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1 Abstract
Detecting differential activation of transcription factors (TFs) in response to
perturbation provides insight into cellular processes. Transcription Factor En-
richment Analysis (TFEA) is a robust and reliable computational method that
detects differential activity of hundreds of TFs given any set of perturbation
data. TFEA draws inspiration from GSEA and detects positional motif enrich-
ment within a list of ranked regions of interest (ROIs). As ROIs are typically
inferred from the data, we also introduce muMerge, a statistically principled
method of generating a consensus list of ROIs from multiple replicates and
conditions. TFEA is broadly applicable to data that informs on transcriptional
regulation including nascent (eg. PRO-Seq), CAGE, ChIP-Seq, and accessibility
(e.g. ATAC-Seq). TFEA not only identifies the key regulators responding to a
perturbation, but also temporally unravels regulatory networks with time series
data. Consequently, TFEA serves as a hypothesis-generating tool that provides
an easy, rigorous, and cost-effective means to broadly assess TF activity yielding
new biological insights.
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2 Introduction
Transcription factors (TFs) are DNA-binding proteins that regulate transcription.
When a cell is challenged by a change in the environment, it responds by altering
the activity of one or more TFs. TFs, through transcriptional changes, are
then responsible for altering cellular function and ultimately deciding cell fate.
Because of their importance in global cellular programs, measuring differential
TF activity between two conditions is a readout of high-level cellular biology
and provides critical insight when details of the involved cellular processes are
not known.

Experimental methods for measuring TF activity have largely focused on
measuring protein-DNA binding, typically by chromatin immunoprecipitation
(ChIP), resulting in high quality sequence recognition motifs for many TFs[19, 38].
Yet, not all binding sites lead to altered transcription activity[61, 55, 18]. Con-
sequently, many of the approaches to inferring regulation by TFs combine ChIP
data or motif hits with measures of gene expression[10, 28]. Relying on gene
expression data, however, limits the effectiveness of these approaches. Gene
expression assays, such as RNA-seq, are only indirect measures on actual tran-
scription. RNA-seq is a steady state measure of RNA and reflects a combination
of transcription and degradation[26, 57, 22]. Furthermore, the steady state nature
of RNA-seq limits the response dynamics of the assay[25, 37, 42, 1, 36], as both
newly created and long lived RNAs contribute to RNA measurements[49, 47].
Therefore, directly assaying transcription initiation improves on both the po-
sitional and temporal resolution when quantifying the activity of regulatory
sites.

A large number of high throughput assays either directly or indirectly assay
transcription initiation. Nascent transcription assays[16, 35] directly measure
bona fide transcription, prior to RNA processing. Cap associated approaches, such
as CAGE and GRO-CAP, target the 5′ cap of transcripts[4, 15, 58]. Transcription
arises from a subset of nucleosome free regions, therefore chromatin accessibility
data indirectly informs on the locations of transcription initiation. Likewise,
some histone marks have been associated with actively transcribed regions, such
as H3K27ac and H3K4me1/3 [11]. In principle, differential signals from these
assays inform on the underlying mechanistic activity of TFs[6].

With differential regulatory data, the objective is to infer which transcription
factors are causally responsible for the observed changes. With high quality
motifs now residing in numerous databases[34, 43, 38], these catalogs can be
leveraged to resolve the concurrent activity of many TFs. Historically, detecting
motif enrichment in this way relied on sequences being classified into either signal
or background and then calculating motif enrichment in signal sequences relative
to background[11, 14]. More sophisticated approaches can take advantage of two
additional factors: 1) positional information — where the motif is located relative
to a region of interest[8, 6] and 2) differential information — the amount of
change occurring within that region of interest[45, 12]. Relatively few techniques
encode both types of information[39, 52, 24] and these currently provide no
easily accessible software package or web-based application.
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Our method, which we refer to as transcription factor enrichment analysis
(TFEA) draws inspiration from the popular gene set enrichment analysis (GSEA)
algorithm[56]. TFEA improves on our previous position based approach[6]
and shows performance comparable to the state of the art motif enrichment
approaches. Additionally, TFEA can be applied to a number of regulatory data
types including PRO-seq, CAGE, DNAse-seq and ChIP-seq. Finally, TFEA is
fast, computationally inexpensive, and designed with the user in mind, as we
provide an easy to use web interface (https://tfea.colorado.edu), a command-line
interface, and an importable Python 3 package. TFEA has the potential to
become a transformative tool by providing easy downstream analysis aimed at
distinguishing temporal and mechanistic details of complex regulatory networks.

3 Results
3.1 Overview
Conceptually, when a TF is active, it binds to a set of positions within the genome
and alters transcription nearby, both at promoters and enhancers. Importantly,
this process can both give rise to new transcripts and alter the levels of existing
transcripts. Nascent transcription assays show that when a TF is activated,
transcripts arise immediately proximal to the corresponding TF motif[1, 6]. In
this work we introduce TFEA, which quantifies positional enrichment of TF
motifs across an ordered list of regions (Figure 1). The key input into TFEA is a
ranked list of regions of interest (ROIs) that typically are obtained independently
from each replicate dataset but can also be a list of annotated regions, such as
known promoters.

3.2 muMerge: Combining genomic features from multiple
samples into consensus regions of interest

A key challenge in defining a set of consensus ROIs is retaining positional
precision when combining region estimates that originate from different samples
(replicates and conditions). To this end, we developed a statistically principled
method of performing this combination called muMerge (See Supp. Fig. 3 and
online method section 4.1.1 for details). In order to demonstrate the efficacy of
muMerge, we compare its performance to two common methods for combining
regions across multiple samples—merging all samples (e.g. with bedtools merge)
and intersecting all samples (e.g. with bedtools interesect). We performed two
tests using simulated data (Supp. Fig.4). For each replicate, we performed
10,000 simulations of sample regions for a single loci, and calculated the average
performance.

Using the simulated regions, we first evaluate the methods’ precision as the
number of replicates increases. In Fig. 2a, we observe that as the number of
replicates increases muMerge converges on the correct theoretical loci position
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(µ) more quickly than the other two methods, while still maintaining the correct
width for the region (Fig.2b).

