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Abstract20

At least 10,000 species of mammal virus are estimated to have the potential to spread in hu-21

man populations, but the vast majority are currently circulating in wildlife, largely unde-22

scribed and undetected by disease outbreak surveillance 1,2,3. In addition, changing climate23

and land use are already driving geographic range shifts in wildlife, producing novel species24

assemblages and opportunities for viral sharing between previously isolated species 4,5. In25

some cases, this will inevitably facilitate spillover into humans 6,7—a possible mechanistic26

link between global environmental change and emerging zoonotic disease 8. Here, we map27

potential hotspots of viral sharing, using a phylogeographic model of the mammal-virus net-28

work, and projections of potential geographic range shifts for 3,139 mammal species under29

climate change and land use scenarios for the year 2070. Range-shifting mammal species are30

predicted to aggregate at high elevations, in biodiversity hotspots, and in areas of high human31

population density in Asia and Africa, driving the novel cross-species transmission of their32

viruses an estimated 4,000 times. Counter to expectations, holding warming under 2°C within33

the century does not reduce new viral sharing, due to greater potential range expansions—34

highlighting the need to invest in surveillance even in a low-warming future. Most projected35

viral sharing is driven by diverse hyperreservoirs (rodents and bats) and large-bodied preda-36

tors (carnivores). Because of their unique dispersal capacity, bats account for the majority of37

novel viral sharing, and are likely to share viruses along evolutionary pathways that could38

facilitate future emergence in humans. Our findings highlight the urgent need to pair viral39

surveillance and discovery efforts with biodiversity surveys tracking species’ range shifts,40

especially in tropical countries that harbor the most emerging zoonoses.41
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Main Text42

In the face of rapid environmental change, survival for many species depends on moving to43

track shifting climates. Even in a best case scenario, many species’ geographic ranges are pro-44

jected to shift a hundred kilometers or more in the next century9,10. In the process, many an-45

imals will bring their parasites and pathogens into new environments4,11. This poses a mea-46

surable threat to global health, particularly given several recent epidemics and pandemics of47

viruses that originate in wildlife (zoonotic viruses, or zoonoses)12,1,13. Most frameworks for48

predicting cross-species transmission therefore focus on the steps that allow animal pathogens49

to make the leap to human hosts (a process called spillover)13,14,15. However, zoonotic viruses50

are a small fraction of total viral diversity, and viral evolution is an undirected process16, in51

which humans are only one of over 5,000 mammal hosts with over 12 million possible pair-52

wise combinations17 (to say nothing of the other four classes of vertebrates, which have a much53

greater fraction of undescribed viral diversity). If those host species track shifting climates, they54

will share viruses not just with humans, but with each other, for the very first time8. Despite55

their indisputable significance, spillover events are probably just the tip of the iceberg; by num-56

bers alone, most cross-species transmission events attributable to climate change will probably57

occur among wildlife hosts, potentially threatening wildlife populations and largely undetected58

by zoonotic disease surveillance.59

The scale of this process will depend on opportunity and compatibility13,18,19, and both dimen-60

sions pose an important predictive challenge. Because only a few species are common world-61

wide, most hosts have no opportunity to exchange pathogens: of all possible pairs of mammal62

species, only ∼7% share any geographic range, and only ∼6% are currently known to host one63

or more of the same virus species (hereafter viral sharing)18. As host geographic ranges shift,64

some interactions will become possible for the first time, and a subset will lead to viral estab-65

lishment in a previously-inaccessible host (novel viral sharing). The potential ability of species66

to track shifting climate and habitat conditions will determine which pairs of species encounter67

each other for the first time4,20. Even if species’ ranges nominally overlap, habitat selection and68

behavioral differences can further limit contact20. Although some viruses spread environmen-69

tally or by arthropod vectors between spatially proximate species with no direct behavioral con-70

tact21, sharing is more likely on average among species with more ecological overlap22. Even71

among species in close contact, most cross-species transmission events are still a dead end. Pro-72

gressively smaller subsets of viruses can infect novel host cells, proliferate, cause disease, and73

transmit onward in a new host19. Their ability to do so is determined by compatibility between74

viral structures, host cell receptors, and host immunity6. Because closely-related species share75

both ecological and immunological traits through identity by descent, phylogeny is a strong76

predictor of pathogen sharing18,23 and of susceptibility to invasion by new viruses24,25,26. In a77

changing world, these mechanisms can help predict how ecosystem turnover could impact the78

global virome.79

Although several studies have mapped current hotspots of emerging diseases3,12,27, few80

have forecasted them in the context of global change. With the global reassortment of ani-81

mal biodiversity due to climate and land use change, it is unknown whether bats and rodents82

will still play a central role in viral emergence3,28 (ED Figure 1), or whether hotspots of vi-83
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ral emergence will stay in tropical rainforests27,29, which currently harbor most undiscovered84

viruses3,30. Here, by projecting potential geographic range shifts (that is, newly suitable habitat,85

which a species may or may not migrate to) and applying mechanistic biological rules for cross-86

species transmission, we predicted how and where global change could potentially create novel87

opportunities for viral sharing, with particular attention to the potential connections between88

these risks and human health. We focused on mammals because they have some of the most89

complete biodiversity data, the highest proportion of viral diversity described1, and the great-90

est downstream relevance to human health and zoonotic disease emergence of any vertebrate91

class. We built species distribution models (SDMs) for 3,870 placental mammal species, and92

projected potential geographic range shifts based on four paired scenarios for climate change93

(Representative Concentration Pathways, RCPs) and land use change (Shared Socioeconomic94

Pathways, SSPs) by 2070. These scenarios characterize alternative futures for global environ-95

mental change, from sustainable land use change and a high chance of keeping global warming96

under 2◦C (SSP1-RCP2.6), to a high chance of 4◦C warming, continued fossil fuel reliance, and97

rapid land degradation and change (SSP5-RCP8.5; see “Methods” for a detailed explanation).98

We present results for SSP1-RCP 2.6 in the main text because this scenario is most in line with99

the goals of the Paris Agreement to keep global warming “well below” 2◦C31. We quantified100

model uncertainty in projected climate futures using nine global climate models (GCM) from101

the Coupled Model Intercomparison Project Phase 6 (CMIP6). Because many species are un-102

likely to be biologically suited for rapid range shifts, and will therefore move slower than the103

local velocity of climate change, we constrained the speed of range shifts based on inferred allo-104

metric scaling of animal movement32, and compared scenarios that assumed limited dispersal105

against “full dispersal” (that is, no dispersal limitation).106

We used projections of newly suitable habitat to identify where novel range overlap among107

currently non-overlapping species could happen (hereafter first encounters). We then used a108

recently-developed viral sharing model to predict the probability of a novel viral sharing event—109

here defined as the future cross-species transmission of at least one virus species, in this case110

between a pair of hosts that are newly in contact—based on novel geographic overlap and host111

phylogenetic similarity18, a first order approximation of opportunity and compatibility (ED112

Figure 2). This model framework has previously provided insights into viral macroecology and113

zoonotic risk based on the ∼1% of the global mammalian virome that has been described1,3,18.114

Based on the total number and distribution of first encounters among a subset of 3,139 species115

