406

assumed scaling of dispersal limitations. The original study by Schloss et al.31 chose407

to omit bats entirely, and subsequent work has not proposed any alternative formula.408

Moreover, the Schloss formula performs notably poorly for bats: for example, it would409

assign the largest bat in our study, the Indian flying fox (Pteropus giganteus), a disper-410

sal capacity lower than that of the gray dwarf hamster (Cricetulus migratorius). Bats411

were instead given full dispersal in all scenarios: given significant evidence that some bat412

species regularly cover continental distances43,44, and that isolation by distance is uncom-413

mon within many bats’ ranges46, we felt this was a defensible assumption for modeling414

purposes. Moving forward, the rapid range shifts already observed in many bat species415
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(see main text) could provide an empirical reference point to fit a new allometric scaling416

curve (after standardizing those results for the studies’ many different methodologies).417

A different set of functional traits likely govern the scaling of bat dispersal, chiefly the418

aspect ratio (length:width) of wings, which is a strong predictor of population genetic419

differentiation46. Migratory status would also be important to include as a predictor420

although here, we exclude information on long-distance migration for all species (due to421

a lack of any real framework for adding that information to species distribution models422

in the literature).423

Explaining spatial patterns424

To explore the geography of novel assemblages, we used linear models which predicted the425

number of first encounters (novel overlap of species pairs) at the 25km level (N = 258, 539426

grid cells). Explanatory variables included: richness (number of species inhabiting the427

grid cell in our predicted current ranges for the given scenario); elevation in meters (de-428

rived from the US Geological Service Global Multi-resolution Terrain Elevation Data429

2010 dataset); and the predominant land cover type for the grid cell. We simplified430

the classification scheme for land use types into five categories for these models (human431

settlement, cropland, rangeland and pasture, forest, and unforested wildland), and as-432

signed pixels a single land use type based on the maximum probability from the land433

use scenarios. We fitted a model for each scenario and pair of biological assumptions;434

because of the large effect bats had on the overall pattern, we retrained these models on435

subsets of encounters with and without a bat species involved. To help model fitting, we436

log(x+1)-transformed the response variable (number of overlaps in the pixel) and both437

continuous explanatory variables (meters of elevation above the lowest point and species438

richness). Because some elevation values were lower than 0 (i.e., below sea level), we439

treated elevation as meters above the lowest terrestrial point rather than meters above440

sea level to allow us to log-transform the data.441

Viral sharing models442

Generalized Additive Mixed Models443

We used a previously-published model of the phylogeography of viral sharing patterns444

to make predictions of future viral sharing17. This model was based on an analysis of445

510 viruses shared between 682 mammal species3, and predicted the probability that a446

pair of mammal species will share a virus given their geographic range overlap and phy-447

logenetic relatedness. The original study uncovered strong, nonlinear effects of spatial448

overlap and phylogenetic similarity in determining viral sharing probability, and simu-449
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lating the unobserved global network using these effect estimates capitulated multiple450

macroecological patterns of viral sharing.451

In the original study, a Generalized Additive Mixed Model (GAMM) was used to452

predict virus sharing as a binary variable, based on (1) geographic range overlap; (2) phy-453

logenetic similarity; and (3) species identity as a multi-membership random effect. The454

phylogeographic explanatory variables were obtained from two broadly available, low-455

resolution data sources: pairwise phylogenetic similarity was derived from a mammalian456

supertree previously modified for host-pathogen studies82,3, with similarity defined as457

the inverse of the cumulative branch length between two species, scaled to between 0458

and 1. Geographic overlap was defined as the area of overlap between two species’ IUCN459

range maps, divided by their cumulative range size94.460

We first retrained the GAMMs from17 on the pairwise overlap matrix of species distri-461

bution models generated for this study, so that present predictions would be comparable462

with future distributions. Of the 3,139 species in our reduced dataset, 544 had viral463

records in our viral sharing dataset and shared with at least one other mammal, and464

were used to retrain the GAMM from17. To check the performance of the GAMM, we465

predicted sharing patterns with a) only random effects, b) only fixed effects, and c) with466

both. Although species-level random effects had a mean effect of ∼ 0, excluding them en-467

tirely resulted in a substantial underestimation of the mean viral sharing rates across the468

network (mean sharing ≈ 0.02 compared to ≈ 0.06). Therefore to ensure that the model469

recapitulated traits of the observed network, we simulated 1,000 binary sharing networks470

when predicting with only fixed effects, randomly drawing species-level random effects471

in each iteration. The mean sharing value across these iterations closely approximated472

observed sharing probability (∼ 0.06).473

Model validation and limits474

Compared to the current viral sharing matrix, the model performs well with only fixed475

effects (AUC = 0.80) and extremely well with both fixed and random effects (AUC =476