The second test we performed sought to evaluate the accuracy of these
methods when inferring two closely spaced loci, with increasing distance between
those loci (Fig.2c). While closely spaced loci are challenging to distinguish, we
observe that muMerge smoothly transitions from calling a single inferred loci
(when µ1 and µ2 are too close to be resolved) to two distinct loci. In contrast,
the merge and intersect methods show abrupt transitions that follow increasingly
poor ROI width estimates (Fig.2d).

3.3 Transcription Factor Enrichment Analysis
Armed with the defined set of ROIs, the goal of TFEA is to determine if a
given TF motif shows positional enrichment preferentially at regions with higher
differential signal. Positional enrichment is consistent with the TF contributing
to observed alterations. In prior work, we assessed the enrichment of motifs
relative to positions of RNA polymerase initiation using a co-occurrence metric
referred to as a motif displacement score (MD-Score; see Supp. Fig.5 for full
details)[6]. Unfortunately, the MD-Score approach not only ignored alterations
in transcript levels (See Supp. Fig.6) but also utilized an arbitrary distance
threshold that classified motif proximity in a binary fashion.

To include transcript levels into the metric, we can rank ROIs by differential
signal (e.g. transcription) before subsequently performing motif displacement
calculations within these regions. The simplest approach to this problem is to
compare the MD-Scores between the set of differentially transcribed regions and
regions whose transcription is unchanged, a method we refer to as the differential
motif displacement analysis (MDD, see Supp. Fig.7 for full details)[52, 24].
Unfortunately, the MDD method introduces an additional arbitrary threshold
to classify regions as differentially transcribed or not and still uses the distance
threshold set by the MD-Score approach.

In TFEA, we sought a non-binary enrichment metric that accounts for not
only the underlying changes in transcription but also the positional enrichment
of the motif (Fig.1). We begin by leveraging the statistically robust, gold
standard DE-Seq package[2, 41] to rank regions based not only on the differential
p-value but also the direction of fold change. Each region of interest then
contributes positively to the enrichment curve in a weighted fashion. These
weights are determined by the distance of the motif to the reference point using
an exponential function to favor closer motifs. The subsequent enrichment score
(E-Score in Fig. 1) is proportional to the integrated difference between the
observed and background enrichment curves, calculated as the area under the
curve (AUC) in Fig. 1 (see Eq. 8 for precise definition). The background (null)
enrichment curve assumes uniform enrichment across all ROIs, regardless of
differential signal.

By default, TFEA accounts for the known GC bias of enhancers and promoters
by incorporating a correction to the enrichment score (Supp. Fig.8). Once
E-Scores for all TFs have been calculated, we fit a linear regression to the
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distribution of these scores as a function of motif GC-content. Corrected E-
Scores are then calculated from the observed E-Score with the y-offset observed
from the linear regression fit (see Eq. 11). This GC bias correction can be
optionally turned off.

Subsequently, we assess the significance of the enrichment score by comparison
to randomized ROI order, similar to GSEA[56]. To this end, we generate a null
distribution of enrichment scores from random permutations, shuffling the rank
order of regions and recalculating the E-Score for each shuffled permutation.
The final significance of the enrichment score is then calculated from the Z-score,
using the Bonferroni correction to account for multiple hypothesis testing. In this
manner, TFEA provides a statistically robust and principled way of calculating
the motif enrichment that accounts for both differential transcription and motif
position in a manner that does not require arbitrary cutoffs.

3.4 Differential transcription signal improves motif infer-
ence over positional information alone

To assess the effectiveness of the TFEA method, we first compared its per-
formance to both the MD-Score[6] and MDD-Score[52, 24] approaches. We
examined a dataset in which a 1 hr Nutlin-3a treatment of HCT116 cells is used
to activate TP53[1]. For all methods, sites of RNA polymerase loading and
initiation were determined from GRO-seq data[1] using the Tfit algorithm[7] and
combined using muMerge to identify ROIs. For all methods, the significance
cutoff utilized was determined by comparing within treatment replicates (e.g.
DMSO to DMSO) and identifying the cutoff at which no changes are detected
(see Supp. Fig.9). Using these per method cutoffs, we recover TP53 from all three
approaches (Fig. 3a). Notably, by including differential transcription information,
the signal to noise ratio of TP53 detection is significantly improved—modestly
in the case of MDD and dramatically for TFEA.

We next sought to determine whether TFEA could infer the responsible TF
when the underlying changes in transcription were predominantly alterations in
existing transcript levels. For this test, we relied on the fact that TP53 response
in epithelial cells depends on the TP53 family member TP63[32]. Because
TP53 and TP63 have nearly identical motifs, we reasoned that the presence
of a constitutively active TP63 would result in elevated basal transcription
proximal to TP53/TP63 motifs. To test this hypothesis, we performed PRO-seq
on MCF10A cells after 1 hour treatment of either DMSO (control) or Nutlin-3a,
and applied all three methods to the resulting data.

Consistent with the constitutive activity of TP63, we observed no change in
the TP53 motif by MD-Score analysis (Figure 3b, left). This is due to a larger
fraction of ROIs having pre-existing transcription prior to Nutlin-3a exposure in
MCF10A relative to HCT116 cells (Figure 3c-e, Supp. Fig.10). While the MDD-
Score method recovers TP53 (Fig.3b, middle), TFEA significantly improves the
signal of the TP53 motif relative to the distribution of all other motifs (Fig.3b,
right). For more detailed analysis of TP53 after Nutlin-3a in HCT116 and
MCF10A, see Supp. Figs 11 and 12.
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3.5 TFEA improves motif enrichment detection by incor-
porating positional information

We next sought to quantify the performance of TFEA with varying degrees
of signal, background, and positional information. As a reference point, we
leveraged the widely used MEME-Suite component AME, which quantifies motif
enrichment by fitting a linear regression to ranked ROIs as a function of motif
instances (Supp. Fig.13) [45]. To benchmark the two methods, we required
biologically representative data sets with known motif enrichment so that error
rates could be readily calculated. To this end, we utilized the sites of RNA
polymerase initiation detected in untreated GRO-seq datasets of HCT116 cells[1]
as the background ROIs. These regions were arbitrarily ordered to mimic a
pattern of differential transcription. Subsequently, specific instances of the TP53
motif were generated from the position specific scoring matrix obtained from
the HOCOMOCO database[33] and embedded via sequence replacement into
the ordered ROI list.