(see “Methods”), we used cumulative viral sharing probabilities to estimate the total number116

of novel sharing events that are expected (each of which describes the cross-species transmis-117

sion of at least one virus). Using this approach, we tested the hypothesis that environmental118

change should alter mammal communities in ways that expose hosts to novel viruses, altering119

the structure of the whole mammal-virus network.120

Climate and land use change will transform the global virome121

If species range shifts can keep pace with the velocity of climate change (i.e., can disperse to122

all newly suitable locations)33, we predict that the vast majority of mammal species will over-123

lap with at least one unfamiliar species somewhere in their potential future range, regardless124
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of emissions scenario (mean across GCMs ± s.d. here and after; RCP 2.6: 98.6% ± 0.2%; RCP125

8.5: 96.6% ± 0.8%). At the global level, geographic range shifts would permit over 300,000 first126

encounters in every climate scenario (SSP1-RCP 2.6: 316,426 ± 1,719; SSP5-RCP 8.5: 313,973 ±127

2,094; ED Figure 3). Compared to a present-day baseline, in which we calculated 345,850 cur-128

rent pairwise overlaps among the 3,870 species (∼ 7%), this essentially represents a doubling of129

potential species contact. These “first encounters” between mammal species will occur every-130

where in the world, but are concentrated in tropical Africa and southeast Asia (ED Figure 4).131

This result was counter to expectations that species might aggregate at higher latitudes, given132

that most research has focused on poleward range shifts34,35,36, and previous work has antici-133

pated a link between climate change, range shifts, and parasite host-switching in the Arctic37,38.134

However, we find that when species shift along latitudinal gradients, they travel in the same135

direction as others that are already included in their assemblage, leading to few first encounters.136

In contrast, when species track thermal optima along elevational gradients (allowing them to137

come from different directions; i.e., mountains force species to cluster), they will aggregate in138

the most novel combinations in mountain ranges, especially in tropical areas with the highest139

baseline diversity, matching prior predictions39. This pattern was robust to climate model un-140

certainty (Supplemental Figures 1-9) and to differences in dispersal capacity (e.g., Figure 2C).141

The most notable model variation is in the Amazon basin, as well as a small portion of the cen-142

tral African basin, Botswana, and parts of the Indian subcontinent (ED Figure 5). These areas143

become essentially devoid of first encounters in the most sensitive climate models and warmest144

pathways, presumably because all are high-endemism basins of homogenous climate that may145

warm too much for species to “escape” into high-elevation refugia (a fairly well-documented146

pattern40,41,42).147

This global re-organization of mammal assemblages is projected to dramatically impact the148

structure of the mammalian virome. Accounting for geographic opportunity and phylogenetic149

compatibility, we project that a total of 316,426 (± 1,719) first encounters in RCP 2.6 would lead150

to 15,311 novel sharing events (± 140)—that is, a minimum of at least ∼15,000 cross-species151

transmission events of at least one novel virus (but potentially many more) between a pair of152

naive host species. Assuming that viral sharing will initially be localized to areas of novel host153

overlap, we mapped expected viral sharing events, and found again that most sharing should154

occur in high-elevation, species-rich ecosystems in Africa and Asia (Figure 1A). If species sur-155

vive a changing climate by aggregating in high elevation refugia, this suggests emerging viruses156

may be an increasing problem for their conservation43,44. Across scenarios, the spatial pattern157

of expected sharing events was nearly identical, and was dominated more by the extent of158

potential range shifts than by underlying community phylogenetic structure (ED Figure 6; Sup-159

plemental Figures 10-18). Though previous work has suggested that the phylogenetic structure160

of mammal communities might drive spatial hotspots of pathogen sharing and emergence45, in161

our framework, opportunity drives spatial patterns more than compatibility. Given that phy-162

logeny is a strong determinant of viral sharing in the underlying model, this difference from163

previous studies can probably be explained by evolutionary scale, where prior work focused164

on primates, and our study includes all mammals. At this broader scale, predicted viral sharing165

patterns mostly track total richness (see Figure 3b in18), and at finer scales, phylogeny has a166

stronger effect (see Extended Data Figure 8 for an example).167
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Dispersal drives bats’ disproportionate importance168

Species’ dispersal capacity is likely to constrain the ability to move to newly suitable locations,169

and therefore to limit novel viral sharing. We limited the dispersal potential of flightless species170

based on an established allometric scaling with body size, trophic rank, and generation time32.171

Dispersal limits caused substantial reductions in predicted potential range expansions across172

all scenarios, especially for higher warming scenarios, and therefore drove a reduction in first173

encounters and novel viral sharing. Even in RCP 2.6 (the scenario with the least warming),174

limiting dispersal reduced the number of first encounters by 61% (± 0.3%), and reduced the175

associated viral sharing events by 70% (± 0.1%) to 4,584 (± 52) projected viral sharing events.176

Because trophic position and body size determine dispersal capacity, carnivores account for a177

slightly disproportionate number of first encounters, while ungulates and rodents have slightly178

fewer first encounters than expected at random (ED Figure 7). Spatial patterns also changed179

dramatically when dispersal constraints were added, with the majority of first encounters and180

cross-species viral transmission events occurring in southeast Asia (Figure 1B, ED Figures 4,181

6). This viral sharing hotspot is driven disproportionately by bats, because their dispersal was182

left unconstrained within continents; we made this choice given their exclusion from previous183

research characterizing the dispersal capacity of range-shifting mammals32, genetic evidence184

that flight allows bats—and their viruses—to often circulate at continental levels46,47, and data185

suggesting that bat distributions are already undergoing disproportionately rapid shifts48. Bats186

account for nearly 90% of first encounters after constraining dispersal in any climate scenario187

(RCP 2.6: 88% ± 0.1%; RCP 8.5: 89% ± 0.5%), and dominate the spatial pattern, with most of188

their first encounters restricted to southeast Asia (Figure 2).189

Bats’ unique capacity for flight could be an important and previously unconsidered link190

between climate-driven range shifts and future changes in the mammal virome. Even non-191

migratory bats can regularly travel hundreds of kilometers within a lifetime, far exceeding192

what small mammals might be able to cover in 50 years; half of all bat population genetic193

studies have failed to find any evidence for isolation by distance49. This unique dispersal ca-194

pacity has inevitable epidemiological implications, with recent evidence suggesting that conti-195

nental panmixia may be common for zoonotic reservoirs, allowing viral circulation at compa-196

rable scales46,47,50. Several studies have also identified ongoing rapid range expansions in bat197

species around the world48,51,52,53,54,55,56,57,58, with little mention in the broader climate change198

or emerging disease literature. If flight does allow bats to undergo more rapid range shifts199

than other mammals, we expect they should drive the majority of novel cross-species viral200

transmission, and likely bring zoonotic viruses into new regions. This could add an important201

new dimension to ongoing debate about whether bats are unique in their higher viral rich-202

ness, higher proportion of zoonotic viruses, or immune adaptations compared to other mam-203

mals3,59,60,61,62,63.204

Impacts on zoonotic viruses and human health205

The impacts of climate change on mammalian viral sharing patterns are likely to cascade in206

future emergence of zoonotic viruses. Among the thousands of expected viral sharing events,207
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some of the highest-risk zoonoses or potential zoonoses are likely to find new hosts. This may208

eventually pose a threat to human health: the same general rules for cross-species transmission209

explain spillover patterns for emerging zoonoses64,65, and the viral species that make successful210

jumps across wildlife species have the highest propensity for zoonotic emergence3,7,28. Just as211

simian immunodeficiency virus making a host jump from monkeys to chimpanzees and gorillas212

facilitated the origins of HIV66, or SARS-CoV spillover into civets allowed a bat virus to reach213

humans67, these kinds of wildlife-to-wildlife host jumps may be evolutionary stepping stones214

for the ∼10,000 potentially zoonotic viruses that are currently circulating in mammal hosts1.215