0.93). The model explained a very similar proportion of the deviance in viral sharing to477

that in Albery et al.17 (44.5% and 44.8% respectively).478

In practice, several unpredictable but confounding factors could affect the reliability479

of this model as a forecasting tool, including temperature sensitivity of viral evolution in480

host jumps68, or increased susceptibility of animals with poorer health in lower-quality481

habitat or unfavorable climates. Moreover, once viruses can produce an infection, their482

ability to transmit within a new species is an evolutionary race between mutation and483

recombination rates in viral genomes, host innate and adaptive immunity, virulence-484

related mortality, and legacy constraints of coevolution with prior hosts and vectors60,61.485
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But data cataloging these precise factors are hardly comprehensive for the hundreds of486

zoonotic viruses, let alone for the thousands of undescribed viruses in wildlife. Moreover,487

horizontal transmission is not necessary for spillover potential to be considered significant;488

for example, viruses like rabies or West Nile virus are not transmitted within human489

populations but humans are still noteworthy hosts.490

Mapping opportunities for sharing491

We used the GAMM effect estimates to predict viral sharing patterns across the 3,139492

mammals with associated geographic range and phylogenetic data, for both the present493

and future scenarios. By comparing current and future sharing probabilities for each of494

the four global change scenarios, we estimated which geographic and taxonomic patterns495

of viral sharing would likely emerge. We separately examined patterns of richness, pat-496

terns of sharing probability, and their change (i.e., future sharing probability - current497

sharing probability, giving the expected probability of a novel sharing event).498

A subset of the mammals in our dataset were predicted to encounter each other for the499

first time during range shifts. For each of these pairwise first encounters, we extracted the500

area of overlap in every future scenario, and assigned each overlap a probability of sharing501

from the mean GAMM predictions and mapped the mean and cumulative probability of502

a new sharing event happening in a given geographic pixel.503

Case study on Zaire ebolavirus504

For a case study in possible significant cross-species transmission, we compiled a list505

of known hosts of Zaire ebolavirus (ZEBOV), a zoonosis with high host breadth that506

has been known to cause wildlife die-offs, but has no known definitive reservoir. Hosts507

were taken from two sources: the training dataset on host-virus associations3, and an508

additional dataset of filovirus testing in bats30. In the latter case, any bats that have509

been reported antibody positive or PCR-positive for ZEBOV were included. A total510

of 13 current “known hosts” in Africa were used to predict current possible hosts, and511

first encounters in all scenarios. We restricted our analysis to Africa because there is512

no published evidence that Zaire ebolavirus actively circulates outside Africa; although513

some bat species outside Africa have tested positive for antibodies to ZEBOV, this is514

likely due to cross-reactivity with other undiscovered filoviruses95,96,30.515

Overlap with human populations516

To examine the possibility that hotspots of cross-species transmission would overlap with517

human populations, we used SEDAC’s global population projections version 1.0 for the518
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year 207097. We aggregated these to native resolution, for each of the four SSP paired519

with the native RCP/SSP pairing for the species distribution models. In Figure 4 we520

present the population projections for SSP 1, which pairs with RCP 2.6.521
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Figures537

A.

B.

Figure 1: Climate change will drive novel viral sharing among mammal species.
The projected number of novel viral sharing events among mammal species in 2070 based
on host species geographic range shifts from climate change (RCP 2.6) and land-use
change (SSP 1), without dispersal limits (A) and with dispersal limitation (B).

19

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


A.

B.

C.

D.

E.

Figure 2: Bats disproportionately drive future novel viral sharing. The spatial
pattern of first encounters differs among range-shifting mammal pairs including bat-
bat and bat-nonbat encounters (A) and only encounters among non-bats (B). Using a
linear model, we show that elevation (C), species richness (D), and land use (E) together
explain 57.7% of deviance in new overlaps for bats, and 25.8% for non-bats. Slopes
for the elevation effect were generally steeply positive: a log10-increase in elevation was
associated with between a 0.4-1.41 log10-increase in first encounters.
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C.

D.

A. B.

Figure 3: Range expansions will expose naive hosts to zoonotic reservoirs. (A)
The predicted distribution of known African hosts of Zaire ebolavirus. (B) The change in
richness of these hosts as a result of range shifts. (C) Projected first encounters with non-
Ebola hosts. (D) Bat-primate first encounters are projected to occur globally, producing
novel sharing events.
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Figure 4: Novel viral sharing events coincide with population centers. In 2070
(RCP 2.6; climate only), human population centers in equatorial Africa, south China and
southeast Asia will overlap with projected hotspots of cross-species viral transmission in
wildlife. (Both variables are linearly rescaled to 0 to 1.)