We then varied the number of motifs across ROIs to simulate distinct signal
to noise ratios and assess the accuracy of both TFEA and AME (Supp. Fig.14).
Since the significance cutoff thresholds chosen for each method greatly influence
the subsequent results, we first measured the mean false positive rate (FPR) and
mean true positive rate (TPR) across tests of varying signal and background
(Figure 4a). We found that AME detected many false positives (defined as all
motifs besides TP53) at loose threshold cutoffs and therefore chose a strict cutoff
of 1e-30 for AME. TFEA on the other hand, had a very low FPR even at loose
thresholds with the TPR decreasing as the cutoff became stricter. We therefore
chose a cutoff of 0.1 for TFEA. We next calculated an F1-Score based on the
number of times each method correctly recovered the TP53 motif (and no other
motifs) out of the 10 simulations for each test (Fig.4b).

We first measured F1-Scores for AME and TFEA with varying relative
amounts signal and background (Figure 4b). We found that at high background
levels (above 80%), AME was no longer able to detect the enrichment of TP53.
TFEA on the other hand, was able to detect TP53 even at high background
levels by incorporating positional information. Computing the differential F1-
Scores between the two methods (Figure 4c) shows that TFEA performs well in
cases where AME detects no enrichment of TP53 (26% of cases), whereas AME
outperforms TFEA in 21% of cases.

To further determine how TFEA handles the loss of positional information, we
chose the highest signal level tested and altered the variance (standard deviation
of the signal position) and the background level (Figure 4d). As expected, AME
shows consistent behavior regardless of the positional information of the motif.
In contrast, TFEA is able to distinguish signal with differing levels of positional
localization. In the extreme case of no positional localization (motifs embedded
with a uniform distribution), TFEA performs only slightly worse than AME
(Figure 4e).

Additionally, we sought to benchmark the runtime performance and memory
usage of TFEA against AME. Here we leverage a first order Markov model (from
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untreated DMSO samples[1]) to simulate increasing numbers of ROIs as input.
Analyzing the core collection of HOCOMOCO TF motifs (n=401), we found that
AME runtime increased exponentially while TFEA runtime increased linearly
with a single processor (Supp. Fig.15a). Importantly, TFEA can utilize parallel
processing leading to significantly faster runtimes. In terms of memory usage,
although TFEA consumes more memory than AME, even in the worst case of
100,000 input regions, TFEA’s memory footprint is less than 1Gb and therefore
can still be run on a local desktop computer (Supp. Fig.15b).

Finally, we sought to examine the performance of TFEA and AME on real
data and determine whether TFEA could identify biologically relevant signal
in a dataset other than nascent RNA sequencing. Cap analysis of gene expres-
sion (CAGE) precisely defines the transcription start site (TSS) of individual
transcripts[53, 21, 3]. We analyzed a CAGE-seq timeseries dataset from the
FANTOM consortium[21, 9]. In this dataset, human derived monocytes were
differentiated into macrophages and treated with lipopolysaccharide (LPS), a
proxy for bacterial infection. Differential expression analysis was performed on
each LPS time point comparing treatment to control to obtain a list of ranked
ROIs.

TFEA recovered the immediate innate immune response, exemplified by the
most rapid reported (within 15 min) activation of NF-κβ (TF65/RELA, RELB,
and NFKB1; Figure 5a). Additionally, TFEA temporally resolved the known
secondary response that arises at later time points, which includes the activation
of the IFN-stimulated gene factor 3 (ISGF3)[46] complex, comprising IRF9 and
STAT1/2[48]. In contrast, AME did not recover the innate immune response at
the earliest time point and provided less temporal resolution when distinguishing
primary and secondary responses.

Concurrent with the immediate innate immune response, TFEA identified
a set of TFs that exhibit a rapid decrease in E-Scores including ELF1/2[17],
TYY1 [30][63], USF1/2[31], and GABPA[62]. The decreased E-Score set includes
TYY1, a transcriptional inhibitor known to be activated directly by NFκB [54].
Reduction in the E-Score of TYY1 illustrates an important aspect of TFEA—
namely, that it cannot distinguish between the activation of a repressor or the
loss of an activator. Ultimately, we show with this proof of principle that if the
cellular response to LPS was not known apriori, we could temporally resolve
key aspects of the regulatory network using TFEA and dense time series CAGE
data (Figure 5b and Supp. Figure 16).

3.6 TFEA works on numerous regulatory data types in-
cluding ChIP and accessibility data

Though we developed muMerge and TFEA for the purpose of inferring TF
activity from high resolution data on transcription initiation, this procedure can
in principle be used on any assay that produces a localized readout on regulation,
such as chromatin immunoprecipitation (ChIP) or DNA accessibility. Although
these data sets are less precise and are not direct readouts of polymerase initiation,
the popularity of these data make them readily available. To determine whether
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TFEA could adequately infer TF activity from these datasets, we analyzed
a timeseries dataset from ENCODE[19, 44] in which cells were treated with
dexamethasone (Dex)—a known activator of the glucocorticoid receptor (GR).

TFEA correctly identifies GR as the key responding TF from the datasets
that most closely capture RNA polymerase initiation (including p300, H3K27ac,
and DNA accessibility), and does not identify GR for the transcriptionally
repressive mark H3K9me3 (Figure 6a)[40, 44]. Surprisingly, the effects of p300
and H3K27ac are seen rapidly, as soon as 5min after dexamethasone treatment.
As expected, H3K27ac deposition is temporally lagged behind its canonical
acetyl-transferase p300[29, 60, 51]. Additionally, the enhancer marks H3K4me1
and H3K4me2 show strong enrichment of GR by 30min but the promoter mark
H3K4me3 shows only modest enrichment, further supporting the finding that
GR binds primarily at enhancers[44] (Supp. Fig. 17). Using the diversity of data
types and dense time series, we can construct a temporally resolved mechanism
of how GR effects changes in transcription (Figure 6b and c). In short, TFEA’s
results for this array of accessibility marks are exactly consistent with biological
expectation.