To illustrate this problem at the scale of a single pathogen’s “sharing network” (the set of216

all hosts known or suspected to host the virus, and likely to share with those known hosts), we217

constructed a sub-network of 13 possible hosts of Zaire ebolavirus (ZEBOV) in Africa, and pro-218

jected possible first encounters involving these species (Figure 3A-C, ED Figure 8). We project219

these 13 species to encounter 3,695 (±49) new mammals in RCP 2.6, with a modest reduction to220

2,627 (±44) species when accounting for dispersal limitation, and little variation among climate221

scenarios (RCP 8.5: 3,529 ± 47 encounters without dispersal limits; 2,455 ± 88 with disper-222

sal limits). Even with dispersal limits, these first encounters are predicted to produce almost223

one hundred new viral sharing events (RCP 2.6: 96 ± 2; RCP 8.5: 86 ± 4) that might include224

ZEBOV, and which cover a much broader part of Africa than the current zoonotic niche of225

Ebola68. Human spillover risk aside, this could expose several new wildlife species to a deadly226

virus historically responsible for sizable primate die-offs69. Moreover, for zoonoses like Zaire227

ebolavirus without known reservoirs, future host jumps—and therefore, the emergence of a228

larger pool of potential reservoirs covering a greater geographic area (e.g., potential introduc-229

tion of Zaire ebolavirus to east African mammals)—would only complicate ongoing efforts to230

trace the sources of spillover and anticipate future emergence70,71. Ebola is far from unique:231

with 8,429 ± 228 first encounters in RCP 2.6 between bats and primates, leading to an expected232

110 ± 4 new viral sharing events even with dispersal limits (Figure 3D; RCP 8.5: 7,326 ± 667233

first encounters, 90 ± 8 sharing events), many potential zoonoses are likely to experience new234

evolutionary opportunities because of climate change.235

Future hotspots of novel mammal assemblages and viral evolution are projected to coin-236

cide with areas of high human population density, further increasing vulnerability to potential237

zoonoses. Potential first encounters are disproportionately likely to occur in areas that are pro-238

jected to be either human settled or used as cropland and less likely to occur in forests (Figure239

2E), despite current literature suggesting that forests harbor most emerging and undiscovered240

viruses (Figure 4)27. This finding is consistent for bats and non-bats, and may be an accident241

of geography, but more likely represents the tendency of human settlements to aggregate on242

continental edges and around biodiversity hotspots72. Regardless of mechanism, we predict243

that tropical hotspots of novel viral sharing will broadly coincide with high population density244

areas in 2070, especially in the Sahel, the Ethiopian highlands and the Rift Valley, India, east-245

ern China, Indonesia, and the Philippines (Figure 4). Some European population centers also246

land in these hotspots; recent emergences in this region like Usutu virus73 highlight that these247

populations can still be vulnerable, despite greater surveillance and healthcare access. If range-248

shifting mammals create ecological release for undiscovered zoonoses, populations in any of249

these areas are likely to be the most vulnerable.250
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Climate change mitigation is insufficient to prevent undesirable outcomes251

Whereas most studies agree that climate change mitigation through reducing greenhouse gas252

emissions will prevent extinctions and minimize harmful ecosystem impacts74,75,41,76,77, our re-253

sults suggest that mitigation alone cannot reduce the likelihood of climate-driven viral sharing.254

Instead, the mildest scenarios for global warming appear likely to produce at least as much or255

even more cross-species viral transmission: when warming is slower, species can successfully256

track shifting climate optima, leading to more potential for range expansion, and more first257

encounters. Accounting for dispersal limits, species are projected to experience a median po-258

tential loss of 0.3% (± 2.5%) of their range in RCP 2.6, with 49.8% (± 3.8%) experiencing a net259

potential increase in range; in contrast, species were predicted to experience a 26.2% (± 13.2%)260

median potential loss in RCP 8.5, and only 30.8% (±5.45%) potentially gained any range (ED261

Figure 3A). In fact, in RCP 8.5, we projected that 261 (± 76) species could lose their entire range,262

with 162 (± 53) attributable to dispersal limits alone. As a result, there were 5.4% (±1.7%) fewer263

potential first encounters in RCP 8.5 compared to RCP 2.6, and unexpectedly, a 1.9% (± 0.3%)264

predicted reduction in the connectivity of the future global viral sharing network (ED Figure265

3B,D). Overall, our results indicate that a mild perturbation of the climate system could create266

thousands of new opportunities for viruses to find new hosts. Finally, in a supplemental anal-267

ysis comparing the present climate to the near past (see Methods and ED Figure 9), we found268

that if species are already tracking shifting habitats, present-day Africa and the Amazon might269

already be hotspots of novel cross-species viral transmission, given the warming that has taken270

place over the last 25 years (∼ +1◦C).271

We caution that this set of results should not be interpreted as a justification for inaction,272

or as a possible upside to unmitigated warming, which will be accompanied by mass defau-273

nation, devastating disease emergence, and unprecedented levels of human displacement and274

global instability41,74,75,76,77,78,79. Rather, our results highlight the urgency of better wildlife275

disease surveillance systems and public health infrastructure as a form of climate change adap-276

tation, even if mitigation efforts are successful and global warming stays below +2°C above277

pre-industrial levels.278

Conclusions279

Our study establishes a macroecological link between climate change and cross-species viral280

transmission. The patterns we describe are likely further complicated by uncertainties in the281

species distribution modeling process, including local adaptation or plasticity in response to282

changing climates, or lack of landscape connectivity preventing dispersal. The projections we283

make are also likely to be complicated by several ecological factors, including the temperature284

sensitivity of viral host jumps80; potential independence of vector or non-mammal reservoir285

range shifts; the possibility that defaunation especially at low elevations might interact with286

disease prevalence through biodiversity dilution and amplification effects not captured by our287

models81; or temporal heterogeneity in exposure (hosts might exchange viruses in passing but288

not overlap by 2070, especially in warmer scenarios). Future work can expand the scope of our289

findings to other host-parasite systems; our approach, which combines viral sharing models290
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with species distribution modeling approaches for thousands of species, is readily applied to291

other datasets. Birds have the best documented virome after mammals, and account for the292

majority of non-mammalian reservoirs of zoonotic viruses63; changing bird migration patterns293

in a warming world may be especially important targets for prediction. Similarly, with am-294

phibians facing disproportionately high extinction rates due to a global fungal panzootic, and295

emerging threats like ranavirus causing conservation concern, pathogen exchange among am-296

phibians may be especially important for conservation practitioners to understand82. Finally,297

marine mammals are an important target given their exclusion here, especially after a recent298

study implicating reduced Arctic sea ice in novel viral transmission between pinnipeds and sea299

otters—a result that may be the first proof of concept for our proposed climate-disease link83.300

Our study provides the first template for how surveillance could target future hotspots of301

viral emergence in wildlife. In the next decade alone, it may cost at least a billion dollars302

to comprehensively identify and counteract zoonotic threats before they spread from wildlife303

reservoirs into human populations2. These efforts are being undertaken during the greatest pe-304

riod of global ecological change recorded in human history, and in a practical sense, the rapid305

movement of species (and their virome) poses an unexpected challenge for virological research.306