22

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


Degree

Extended Data Figure 1: The mammal-virus network. The present-day viral sharing
network by mammal order inferred from modeled pairwise predictions of viral sharing
probabilities. Edge width denotes the expected number of shared viruses (the sum of
pairwise species-species viral sharing probabilities), with most sharing existing among
the most speciose and closely-related groups. Edges shown in the network are the top
25% of links. Nodes are sized by total number of species in that order in the host-virus
association dataset, color is scaled by degree.
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Extended Data Figure 2: Predicted phylogeographic structure of viral sharing.
Phylogeographic prediction of viral sharing using a generalized additive mixed model. Vi-
ral sharing increases as a function of phylogenetic similarity (A) and geographic overlap
(B), fit together as a tensor interaction (C). White contour lines denote 10% increments of
sharing probability. Declines at high values of overlap may be an artefact of model struc-
ture and low sampling in the upper levels of geographic overlap, shown in a hexagonal
bin chart for raw data (D).
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Extended Data Figure 3: Outcomes by model formulation and climate change
scenario. Heatmaps displaying predicted changes across model formulations. (A) Range
expansions were highest in non-dispersal-limited scenarios and in milder RCPs. (B) The
number of predicted first encounters was higher in non-dispersal-limited scenarios and in
milder RCPs. (C) The number of expected new viral sharing events was higher in non-
dispersal-limited scenarios and in more severe RCPs. (D) The overall change in sharing
probability (connectance) across the viral sharing network between the present day and
the future scenarios; absolute change is minimal but positive across all scenarios, being
greatest in non-dispersal-limited scenarios and in milder RCPs.
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Extended Data Figure 4: Geographic distribution of first encounters. Predictions
were carried out for four representative concentration pathways (RCPs), accounting for
climate change and land use change, without (left) and with dispersal limits (right).
Darker colours correspond to greater numbers of first encounters in the pixel.
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Extended Data Figure 5: Geographic distribution of expected viral sharing
events from first encounters. Predictions were carried out for future distributions for
four representative concentration pathways (RCPs), accounting for climate change and
land use change, without (left) and with dispersal limits (right). Darker colours corre-
spond to greater numbers of new viral sharing events in the pixel. Probability of new
viral sharing was calculated by subtracting the species pair’s present sharing probability
from their sharing probability that our viral sharing GAMMs predicted. This probability
was projected across the species pair’s range intersection, and then summed across all
novel species pairs in each pixel.
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Extended Data Figure 6: Order-level heterogeneity in first encounters. Dispersal
stratifies the number of first encounters (RCP 2.6 with all range filters), where some
orders have more than expected at random, based on the mean number of first encounters
and order size (line).
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Known Ebola hosts 
(n = 19)

First encounters 
(n = 3,671)

Viral sharing
 (n = 290)

Extended Data Figure 7: Projected viral sharing from suspected Ebola reservoirs
is dominated by bats. Node size is proportional to (left) the number of suspected Ebola
host species in each order, which connect to (middle) first encounters with potentially
naive host species; and (right) the number of projected viral sharing events in each
receiving group. (Node size denotes proportions out of 100% within each column total.)
While Ebola hosts will encounter a much wider taxonomic range of mammal groups than
current reservoirs, the vast majority of viral sharing will occur disproportionately in bats.
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Extended Data Figure 8: Data processing workflow. Summary of species inclusion
across the modeling pipeline for species distributions and viral sharing models. The final
analyses in the main text use 3,139 species of Eutherian mammals across all scenarios.
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Extended Data Figure 9: Species distribution modeling workflow for a single
species. A focal species (the European red deer, Cervus elaphus) is displayed as an
illustrative example. The present day climate prediction (top left) was clipped to the
same continent according to the IUCN distribution (top right). This was then clipped
according to Cervus elaphus land use (second row, left). The known dispersal distance of
the red deer was used to buffer the climate distribution (second row, right). The future
distribution predictions (RCP 2.6 shown as an example) are displayed in the bottom
four panels, for each of the four pipelines: only climate (third row, left); climate +
dispersal clip (third row, right); climate + land use clip (bottom row, left) and climate
+ land use + dispersal clip (bottom row, right). The four distributions clearly display
the limiting effect of the dispersal filter (bottom right panels) in reducing the probability
of novel species interactions (bottom left panels). The land use clip had little effect on
this species as the entire distribution area was habitable for the red deer.
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