3.7 Discussion
We present here transcription factor enrichment analysis (TFEA), a computa-
tional method that measures the global correlation between the position of a TF
motif and its differential effects on transcription across the genome, following
any given perturbation. We show that TFEA outperforms existing enrichment
methods when positional data is available and is comparable to these methods in
the absence of positional signal. Further, we show that TFEA, when leveraged
with high resolution time series data, can provide mechanistic insight into the
order of regulatory events responding to the perturbation.

A key aspect of TFEA is the incorporation of both positional and differential
information in calculating TF activity. Most current motif enrichment algorithms
use solely differential information, likely due to the poor positional resolution
on historically popular techniques such as ChIP-Seq. Methods such as nascent
transcription and CAGE provide higher resolution on the position of RNA
polymerase initiation genome wide. To leverage the improved resolution of these
methods, we introduce muMerge, a statistically principled way of combining
ROIs across replicates and conditions that better captures position and length-
scale information as compared to standard merging or intersecting approaches.
The presence of improved positional information greatly increases the ability to
detect biologically relevant TFs.

Although TFEA makes significant improvements in detecting the activity
of TFs in response to perturbations, there are several aspects of this approach
that could be improved. TFEA is dependent on having a collection of known
motifs, yet some TFs have no known motif or one of poor quality. However, over
time, the quality and numbers of TFs in the major databases have dramatically
improved[38]. Furthermore, TFEA can only distinguish between paralogous
motifs to the extent that they have distinct motifs. Importantly, motif scanning
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still requires a fixed cutoff within TFEA. Future iterations of the method
could conceivably eliminate this cutoff, but likely this will substantially increase
runtimes for what may only be minor gains in performance. Genome-wide, sites
of transcription initiation (both promoters and enhancers) show substantial GC
bias. Often short high GC content motifs, which are exceedingly common in
ROIs, appear to show significant changes with a perturbation. While we made
some effort to account for this using linear regression, this approach is empirical
and a more principled approach is desired.

Despite these caveats, TFEA recovers known TF dynamics across a broad
range of data types in response to a variety of perturbations. Inevitably, the
data type utilized influences the detection ability of TFEA. For example, while
CAGE data provides precise resolution on the TSS, it must be deeply sequenced
to reliably detect enhancer associate transcription events[15]. Consequently, TFs
that predominantly regulate enhancers will likely be less detectable in poorly
sequenced CAGE data. On the other hand, some methods are more capable of
detecting immediate changes in RNA polymerase initiation, allowing for shorter
more refined time points. As demonstrated here, TFEA is able to leverage the
information from each data set by incorporating both its distinct positional and
differential signal. Applying TFEA to diverse data types, using dense time series,
can uncover a detailed mechanistic understanding of the key regulators that
enact the cell’s dynamic response to a perturbation.

4 Online Methods
4.1 TFEA
We have developed Transcription Factor Enrichment Analysis (TFEA) to identify
transcription factors that demonstrate significant differential activity following
a perturbation. It has been observed that, during a perturbation, the binding
sites of active transcription factors co-localize with regulatory regions that
exhibit strong differential RNA polymerase initiation[6]. TFEA leverages this
observation to calculate an enrichment score that quantifies this activity and an
associated significance for each TF.

Here we describe in detail the key steps of the TFEA pipeline (shown in
Figure 1)—specifically, for each TF we describe how the main input (regions of
interest—ROIs) are defined, how the ROIs are ranked, and how the enrichment
score is subsequently calculated and GC-corrected.

4.1.1 Defining the Regions of Interest with muMerge

One input required for TFEA is a common set of regions of interest (ROIs)
on which all experimental samples are evaluated. Each region (consisting of a
genomic start and stop coordinate) represents a reference point (the midpoint
of the region) and an uncertainty on that reference point (the width of the
region). Biologically, the reference point is the presumed transcription start site.
Regions can be derived from a number of data types, with varying degrees of
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precision. For example, CAGE data provides a highly precise measure of a TSS
while nascent sequencing is slightly less precise. Other assays like ChIP (for
RNA polymerase or H3K4 methylation) or ATAC have much lower positional
precision.

Regardless of the assay, most methods for identifying such regions fit each
dataset independently (e.g., a peak caller for ChIP data or Tfit for identifying
sites of bidirectional transcription in nascent data). As a result, these regions will
not be exactly consistent between samples (e.g. some sites are condition specific
and even for shared sites boundaries may vary). Therefore, a method is needed
to combine the regions from all the samples into a consensus set. To this end, we
developed a probabilistic, principled method (hereafter referred to as muMerge)
for determining consensus regions of interest, informed by the corresponding
regions predicted from individual samples. muMerge was developed specifically
for determining the set of consensus RNA polymerase loading and initiation
sites observed in nascent sequencing data (by combining bidirectional calls from
any number of samples) but it can also be applied to peak calls generated from
numerous other regulatory data types (e.g., ChIP, ATAC, or histone marks).

The basic assumption made bymuMerge is that each sample is an independent
observation of an underlying set of hypothetical loci—where each hypothetical
loci has a precise critical point µ, of which the corresponding sample region
([start, stop]) is an estimate. We assume this loci is more likely to be located at
the center of the sample region than at the edges, so muMerge represents the
sample region by a standard normal probability distribution, centered on the
region, whose standard deviation correlates with region width.

To calculate a best estimate (the ROI) for a given loci, muMerge calculates
a joint probability distribution across all samples from all regions that are in the
vicinity of the loci. This joint distribution is calculated by assuming:

1. replicates within a condition are independent and identically distributed
(i.i.d.)

2. replicates across conditions are mutually exclusive (i.e., a sample cannot
represent multiple experimental conditions)

Hence muMerge computes the product of the normal distributions across all
replicates within a condition and then sums these results across all conditions.
The best estimates for the transcription loci µ are taken to be the maxima of
this joint distribution—these are the ROI positions. Finally, to determine an
updated width, or confidence interval, for each ROI, muMerge assumes that
the original sample regions whose midpoints are closest to the new position
estimate are the most informative for the updated width. Thus the ROI width
is calculated by a weighted sum of the widths of the original regions, weighted
by the inverse of the distance to each one.

muMerge mathematical description: Principally, muMerge makes two
probabilistic assumptions about sequenced samples:

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.01.25.919738doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.25.919738
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Assumption A: Replicate samples are independent measurements of
identical experimental conditions and therefore any corresponding sample
regions within them are independent and identically distributed (i.i.d.) ob-
servations of a common random variable (i.e., the underlying hypothetical
loci).