While several studies have addressed how range shifts in zoonotic reservoirs might expose hu-307

mans to novel viruses, few have considered the fact that most new exposures will be among308

wildlife species. The relevance of this process is reinforced by the COVID-19 pandemic, which309

began only weeks after the completion of this study; the progenitor of SARS-CoV-2 likely orig-310

inated in southeast Asian horseshoe bats (Rhinolophus sp.), and may have spread to humans311

through an as-yet-unknown bridge host84,85,86. While we caution against overinterpreting our312

results as explanatory of the current pandemic or indicative of future pandemic risk—which is313

largely the product of global health governance, capacity, and preparedness—we note that the314

global reassortment of mammalian viruses will undoubtedly have a downstream impact on hu-315

man health (though attribution to climate change will be difficult in any individual case). Track-316

ing spillover into humans is paramount, but so is monitoring of viral transmission in wildlife.317

Targeting surveillance in future hotspots of cross-species transmission like southeast Asia, and318

developing norms of open data sharing for the global scientific community, will help researchers319

identify host jumps early on, ultimately improving our ability to respond to potential threats.320
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Methods321

In this study, we develop global maps for terrestrial mammals characterizing their habitat use322

and their ecological niche as a function of climate. We project these into paired climate-land323

use futures for 2070, with dispersal limitations set by biological constraints for each species.324

For a final subset of 3,139 species, we predict the probability of viral sharing among species325

pairs using a model of the mammalian viral sharing network that is trained on phylogenetic326

relatedness and current geographic range overlaps. With that model, we map the projected327

hotspots of new viral sharing in different futures. Analysis and visualization code is available328

on a Github repository (github.com/cjcarlson/iceberg).329

Data330

Mammal virus data331

Our understanding of viral sharing patterns is based on a dataset previously published by Oli-332

val et al.87. The dataset describes 2,805 known associations between 754 species of mammalian333

host and 586 species of virus, scraped from the taxonomic data stored in the International Com-334

mittee on Taxonomy of Viruses (ICTV) database. These data have previously been used in335

several studies modeling global viral diversity in wildlife1,84,88, including a previous study that336

developed the model of viral sharing we use here18. As that model is reproduced exactly in337

our study, we have made no further modifications to the data, and more detailed information338

on data management (e.g., the exclusion of Homo sapiens from that analysis) can be found in the339

Albery et al. publication18.340

Biodiversity data341

We downloaded Global Biodiversity Informatics Facility (GBIF: gbif.org) occurrence records for342

all mammals based on taxonomic names resolved by the IUCN Red List. We developed species343

distribution models for all 3,870 species with at least three unique terrestrial presence records344

at a 0.25 degree spatial resolution (approximately 25km by 25 km at the equator). In order to345

focus on species occurrence, we retained one unique point per 0.25 degree grid cell. This spatial346

resolution was chosen to match the available resolution of land use change projections (see347

below). Spatial and environmental outliers were removed based on Grubb outlier tests89. To348

implement the Grubb outlier tests for a given species we defined a distance matrix between each349

record and the centroid of all records (in both environmental or geographic space, respectively)350

and determined whether the record with the largest distance was an outlier with respect to all351

other distances, at a given statistical significance (p = 1e − 3, in order to exclude only extreme352

outliers). If an outlier was detected it was removed and the test was repeated until no additional353

outliers were detected.354

Climate and land use data355

Climate and land use data were compiled from WorldClim 290 and the Land Use Harmoniza-356

tion 2 (LUH2) project91 respectively, for both baseline conditions (operationalized as 1970-2000357
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for the climate data, 2015 for land use, and 2020 for dispersal limits; see “The effect of recent358

warming” for an interrogation of the difference between climate baselines and actual present-359

day climate) and a half-century in the future (operationalized as 2061-2080 for climate, 2070 for360

land use, and 2070 for dispersal).361

The WorldClim dataset is widely used in ecology, biodiversity, and agricultural projections362

of potential climate change impacts. WorldClim makes data available for current and future363

climates in the form of 19 pre-processed bioclimatic variables (Bioclim: BIO1-19). In order to364

reduce collinearity among climate variables in the species distribution models, we selected five365

Bioclim variables from the full set of 19 Bioclim variables: mean annual temperature (BIO1),366

temperature seasonality (BIO4), annual precipitation (BIO12), precipitation seasonality (coeffi-367

cient of variation; BIO15), and precipitation of the driest quarter (BIO17). This is the largest set368

of Bioclim variables possible that keeps their correlation over a global extent suitably low (r <369

0.7). The Bioclim variables for the historical climate are the mean from 1970-2000, and those for370

the future climate are the mean from 2060-2080.371

To account for model uncertainty in climate projections, we used projections for future cli-372

mates from all nine global climate models (GCMs) currently available on WorldClim 2 and par-373

ticipating in the Coupled Model Intercomparison Project 6 (CMIP6), the most recent generation374

of climate models: BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4,375

IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-ESM2-0. These nine GCMs encompass a376

wide range of effective climate sensitivities from 2.6K (MIROC6) to 5.6K (CanESM5) compared377

with a range of 1.8-5.6K across 27 CMIP6 models and 2.1-4.7K for CMIP592. Temperature and378

precipitation for future climates have been downscaled and bias-corrected by WorldClim 2 us-379

ing a change factor approach. The multi-year average of the GCM output for minimum tem-380

perature, maximum temperature and total precipitation is calculated for each month of the381

simulated historical and future period, and the absolute (for temperature) or proportional (for382

precipitation) difference in these values is then calculated, resulting in climate anomalies which383

are then applied to the 10-minute spatial resolution observed historical dataset90,93. WorldClim384

2 then calculates Bioclim variables based on these downscaled and bias-corrected data. This385

approach makes the assumption that the change in climate is relatively stable across space (that386

is, has high spatial autocorrelation). We downloaded the five pre-processed Bioclim variables387

for all nine GCMs at 10 minutes spatial resolution from WorldClim 290, and aggregated with388

bilinear interpolation to 0.25 degree spatial resolution (approximately 25km at the equator) to389

match with the LUH2 land use data resolution.390

Historical land-use data for 2015 and projected land-use data for 2070 were obtained from391

the Land Use Harmonization 2 (LUH2) project at 0.25 degree spatial resolution94,91. The LUH2392

data reconstructs and projects changes in land use among twelve categories: primary forest,393

non-forested primary land, potentially forested secondary land, potentially non-forested sec-394

ondary land, managed pasture, rangeland, cropland (four types), and urban land. To capture395

species’ habitat preferences, we downloaded data for all 3,870 mammal species from the IUCN396

Habitat Classification Scheme (version 3.1) and mapped the 104 unique IUCN habitat classifi-397

cations onto the twelve land use types present in the LUH2 dataset following Powers et al.95
398

(Supplementary Table 1).399

Finally, we downloaded global population projections from the SEDAC Global 1-km Down-400
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scaled Population Base Year and Projection Grids Based on the SSPs version 1.096, and selected401

the year 2070 for RCP 2.6 (see “Climate and land use futures”). These data are downscaled to402

1km from a previous dataset at 7.5 arcminute resolution97. We aggregated 1 km grids up to 0.25403

degree grids for compatibility with other layers, again using bilinear interpolation.404

Additional data405

A handful of smaller datasets were incidentally used throughout the study. These included the406

IUCN Red List, which was used to obtain species taxonomy, range maps, and habitat prefer-407

ences98; the US Geological Survey Global Multi-resolution Terrain Elevation Data 2010 dataset,408

which was used to derive a gridded elevation in meters at ∼25km resolution; and a literature-409

derived list of suspected hosts of Ebola virus30.410

Mapping species distributions411

We developed species distribution models for a total of 3,870 species in this study, divided into412

two modeling pipelines based on data availability (ED Figures 10, 11).413

Poisson point process models414

For 3,088 species with at least 10 unique presence records, Poisson point process models (PPMs),415

a method closely related to maximum entropy species distribution models (MaxEnt), were fit416

using regularized downweighted Poisson regression99 with 20,000 background points, using417

the R package glmnet100,101,100. The spatial domain of predictions was chosen based on the418

continent(s) where a species occurred in their IUCN range map; as a final error check, species419

ranges were constrained to a 1,000 km buffer around their IUCN ranges. We trained species420

distribution models on current climate data using the WorldClim 2 data set90, using the five421

previously-specified Bioclim variables.422

To reduce the possibility of overfitting patterns due to spatial aggregation, we used spatially423

stratified cross validation. Folds were assigned by clustering records based on their coordinates424

and splitting the resulting dendrogram into 25 groups. These groups were then randomly as-425

signed to five folds. (If species had fewer than 25 records, a smaller number of groups was426

used based on sample size, and these were split into five folds.) This flexible approach accounts427

for variation in the spatial scale of of aggregation among species by using the cluster analysis.428

By splitting into 25 groups initially (rather than 5) we obtain better environmental coverage (at429

least on average) within a fold and minimize the need to extrapolate for withheld predictions.430

Linear (all species), quadratic (species with >100 records), and product (species with >200431

records) features were used. Positive coefficients of quadratic features are not allowed (i.e. all432

have an upper bound of 0 in the model-fitting process), to avoid the undesirable effect of in-433

creasing suitability predictions at range edges. The regularization parameter was determined434

based on 5-fold cross-validation with each fold, choosing a value 1 standard deviation below435

the minimum deviance102. This resulted in five models per species which were then combined436

in an unweighted ensemble. Continuous predictions of the ensemble were converted to bi-437

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


nary presence/absence predictions by choosing a threshold based on the 5th percentile of the438

ensemble predictions at training presence locations.439

When models were projected into the future, we limited extrapolation to 1 standard devi-440

ation beyond the data range of presence locations for each predictor. This decision balances a441

small amount of extrapolation based on patterns in a species niche with limiting the influence of442

monotonically increasing marginal responses, which can lead to statistically unsupported (and443

likely biologically unrealistic) responses to climate.444

Range bagging models445

For an additional 783 rare species (3 to 9 unique points on the 25 km grid), we produced species446

distribution models with a simpler range bagging algorithm, a stochastic hull-based method447

that can estimate climate niches from an ensemble of underfit models103,104, and is therefore448

well suited for smaller datasets. From the full collection of presence observations and environ-449

mental variables range-bagging proceeds by randomly sampling a subset of presences (propor-450

tion p) and a subset of environmental variables (d). From these, a convex hull around the subset451

of points is generated in environmental space. The hull is then projected onto the landscape452

with a location considered part of the species range if its environmental conditions fall within453

the estimate hull. The subsampling is replicated N times, generating N ‘votes’ for each cell on454

the landscape. One can then choose a threshold for the number of votes required to consider455

the cell as part of the species’ range to generate the binary map used in our downstream anal-456

yses. Based on general guidelines in103 we chose p = 0.33, d = 2, and N = 100. We then457

chose the voting threshold to be 0.165 (=0.33/2) because this implies that the cell is part of the458

range at least half the time for each subsample. Upon visual inspection, this generally lead to459

predictions that were very conservative about inferring that unsampled locations were part of a460

species distribution. The same environmental predictors and ecoregion-based domain selection461

rules were used for range bagging models as were used for the point process models discussed462

above. This hull-based approach is particularly valuable for poorly sampled species which may463

suffer from sampling bias because bias within niche limits has little effect on range estimates.464

Model validation and limitations465

PPM models performed well, with a mean test AUC under 5 fold cross-validation (using spatial466

clustering to reduce inflation) of 0.78 (s.d. 0.14). The mean partial AUC evaluated over a range467

of sensitivity relevant for SDM (0.8-0.95) was 0.81 (s.d. 0.09). The mean sensitivity of binary468

maps used to assess range overlap (based on the 5% training threshold used to make a binary469

map) was 0.90 (s.d. 0.08). Range bagging models were difficult to meaningfully evaluate be-470

cause they were based on extremely small sample sizes (3-9). The mean training AUC (we did471

not perform cross-validation due to small sample size) was 0.96 (s.d. 0.09). The binary maps472

had perfect sensitivity (1) because the threshold used to make them was chosen sufficiently low473

to include the handful of known presences for each species. One way to assess how well we474

inferred the range for these species is to quantify how much of the range was estimated based475

on our models, based on the number of (10km) cells predicted to be part of the species range476

even when it was not observed there. The mean number of cells inferred to contain a presence477
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was 254 (s.d. 503); however, the distribution is highly right skewed with a median of 90. This478

indicates that the range bagging models were typically relatively conservative about inferring479

ranges for poorly sampled species.480

Although our models performed well, we note that researchers should approach the inter-481

pretation of species distribution models (SDMs) with a certain degree of caution. Even ad-482

hering to best practices, many SDM methods are sensitive to subjective user-end choices that483

influence model performance, transferrability, and interpretability. Some of those choices may484

have marginally affected the patterns we document in this study. For example, to quantify485

our results’ resilience to the choice of threshold, we constructed pairwise overlaps for the cur-486

rent rasters of all species across three habitat suitability thresholds (1%, 5%, and 10%). We did487

this using the climate projections, the IUCN-clipped climate projections, and the land use- and488

IUCN-clipped projections (see below sections), such that there were nine total replicates, only489

one of which (IUCN- and land use-clipped 5% threshold) was used in our main analyses. We490

fitted the proportional overlap between each species pair across all nine replicates in a linear491

mixed model with the identity of the species pair and the thresholding replicate as random ef-492

fects, to quantify the variance associated with the choice of processing pipeline compared to493

the variance associated with the species pair itself. We also examined the mean proportional494

overlap across the nine replicates. Our linear mixed model examining the variance associated495

with thresholding pipeline found that thresholding accounted for only 2.2% of the variance in496

proportional overlap, in contrast to the 72.3% accounted for by the identity of the species pair.497

Furthermore, there was very little difference observed in the mean proportional overlap and the498

number of overlapping species across thresholds. These results demonstrate that the choice of499

thresholding had an impact on the results of our analysis, but an extremely marginal one, and500

we expect similar results would be found for other choices like variable set reduction, model501

calibration, the resolution of predictor data, and the processing of point occurrence data.502

Finally, we note that while many factors besides climate are ignored by our models, such503

as biotic interactions or animal social behavior, our models are tailored to our aim: predicting504

hotspots of elevated risk under climate change. In our application, correctly predicting pres-505

ences is more important than incorrect prediction of absences, because we are focused on the506

potential for novel species overlap. We cannot say whether that overlap will happen, based on507

the multiple factors besides climate that influence distributions and range shifts, but we can say508

with confidence - based on robust current niche estimates, validated with spatially stratified509

cross-validation, and biologically-grounded estimates of dispersal capacity - where risk would510

be elevated in accordance with our simulations.511

Habitat range and land use512

To capture species’ habitat preference, we collated data for all 3,870 mammal species from the513