• Assumption B: Cross-condition samples are independent measurements
of mutually exclusive experimental conditions and therefore any sample
regions within them are observations of (potentially) disjoint random
variables.

These two assumptions inform how muMerge accounts for each individual sample,
when computing the most likely ROI for any given genomic location (see below
for further details).

To start, the two inputs to muMerge are a set of regions for each sample
(genomic coordinates: {[start, stop], ...}) that annotate the sequenced features
present in the dataset, as well as an experimental conditions table that indicates
the sample groupings (which samples are from which experimental condition).
With these inputs, muMerge performs the following steps to compute a global
set of ROIs:

1. Group overlapping sample regions, processing each group one at a time

2. Express each sample region as a positional probability distribution

3. Generate a joint distribution

4. Identify maximum likelihood ROI positions from the joint distribution

5. Compute ROI widths via weighted sum

6. Adjust the sizes of overlapping ROIs

7. Record final ROIs for the given group

8. Repeat 2–8 for all remaining groups

First, from the input samples, muMerge groups all sample regions that overlap
in genomic coordinate (a region is grouped with all other regions it overlaps
and, transitively, with any regions overlapping those). We denote a single group
of overlapping regions as Gr. This grouping is done globally for all samples,
resulting in a set of grouped regions G = Gr, such that every sample region is
contained in exactly one grouping Gr (i.e., Gr ∩ Gs = ∅, ∀ r 6= s). Then each
group of regions, Gr, is processed individually, as the remainder of this section
describes. For a given group, we denote each sample region within it as the
2-tuple (µk, σk)ij ∈ Gr, where µk is the genomic coordinate (base position) of
the center of the region and σk is the region half-width (number of bases). The
indices denote the k-th sample region for replicate j in condition i.
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muMerge then processes the regions in Gr as follows. Each region within the
group is expressed as a standard normal distribution (φ) as a function of base
position x,

(µk, σk)ij → p
(k)
ij (x) = φ

(
x− µk

ρ σk

)
(1)

where ρ is the “width ratio”— the ratio of the half-width sample region to the
standard deviation of the normal distribution—with a default of ρ = 1 (user
option). This distribution represents the probability of the location for the
underlying hypothetical loci (µ), of which (µk, σk)ij is an estimate. For those
samples with no regions within Gr, the probability distribution is expressed as a
uniform, p(k)

ij (x) = 1/∆ where ∆ is the full range encompassed by the overlapping
sample regions. In other words, we assume that if the sample contains no data
to inform the location of the underlying loci at that location, then all positions
are equally likely for that sample. muMerge then calculates a joint distribution
(P(x)) by combining all p(k)

ij (x) for the group as follows:

P(x) =
∑

i

∏
j

(∑
k

p
(k)
ij (x)

) (2)

Here we are calculating the product of the replicate distributions (index j—
those within a given experimental condition), consistent with our probabilistic
assumption A, and the sum of the resulting distributions across experimental
conditions (i index), consistent with our probabilistic assumption B. Though
this function is not a normalized probability distribution, we are only interested
in relative values of P(x). Specifically, we are interested in the maxima of this
function. We identify the set of maxima (which we denote {µ̂k}) and rank them
by the function value for each position, P(µ̂k). We then keep the top M + 1
from the ranked set, where M is the median number of regions per sample in Gr

(user option). This is our final set of estimates on the hypothetical loci positions,
µ—i.e., the positions of our ROIs for group Gr.

For each µ̂k, we then calculate a width for the resulting ROI. We do so for
each by calculating a weighted sum over the set of all original sample regions in
the group, {(µk, σk)ij}, weighted by the inverse of the distance from the final
position estimate to each µk. Thus the final ROI half-width, σ̂k, is calculated as
follows:

σ̂k =
∑

i

σi

|µ̂k − µi|+ 1

/∑
i

1
|µ̂k − µi|+ 1 (3)

where i indexes all sample regions in the group Gr = {(µk, σk)ij}. Our rationale
is that the width of those sample regions that are closer to the ROI position µ̂k,
are more informative for the ROI width and therefore are given a larger weight.
This results in a set of ROIs {(µ̂k − σ̂k, µ̂k + σ̂k)}.

Finally, we determine if there is overlap between any of the regions in this set
of ROIs. If so, any two overlapping regions are reduced in size, symmetrically
about their centers, until they no longer overlap. This is done so that any
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genomic position can be uniquely associated with an ROI. The final ROIs for
the group are then written to an output file to be used downstream in the
pipeline. This process is repeated for all groups of overlapping sample regions
(i.e., ∀Gr ∈ G).

4.1.2 Ranking ROIs

With a set of ROIs identified, the next step is to rank them by differential signal.
Because the goal of TFEA is to identify transcription factors that are enriched
during a perturbation and because the ROIs are associated with transcription fac-
tor activity, it follows that a ranking based on the differential signal at the ROIs
would capture the regulatory behavior of the TF. For different types of datasets,
the differential signal represents different biological processes—differential tran-
scription for nascent (PRO-seq or GRO-seq), differential accessibility (DNAse or
ATAC-Seq), and differential occupancy for ChIP. There are a number of ranking
metrics one could use that are based on these differential signals—for example,
difference in coverage, log-fold change, or a differential significance (p-value).
For TFEA, we chose to rely on a well-established tool (DESeq2 ) to perform
our ranking, since it was designed to model the statistical variation found in
sequencing data[41].

For a set of ROIs, TFEA calculates read coverage for each replicate and
condition using bedtools multibamcov (version 2.25.0)[50]. TFEA then inputs
the generated counts table into DESeq2 [41] (or DESeq[2] if no replicates are
provided) to obtain differential read coverage for all ROIs. By default, these
regions are then ranked by the DESeq2 computed p-value, separated by positive
or negative log-fold change (alternative user option to rank the ROIs by fold-
change). In other words, the ROIs are ranked from the most significant positive
fold-change to the most significant negative fold-change.

4.1.3 Identifying location of motif instances

Accurately identifying the locations of motif instances relative to each ROI is a
critical step in the TFEA pipeline. By default TFEA uses the motif scanning
method FIMO, which is a part of the MEME suite (version 5.0.3)[23]. FIMO
represents each TF by a base-frequency matrix and uses a zero-order background
model to score each position of the input sequences. For each ROI, we scan
the 3kb sequence surrounding the ROI center (µ̂i ± 1.5kb). This 3kb window
was chosen primarily to reduce computation time and is also consistent with
the window used for the MD-score method[6]. For each TF, we utilize a scoring
threshold of 10−6 and keep the highest scoring position (denoted mi), in the
event more than one motif instance is identified. If no position score above
the threshold, then no mi is recorded for the ROI. Our background model is
determined by calculating the average base frequency over all 3kb regions. For
each TF, we use the frequency-matrix from the HOCOMOCO database[33] with
a default psuedo-count of 0.1.
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4.1.4 Enrichment Score

With the motif instances identified for each of the ranked ROIs, we now detail
how TFEA calculates the enrichment score (“E-Score”—in Fig. 1) for each
transcription factor. The procedure for calculating enrichment requires two
inputs:

1. N-tuple sequence (µ̂i)—the genomic coordinates for reference points, as-
sumed to be the centers of all ROIs (e.g., consensus ROIs calculated
by muMerge), ranked by DESeq2 p-value (separated by the sign of the
fold-change).

2. Sequence (mi)—the genomic coordinates of each max-scoring motif instance
(e.g., motif loci generated by scanning with FIMO), for each ROI.

We first calculate the motif distance di for each ROI—the distance from each
µ̂i to the highest scoring motif instance mi within 1.5kb of µ̂i. If no mi exists
within 1.5kb, then di is assigned a null value (Ø) (Eq. 4).

di =
{
|µ̂i −mi|, if mi is present
Ø, if mi is not present

(4)

Next, we calculate the background distribution of motif distances. We assume
the majority of the ROIs experience no significant fold-change—namely, those
ROIs in the middle of the ranked list. Consequently, we calculate the mean,
background motif distance (Eq. 5) for those ROIs whose rank is between the
first and third quartiles of the sequence of ROI positions, (µ̂i), as follows

d̄ = mean{di | ∀ i, if Q1 ≤ i ≤ Q3 and di 6= Ø} (5)

where Q1 and Q3 are the first and third quartiles, respectively. Our assumption
is that the inter-quartile range of the sequence (µ̂i)—between indices Q1 and
Q3—represents the background distribution of motif distances for the given
transcription factor, and therefore defines the weighting scale for significant ROIs
in our enrichment calculation. We found this to be essential since the background
distribution varies between transcription factors. This variation in the back-
ground can be attributed to the similarity of a given motif to the base content
surrounding the center of ROIs. For example, in the case of RNA polymerase
loading regions identified in nascent transcription data (which demonstrate a
greater GC-content proximal to µ as compared to genomic background[6]), GC-
rich transcription factor motifs were more likely to be found proximal to each
ROI by chance and thus resulted in a smaller d̄ than would be the case for a
non-GC-rich motif.

Having calculated the mean background motif distance, we proceed to cal-
culate the enrichment contribution (i.e., weight—Eq. 6) for each ROI in the
sequence (see “Weight Calculation” in Fig. 1).

wi =
{
e−di/d̄, if di 6= Ø
0, if di = Ø

(6)
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In order to calculate the E-Score, we first generate the enrichment curve for
the given TF (solid line in “Enrichment Curve” in Fig. 1) and the background
(uniform) enrichment curve (dashed line in “Enrichment Curve” in Fig. 1). We
define the E-Score as the integrated difference between these two (scaled by a
factor of 2, for the purpose of normalization). The enrichment curve (Eq. 7),
which is the normalized running sum of the ROI weights, and the E-Score (Eq.
8) are calculated as follows:

e(i) =
∑i

k=0 wk∑N
k=0 wk

(7)

E = 2
N

∑
i

(
e(i)− i

N

)
(8)

where i is the index for the ROI rank and i/N represents the uniform, back-
ground enrichment value for the ith of N ROIs. The background enrichment
assumes every ROI contributes an equal weight wi, regardless of its ranking
position. Therefore, the enrichment curve (Eq. 7) will deviate significantly from
background if there is correlation between the weight and ranked position of the
ROIs. In this case, the E-Score will significantly deviate from zero, with E > 0
indicating either increased activity of an activator TF or decreased activity of a
repressor TF. Likewise, E < 0 indicates either a decrease in an activator TF or
an increase in a repressor TF. By definition, the range of the E-Score is −1 to
+1.

Unlike GSEA, which uses a Kolmogorov–Smirnov-like statistic to calculate
its enrichment score[56], the TFEA E-Score is an area-based statistic. GSEA
was designed to identify if a predetermined, biologically related subset of genes
is over-represented at the extremes of a ranked gene list. Therefore, the KS-like
statistic is a logical choice for measuring how closely clustered are the elements
of the subset, since it directly measures the point of greatest clustering and
otherwise is insensitive to the ordering of the remaining elements. Conversely,
because TFEA’s ranked list does not contain two categories of elements (the
ROIs) and all elements can contribute to the E-Score, we wanted a statistic
that was sensitive to how all ROI in the list were ranked—for this reason, we
chose the area-based statistic. The null hypothesis for TFEA assumes all ROI
contribute equally to enrichment, regardless of their motif co-localization and
rank. Hence the uniform background curve, to which the enrichment curve is
compared.