IUCN Habitat Classification Scheme (version 3.1). We then mapped 104 unique IUCN habitat514

classifications onto the twelve land use types present in the LUH2 dataset. For 962 species,515

no habitat data was available, or no correspondence existed between a land type in the IUCN516

scheme and our land use data; for these species, land use filters were not used. Filtering based517

on habitat was done as permissively as possible: species were allowed in current and potential518
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future ranges to exist in a pixel if any non-zero percent was assigned a suitable habitat type;519

almost all pixels contain multiple habitats. In some scenarios, human settlements cover at least520

some of a pixel for most of the world, allowing synanthropic species to persist throughout most521

of their climatically-suitable range. For those with habitat data, the average reduction in range522

from habitat filtering was 7.6% of pixels.523

Predicting future species distributions524

We modeled a total of 136 future scenarios, produced by the four paired climate-land use change525

pathways replicated across nine global climate models (with one, GFDL-ESM4, only available526

for two climate scenarios: RCP 2.6 and RCP 7.0; see below), modified by two optional filters on527

species ranges (habitat preferences and dispersal limits). The full matrix of possible scenarios528

captures a combination of scenario uncertainty about global change and epistemological uncer-529

tainty about how best to predict species’ range shifts. By filtering potential future distributions530

based on climate, land use, and dispersal constraints, we aimed to maximize realism; our pre-531

dictions were congruent with extensive prior literature on climate- and land use-driven range532

loss105,106,95.533

Climate and land use futures534

We considered four possible scenarios for the year 2070 each based on a pairing of the Rep-535

resentative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs).536

RCP numbers (e.g., 2.6 or 4.5) represent Watts per square meter of additional radiative forcing537

by the end of the century, while SSPs describe alternate possible pathways of socioeconomic de-538

velopment and demographic change. As pairs, SSP-RCP scenarios describe alternative futures539

for global socioeconomic and environmental change. Not all SSP-RCP scenario combinations in540

the “scenario matrix” are realistically possible107. For example, in the vast majority of integra-541

tive assessment models, decarbonization cannot be achieved fast enough in the SSP5 scenario542

to achieve RCP 2.6.543

We used four SSP-RCP combinations: SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-544

RCP8.5. We selected these four scenarios because they span a wide range of plausible global545

change futures, and serve as the basis for climate model projections in the Scenario Model In-546

tercomparison Project for the newest generation of global climate models (CMIP6)31. SSP1-547

RCP2.6 is a scenario with low population growth, strong greenhouse gas mitigation and land548

use change (especially an increase in global forest cover), which makes global warming likely549

less than 2◦C above pre-industrial levels by 2100; SSP2-RCP4.5 has moderate land use change550

and greenhouse gas mitigation with global warming of around 2.5◦C by 2100; SSP3-RCP7.0551

has high population growth, substantial land use change (especially a decrease in global forest552

cover) and very weak greenhouse gas mitigation efforts with global warming of around 4◦C by553

2100; and SSP5-RCP8.5 is the highest warming scenario with less decrease in forest cover than554

SSP3 but more substantial increases in coal and other fossil fuel usage leading to more than 4◦C555

warming by 210031,108,109,110.556
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Climate model uncertainty557

To identify the contribution of climate model uncertainty and its propagation through our anal-558

ysis, we used all nine selected GCMs from CMIP6 and produced multi-model averages for all559

main text figures. For all of the main text statistics, we present each multi-model mean with a560

standard deviation across the nine global climate models. We also compared the first encounters561

from the two models with the highest (CanESM5) and lowest (MIROC6) effective climate sensi-562

tivity in the available CMIP6 set on WorldClim (ED Figure 5)92. We also present the map of first563

encounters and novel viral sharing in each GCM run for each RCP, accounting for both climate564

and land use change, with the full dispersal and limited dispersal scenario, in Supplementary565

Figures 1-18.566

Limiting dispersal capacity567

Not all species can disperse to all environments, and not all species have equal dispersal capacity—568

in ways likely to covary with viral sharing properties. We follow a rule proposed by Schloss et569

al.32, who described an approximate formula for mammal range shift capacity based on body570

mass and trophic position. For carnivores, the maximum distance traveled in a generation is571

given as D = 40.7M0.81, where D is distance in kilometers and M is body mass in kilograms.572

For herbivores and omnivores, the maximum is estimated as D = 3.31M0.65.573

We used mammalian diet data from the EltonTraits database111, and used the same cutoff as574

Schloss to identify carnivores as any species with 10% or less plants in their diet. We used body575

mass data from EltonTraits in the Schloss formula to estimate maximum generational dispersal,576

and converted estimates to annual maximum dispersal rates by dividing by generation length,577

as previously estimated by another comprehensive mammal dataset112. We multiply by 50578

years (from 2020 as the present to 2070) and use the resulting distance as a buffer around the579

original range map, and constrain possible range shifts within that buffer. For 420 species with580

missing data in one of the required sources, we interpolated dispersal distance based on the581

closest relative in our supertree with a dispersal velocity estimate.582

Qualified by the downsides of assuming full dispersal113, we excluded bats from the as-583

sumed scaling of dispersal limitations. The original study by Schloss et al.32 chose to omit bats584

entirely, and subsequent work has not proposed any alternative formula. Moreover, the Schloss585

formula performs notably poorly for bats: for example, it would assign the largest bat in our586

study, the Indian flying fox (Pteropus giganteus), a dispersal capacity lower than that of the gray587

dwarf hamster (Cricetulus migratorius). Bats were instead given full dispersal in all scenarios:588

given significant evidence that some bat species regularly cover continental distances46,47, and589

that isolation by distance is uncommon within many bats’ ranges49, we felt this was a defensible590

assumption for modeling purposes. Moving forward, the rapid range shifts already observed591

in many bat species (see main text) could provide an empirical reference point to fit a new allo-592

metric scaling curve (after standardizing those results for the studies’ many different method-593

ologies). A different set of functional traits likely govern the scaling of bat dispersal, chiefly the594

aspect ratio (length:width) of wings, which is a strong predictor of population genetic differ-595

entiation49. Migratory status would also be important to include as a predictor although here,596

we exclude information on long-distance migration for all species (due to a lack of any real597
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framework for adding that information to species distribution models in the literature).598

Explaining spatial patterns599

To explore the geography of novel assemblages, we used linear models that predicted the num-600

ber of first encounters (novel overlap of species pairs) at the 25km level (N = 258, 539 grid601

cells). Explanatory variables included: richness (number of species inhabiting the grid cell in602

our predicted current ranges for the given scenario); elevation in meters (derived from the US603

Geological Survey Global Multi-resolution Terrain Elevation Data 2010 dataset); and the pre-604

dominant land cover type for the grid cell. We simplified the classification scheme for land use605

types into five categories for these models (human settlement, cropland, rangeland and pas-606

ture, forest, and unforested wildland), and assigned pixels a single land use type based on the607

maximum probability from the land use scenarios. We fit a model for each scenario and pair of608

biological assumptions; because of the large effect bats had on the overall pattern, we retrained609

these models on subsets of encounters with and without a bat species involved. To help model610

fitting, we log(x+1)-transformed the response variable (number of overlaps in the pixel) and611

both continuous explanatory variables (meters of elevation above the lowest point and species612

richness). Because some elevation values were lower than 0 (i.e., below sea level), we treated613

elevation as meters above the lowest terrestrial point rather than meters above sea level to allow614

us to log-transform the data.615

Viral sharing models616

Criteria for species’ inclusion617

Of the 3,870 species for which we generated distribution models, 103 were aquatic mammals618