In order to determine if the calculated E-Score (Eq. 8) for a given tran-
scription factor is significant, we generate a E-Score null distribution from
random permutations of (µ̂i). We generate a set of 1000 null E-Scores {E′i},
each calculated from an independent random permutation of the ranked ROIs,
(µ̂i). Our E-Score statistic is zero-centered and symmetric, therefore we assume
{E′i} ∼ N (E0, σ

2
E). The final E-Score for the transcription factor is compared

to this null distribution to determine the significance of the enrichment.
Prior to calculating the E-Score p-value, we apply a correction to the E-Score

based on the GC-content of the motif relative to that of all other motifs to be
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tested (user configurable). This correction was derived based on the observation
that motifs at the extremes of the GC-content spectra were more likely to called
as significant across a variety of perturbations. We calculate the E-Scores for the
full set of transcription factors as well as the GC-content of each motif, {(gi, Ei)}.
We then calculate a simple linear regression for the relationship between the two,

b̂ = Ē − m̂ḡ (9)

m̂ =
∑n

i=1(gi − ḡ)(Ei − Ē)∑n
i=1(gi − ḡ)

(10)

EGC(g) = b̂+ m̂g (11)

where Ē and ḡ are the average E-Score and average GC-content. EGC(g) is
the amount of the E-Score attributed to the GC-bias for a motif with GC-
content g. Thus the final E-Score for the transcription factor is given by ET F =
E−EGC(gT F ), the difference between Eq. 8 and 11. If GC-content correction is
not performed, then Eq. 8 is taken to be the final E-Score. The p-value for the
final TF E-Score is then calculated from the Z-score, ZT F = (ET F − E0)/σE .

4.2 Software Availability
TFEA is available for download at https://github.com/Dowell-Lab/TFEA and
comes with muMerge integrated. Alternatively, muMerge can be downloaded
independently at https://github.com/Dowell-Lab/mumerge. Additionally, TFEA
can be utilized through the web interface at https://tfea.colorado.edu/.

4.3 Benchmarking
In order to benchmark the performance of muMerge and TFEA, we performed
a number of simulations that isolate the different parameters of muMerge and
TFEA, comparing the performance to that of some commonly used alternatives.
Here we describe how the data for each test was generated.

4.3.1 muMerge: Simulating replicates for calculation of ROIs

To test the performance of muMerge in a principled manner, we first generate
replicate data in a way that simulates the uncertainty present in individual
samples. For each replicate, we perform 10,000 simulations of sample regions for a
single loci, and calculate the average performance. For each simulation we assume
a precise position and width for the hypothetical loci and model the uncertainty
of each sample region with a binomial and Poisson distribution, respectively.
The position of each sample region, µ̂, is pulled from a symmetric binomial
distribution µ̂ ∼ B(n = 100, p = 0.5), centered at zero. The half-width of each
sample region, W , is pulled from a Poisson distribution W ∼ Pois(λ = 100).
The specific distributions utilized to generate the sample regions are as follows:
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loci estimate ≡
{
position: µ̂ ∼ µ+B(n = 100, p = 0.5)− np
half-width: σ̂ ∼ Pois(λ = 100)

(12)

Here B(·) is the binomial distribution centered at np with success probability
0.5 and variance np(1− p) = 25. Thus, the position estimator µ̂ is centered at µ.
Pois(·) is the Poisson distribution, thus, the half-width for each sample region
have mean and variance of λ = 100.

The first test consisted of inferring a single loci (located at µ = 0) from an
increasing number of replicates. A sample region for each replicate was generated
from Eq. 12. This simulation was repeated 10,000 times for each number of
replicates being combined. The methods muMerge, bedtools merge and bedtools
intersect were applied to each of the 10,000 simulations. The average error on
the midpoint (its deviation from the true loci position, µ = 0) and region width
were calculated for the regions generated from each method, averaged over all
10,000 simulations. The behavior of the average positional error and region
width as a function of number of combined replicates is shown in Fig. 2a, b.

The second test consisted of inferring two loci (µ1 = −x and µ2 = +x)
as the distance between those loci was increased (from x = 0 to 200). This
simulation was repeated 10,000 times for each value of x (with 3 replicates). The
distribution of the inferred positions and widths were plotted, using muMerge,
bedtools merge and bedtools intersect. The distribution of positions and widths
as a function of the distance between µ1 and µ2 are shown in Fig. 2c, d.

4.3.2 TFEA: Simulated motif enrichment

To generate test sequences for benchmarking, we randomly sampled 10,000
sequences from detected bidirectionals in untreated HCT116 cells [1]. We then
embedded instances of the TP53 motif in the highest ranked sequences with
a normal distribution with µ = 0 and σ = 150 (representative of signal). To
simulate background noise, we embedded instances of the TP53 motif with
a uniform distribution to a percentage of the remaining sequences (chosen
randomly). To calculate an F1-Score, for each scenario of varying signal to
background we generated 10 simulations. We then calculated the harmonic
mean of precision and recall with the aggregate p-values of all 10 simulations
measuring all 401 TF motifs within the HOCOMOCO database (total 4010 TF
motifs). True positives, in this case, were the 10 instances of the TP53 motif
that should be significantly enriched. Any other significantly enriched TF motifs
were considered false positives. We performed two sets of tests: 1) varying the
amount of signal and the amount of background and 2) varying the standard
deviation of the highest signal tested (10% signal; with the last scenario being
uniform signal distribution) and the amount of background.
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4.3.3 TFEA: Testing compute performance

The base (ATGC) content of regulatory regions was calculated from the sites of
RNA polymerase initiation inferred in HCT116 DMSO (using Tfit; described in
[6]). One million 3kb sequences were generated based on the empirical probability
of the positional base composition. We then randomly sampled an increasing
number of sequences (up to 100,000) to be used in the computational processing
tests. Run time and compute resources were measured using the Linux time
command on a single node of a 70-node mixed-platform high-memory compute
cluster running CentOS 7.4. To compute the runtime for a single processor,
we added the systime and usertime. To compute memory usage for a single
processor, we reran TFEA using only a single processor.

4.4 Datasets Utilized
We generated PRO-seq libraries for MCF10A cells with and without Nutlin-3a.
Additionally, a number of publicly available datasets were utilized, including:
Allen 2014 (Nutlin-3a, GC-correction), ENCODE (GGR: Reddy - Dex/GR) and
FANTOM (Baillie - Macrophage/LPS). See supplemental material for a full list
of accession codes.