(cetaceans, sirenians, pinnipeds, and sea otters), and 382 were not present in the mammalian619

supertree that we used for phylogenetic data114. These species, and the associated species dis-620

tribution models, were excluded from the analysis. Aquatic species were removed using a621

two-filter approach, by first cross-referencing with Pantheria115, and second by checking no622

species only had non-aquatic habitat use types (see “Habitat range and land use”). We also ex-623

cluded 246 monotremes and marsupials because the shape of the supertree prevented us from624

fitting satisfactory GAMM smooths to the phylogeny effect, leaving 3,139 non-marine placental625

mammals with associated phylogenetic data.626

Generalized additive mixed models627

We used a previously-published model of the phylogeography of viral sharing patterns to make628

predictions of future viral sharing18. This model was based on an analysis of 510 viruses shared629

between 682 mammal species3, and predicted the probability that a pair of mammal species will630

share a virus given their geographic range overlap and phylogenetic relatedness. The original631

study uncovered strong, nonlinear effects of spatial overlap and phylogenetic similarity in de-632

termining viral sharing probability, and simulating the unobserved global network using these633

effect estimates capitulated multiple macroecological patterns of viral sharing.634
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In the original study, a Generalized Additive Mixed Model (GAMM) was used to predict635

virus sharing as a binary variable, based on (1) geographic range overlap; (2) phylogenetic636

similarity; and (3) species identity as a multi-membership random effect. The phylogeographic637

explanatory variables were obtained from two broadly available, low-resolution data sources:638

pairwise phylogenetic similarity was derived from a mammalian supertree previously modified639

for host-pathogen studies114,3, with similarity defined as the inverse of the cumulative branch640

length between two species, scaled to between 0 and 1. Geographic overlap was defined as641

the area of overlap between two species’ IUCN range maps, divided by their cumulative range642

size116.643

We first retrained the GAMMs from18 on the pairwise overlap matrix of species distribution644

models generated for this study, so that present predictions would be comparable with potential645

future distributions. Of the 3,139 species in our reduced dataset, 544 had viral records in our646

viral sharing dataset and shared with at least one other mammal, and were used to retrain the647

GAMM from18. To check the performance of the GAMM, we predicted sharing patterns with648

a) only random effects, b) only fixed effects, and c) with both. To extend predictions to the649

the full set of mammals, we generated random effects for out-of-sample species by drawing650

from the fitted distribution of species-level effects. (Predicting without these random effects651

underestimates species variance, resulting in mean sharing of 0.02 rather than the observed652

0.06). The mean sharing value across these predictions closely approximated observed sharing653

probability (∼ 0.06).654

We note that this model uses citation counts to correct for sampling bias, an imperfect655

method but one that leads to strong validation performance on an independently-compiled656

dataset of host-virus associations, which carries a different set of biases. However, it is still657

possible that sampling bias in host-virus datasets like the Olival et al. dataset could artificially658

inflate the signal of phylogeography in viral sharing, if researchers investigating a noteworthy659

viral detection then preferentially sample closely-related host species in the immediate area. It660

is unlikely these effects would bias our results in a particular direction, but accounting for these661

biases should at least involve some acknowledgement that cross-species transmission is chal-662

lenging to predict. (See the Albery et al. study’s Discussion for a more in-depth treatment of663

sampling bias effects.)664

Model validation and limits665

Compared to the current viral sharing matrix, the model performs well with only fixed effects666

(AUC = 0.80) and extremely well with both fixed and random effects (AUC = 0.93). The model667

explained a very similar proportion of the deviance in viral sharing to that in Albery et al.18
668

(44.5% and 44.8%, respectively).669

In practice, several unpredictable but confounding factors could affect the reliability of this670

model as a forecasting tool, including temperature sensitivity of viral evolution in host jumps80,671

or increased susceptibility of animals with poorer health in lower-quality habitat or unfavorable672

climates. Moreover, once viruses can produce an infection, their ability to transmit within a new673

species is an evolutionary race between mutation and recombination rates in viral genomes,674

host innate and adaptive immunity, virulence-related mortality, and legacy constraints of co-675
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evolution with prior hosts and vectors64,65. But data cataloging these precise factors are hardly676

comprehensive for the hundreds of zoonotic viruses, let alone for the thousands of undescribed677

viruses in wildlife. Moreover, horizontal transmission is not necessary for spillover potential to678

be considered significant; for example, viruses like rabies or West Nile virus are not transmitted679

within human populations but humans are still noteworthy hosts.680

Mapping opportunities for sharing681

We used the GAMM effect estimates to predict viral sharing patterns across the 3,139 mammals682

with associated geographic range and phylogenetic data, for both the present and future sce-683

narios. By comparing current and future sharing probabilities for each of the four global change684

scenarios, we estimated which geographic and taxonomic patterns of viral sharing would likely685

emerge. We separately examined patterns of richness, patterns of sharing probability, and their686

change (i.e., future sharing probability - current sharing probability, giving the expected proba-687

bility of a novel sharing event).688

A subset of the mammals in our dataset were predicted to encounter each other for the first689

time during range shifts. For each of these pairwise first encounters, we extracted the area of690

overlap in every future scenario, and assigned each overlap a probability of sharing from the691

mean GAMM predictions and mapped the mean and cumulative probability of a new sharing692

event happening in a given geographic pixel.693

Case study on Zaire ebolavirus694

For a case study in possible significant cross-species transmission, we compiled a list of known695

hosts of Zaire ebolavirus (ZEBOV), a zoonosis with potentially high host breadth that has been696

known to cause wildlife die-offs, but has no known definitive reservoir. Hosts were taken697

from two sources: the training dataset on host-virus associations3, and an additional dataset698

of filovirus testing in bats30. In the latter case, any bats that have been reported antibody pos-699

itive or PCR-positive for ZEBOV were included. A total of 19 current “known hosts” were700

selected. We restricted our analysis to the 13 hosts from Africa, because there is no conclusive701

evidence that Zaire ebolavirus actively circulates outside Africa; although some bat species out-702

side Africa have tested positive for antibodies to ZEBOV, this is likely due to cross-reactivity703

with other undiscovered filoviruses117,118,30. We used the 13 African hosts to predict possible704

first encounters in all scenarios (ED Figure 8), and mapped the current richness of ZEBOV hosts,705

the change in host richness by 2070, and the number of first encounters (Figure 3).706

Overlap with human populations707

To examine the possibility that hotspots of cross-species transmission would overlap with hu-708

man populations, we used SEDAC’s global population projections version 1.0 for the year709

207096. We aggregated these to native resolution, for each of the four SSP paired with the native710

RCP/SSP pairing for the species distribution models. In Figure 4 we present the population711

projections for SSP1, which pairs with RCP 2.6.712

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


The effect of recent warming713

Like many studies that employ species distribution modeling, our study uses a definition of714

the “present” that embodies a slight cognitive dissonance with recent warming119. The World-715

Clim2 dataset captures the mean climate between 1970 and 2000, but the climate at the time716

of writing has already warmed substantially compared to this baseline. While we employ this717

loose definition of “present day” throughout, we note that the actual present climate is substan-718

tially warmer, and therefore might be expected to already be experiencing the turnover in viral719

sharing that we describe throughout.720

As a final supplementary analysis, we interrogated the effect of recent climate change on the721

world we live in today, which is already substantially warmer than pre-industrial temperatures.722

To do so, we repeated the analysis in its entirety – minus steps constraining species ranges723

with either the IUCN range maps or dispersal limits – using the ERA5 reanalysis product with724

monthly averaged data120. We trained species distribution models based on a recent climate725

baseline (1981-1995), and projected their ranges to the present day (2005-2019), using two time726

slices (1991 and 2015) positioned equally in the climate intervals. We set dispersal limits for727

species as we did in the main analysis, but for this 25-year period.728

Using these data to repeat the analysis, we found that there were a projected total of 52,463729

first encounters (with 34,254 including at least one bat species), amounting to a total of 1,043730

viral sharing events. First encounters and viral sharing events were located mostly in Africa and731

the Amazon (ED Figure 9). We caution that these results–particularly the number of encounters732

and sharing events–should not be interpreted as the same “units” as the main analysis, given733

that they are calibrated to an entirely different climate reconstruction.734
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Figure 1: Climate change will drive novel viral sharing among mammal species. The pro-
jected number of novel viral sharing events among mammal species in 2070 based on host
species geographic range shifts from climate and land use change (SSP1-RCP 2.6), without dis-
persal limits (A) and with dispersal limitation (B). Results are averaged across nine global cli-
mate models.
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A.

B.

C.

D.

E.

Figure 2: Bats disproportionately drive future novel viral sharing. The spatial pattern of first
encounters (in SSP1-RCP 2.6) differs among range-shifting mammal pairs including bat-bat and
bat-nonbat encounters (A) and only encounters among non-bats (B). Using a linear model, we
show that elevation (C), species richness (D), and land use (E) influence the number of new
overlaps for bats and non-bats across scenarios (RCPs paired with SSPs as described in Meth-
ods). Slopes for the elevation effect were generally steeply positive: a log10-increase in elevation
was associated with between a 0.4-1.41 log10-increase in first encounters. Results are averaged
across nine global climate models. Legends refer to scenarios: CL gives climate and land use
change, while CLD adds dispersal limits. 23
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C.

D.

A. B.

Figure 3: Range expansions will expose naive hosts to zoonotic reservoirs. (A) The predicted
distribution of known African hosts of Zaire ebolavirus. (B) The change in richness of these
hosts as a result of range shifts (SSP1-RCP 2.6). (C) Projected first encounters with non-Ebola
hosts. (D) Bat-primate first encounters are projected to occur globally, producing novel sharing
events. Results are averaged across nine global climate models.
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Figure 4: Novel viral sharing events coincide with human population centers. In 2070 (SSP1-
RCP 2.6; climate only), human population centers in equatorial Africa, south China, India,
and southeast Asia will overlap with projected hotspots of cross-species viral transmission in
wildlife. (Both variables are linearly rescaled to 0 to 1.) Results are averaged across nine global
climate models.

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


Degree

Extended Data Figure 1: The mammal-virus network. The present-day viral sharing network
by mammal order inferred from modeled pairwise predictions of viral sharing probabilities.
Edge width denotes the expected number of shared viruses (the sum of pairwise species-species
viral sharing probabilities), with most sharing existing among the most speciose and closely-
related groups. Edges shown in the network are the top 25% of links. Nodes are sized by total
number of species in that order in the host-virus association dataset, color is scaled by degree.
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Extended Data Figure 2: Predicted phylogeographic structure of viral sharing. Phylogeo-
graphic prediction of viral sharing using a generalized additive mixed model. Viral sharing
increases as a function of phylogenetic similarity (A) and geographic overlap (B), which have
strong nonlinear interactions, shown in the contour map of joint effects (C). White contour lines
denote 10% increments of sharing probability. Declines at high values of overlap may be an
artefact of model structure and low sampling in the upper levels of geographic overlap, shown
in a hexagonal bin chart of the raw data distribution (D).
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Extended Data Figure 3: Outcomes by model formulation and climate change scenario.
Heatmaps displaying predicted changes across model formulations. (A) Range expansions
were highest in non-dispersal-limited scenarios and in scenarios with lower levels of global
warming. (B) The number of predicted first encounters was higher in non-dispersal-limited sce-
narios and in scenarios with lower levels of global warming. (C) The number of expected new
viral sharing events was higher in non-dispersal-limited scenarios and in more severe RCPs.
(D) The overall change in sharing probability (connectance) across the viral sharing network be-
tween the present day and the future scenarios; absolute change is minimal but positive across
all scenarios, being greatest in non-dispersal-limited scenarios and in scenarios with lower lev-
els of global warming. Results are averaged across nine global climate models, with standard
deviation indicated in parentheses underneath main statistics.
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Extended Data Figure 4: Geographic distribution of first encounters. Predictions were carried
out for four representative concentration pathways (RCPs), accounting for climate change and
land use change, without (left) and with dispersal limits (right). Darker colours correspond to
greater numbers of first encounters in the pixel. Results are averaged across nine global climate
models.
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Extended Data Figure 5: Geographic distribution of first encounters in two global climate
models. Predictions were carried out for four representative concentration pathways (RCPs),
accounting for climate change and land use change through pairing with shared socioeconomic
pathways (SSPs) as detailed in the Methods. The two models selected are those with the highest
(CanESM5) and lowest (MIROC6) effective climate sensitivity in the available CMIP6 set on
WorldClim92. Darker colours correspond to greater numbers of first encounters in the pixel.
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Extended Data Figure 6: Geographic distribution of expected viral sharing events from first
encounters. Predictions were carried out for potential future distributions for four representa-
tive concentration pathways (RCPs), accounting for climate change and land use change, with-
out (left) and with dispersal limits (right). Darker colours correspond to greater numbers of
new viral sharing events in the pixel. Probability of new viral sharing was calculated by sub-
tracting the species pair’s present sharing probability from their future sharing probability that
our viral sharing GAMMs predicted. This probability was projected across the species pair’s
range intersection, and then summed across all novel species pairs in each pixel. Results are
averaged across nine global climate models.
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Extended Data Figure 7: Order-level heterogeneity in first encounters. Dispersal stratifies the
number of first encounters (RCP 2.6 with all range filters), where some orders have more than
expected at random, based on the mean number of first encounters and order size (line). Results
are averaged across nine global climate models.
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Known African 
Ebola hosts 

(n = 13)

First encounters 
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Viral sharing
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Extended Data Figure 8: Projected viral sharing from suspected Ebola reservoirs is domi-
nated by bats. Node size is proportional to (left) the number of suspected Ebola host species in
each order, which connect to (middle) first encounters with potentially naive host species; and
(right) the number of projected viral sharing events in each receiving group. (Node size denotes
proportions out of 100% within each column total.) While Ebola hosts will encounter a much
wider taxonomic range of mammal groups than current reservoirs, the vast majority of future
viral sharing will occur disproportionately in bats.
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Extended Data Figure 9: Projected viral sharing from present-day warming. First encounters
and viral sharing events are derived from an independent analysis of ERA5 climate data for the
present day (2005-2019) versus the recent past (1981-1995).

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.01.24.918755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.918755


Extended Data Figure 10: Data processing workflow. Summary of species inclusion across the
modeling pipeline for species distributions and viral sharing models. The final analyses in the
main text use 3,139 species of placental mammals across all scenarios.
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Extended Data Figure 11: Species distribution modeling workflow for a single species. A
focal species (the sand cat, Felis margarita) is displayed as an illustrative example. The present
day climate prediction (top left) was clipped to the same continent according to the IUCN dis-
tribution (top right). This was then clipped according to Felis margarita’s land use (second row,
left). The known dispersal distance of the sand cat was used to buffer the climate distribution
(second row, right). The potential future distribution predictions (RCP 2.6 shown as an exam-
ple) are displayed in the bottom four panels, for each of the four pipelines: only climate (third
row, left); climate + dispersal clip (third row, right); climate + land use clip (bottom row, left)
and climate + land use + dispersal clip (bottom row, right). The four distributions clearly dis-
play the limiting effect of the dispersal filter (bottom right panels) in reducing the probability of
novel species interactions (bottom left panels). The land use clip had little effect on this species
as the entire distribution area was habitable for the sand cat.
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