4.4.1 PRO-Seq in MCF10A

Cas9RNP formation: sgRNA was formed by adding tracrRNA (IDT cat#
1072533) and crRNA (TP53 exon 2, positive strand, AGG PAM site, sequence:
GATCCACTCACAGTTTCCAT) in a 1:1 molecular ratio together and then
heating to 95◦C and then allowing to slowly cool to room temperature over 1
hour. Cas9RNP was then formed by adding purified Cas9 protein to sgRNA at
a ratio of 1:1.2. 3.7µL of purified Cas9 protein at 32.4µM was added to 2.9µL
of 50µM sgRNA. This was then incubated at 37◦C for 15 minutes, and used at
10µM concentration within the hour.

Donor Plasmid Construction: Vector Builder was used to construct plas-
mid. Insert was flanked by 1.5kb homology arms, and mCherry was inserted as
a selection marker.

CRISPR/Cas9 Genome Editing: MCF10A cells cultured in DMEM/F12
(Invitrogen #11330-032) media containing 5% horse serum (LifeTech #16050-
122), 20ng/mL EGF ((Peprotech #AF-100-15), 0.5µg/mL Hydrocortisone (Sigma
#H0888-1g), 100ng/mL Cholera toxin (Sigma #C8052-2mg), 10µg/mL insulin
(Sigma #I1882-200mg), and 1x Gibco 100x Antibiotic-Antimycotic (Fisher Sci,
15240062) penicillin-streptomycin. Cells were split 24 hours prior to experiment
and grown to approximately 70% confluency on a 15cm plate. Media was
aspirated, and the cells were washed with PBS. 4ml of trypsin per plate were used
to harvest adherent cells, after which 8mL of resuspension medium (DMEM/F12
containing 20% horse serum and 1x pen/strep) was added to each plate to
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neutralize the trypsin. Cells were collected in a 15ml centrifuge tube and spun
down at 1,000xg for 5 minutes, then washed in PBS and spun down again at
1,000xg for 5 minutes. Cells were counted using a hemocytometer and 5x105

cells were put in individual 1.5mL eppedorph tubes for transfection. Cells
were re-suspended in 4.15µL Buffer R, 10µM Cas9RNP (6.6µL), 1µg WTp53
donor plasmid (1.25µL). Mixture was drawn up into a 10µL Neon pipet tip,
electroporated using the Neon Transfection Kit with 10µL tips (1400V, 20ms
width, 2 pulse). Transfected cells were then pipetted into 2mL of antibiotic free
media. After 1 week of recovery, cells were then single cell sorted into 96 well
plate based on mCherry expression. Clones were then verified with sequencing,
PCR, and western blot.

Nuclei Preparation: MCF10A WTp53 cells were seeded on three 25cm dishes
(1x107 cells per dish) for each treatment 24 hours prior to the experiments ( 70%
confluency at the time of the experiment). Cells were treated simultaneously
with 10µM Nutlin3a or 0.1% DMSO for 1 hour. After treatment, cells were
washed 3x with ice cold PBS, and then treated with 10 ml (per 15 cm plate)
ice-cold lysis buffer (10 mM Tris–HCl pH 7.4, 2 mM MgCl2, 3 mM CaCl2, 0.5%
NP-40, 10% glycerol, 1 mM DTT, 1x Protease Inhibitors (1mM Benzamidine
(Sigma B6506-100G), 1mM Sodium Metabisulfite (Sigma 255556-100G), 0.25mM
Phenylmethylsulfonyl Fluoride (American Bioanalytical AB01620), and 4U/mL
SUPERase-In). Cells were centrifuged with a fixed-angle rotor at 1000xg for 15
min at 4◦C. Supernatant was removed and pellet was resuspended in 1.5 mL lysis
buffer to a homogenous mixture by pipetting 20-30X before adding another 8.5
mL lysis buffer. Suspension was centrifuged with a fixed-angle rotor at 1000xg
for 15 min at 4◦C. Supernatant was removed and pellet was resuspended in 1
mL of lysis buffer and transferred to a 1.7 mL pre-lubricated tube (Costar cat.
No. 3207). Suspensions were then pelleted in a microcentrifuge at 1000xg for 5
min at 4◦C. Next, supernatant was removed and pellets were resuspended in 500
µL of freezing buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mM MgCl2, 0.1 mM
EDTA, 4U/ml SUPERase-In). Nuclei were centrifuged 2000xg for 2 min at 4◦C.
Pellets were resuspended in 100 µL freezing buffer. To determine concentration,
nuclei were counted from 1 µL of suspension and freezing buffer was added to
generate 100 μL aliquots of 10x106 nuclei. Aliquots were flash frozen in liquid
nitrogen and stored at −80◦C.

Nuclear run-on and RNA preparation: Nuclear run-on experiments were
performed as described (Mahat et al., 2016) with the following modifications:
the final concentration of non-biotinylated CTP was raised from 0.25 µM to 25
µM, a clean-up and size selection was performed using 1X AMPure XP beads
(1:1 ratio) (Beckman) prior to test PCR and final PCR amplification, and the
final library clean-up and size selection was accomplished using 1X AMPure XP
beads (1:1 ratio) (Beckman).
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Sequencing: Sequencing of PRO-Seq libraries was performed at the BioFron-
tiers Sequencing Facility (UC-Boulder). Single-end fragment libraries (75 bp)
were sequenced on the Illumina NextSeq 500 platform (RTA version: 2.4.11,
Instrument ID: NB501447), demultiplexed and converted BCL to fastq for-
mat using bcl2fastq (bcl2fastq v2.20.0.422); sequencing data quality was as-
sessed using FASTQC (v0.11.5) and FastQ Screen (v0.11.0), both obtained from
https://www.bioinformatics.babraham.ac.uk/projects/. Trimming and filter-
ing of low-quality reads was performed using BBDUK from BBTools (v37.99)
(Bushnell, n.d.) and FASTQ-MCF from EAUtils (v1.05) [5].

Availability: MCF10A PRO-seq data is available in GEO with accession
numbers GSE142419.

4.4.2 Data Processing

GRO/PRO-Seq data: All GRO-Seq and PRO-Seq data were processed using
the Nextflow[20] NascentFlow pipeline (v1.1 [59]) specifying the ‘–tfit‘ flag.
Subsequent Tfit bed files from all samples were combined with muMerge to
obtain a consensus list of ROIs.

ENCODE data: Raw bed and bam files were downloaded directly from
ENCODE (encodeproject.org). These files were inputted directly into the TFEA
pipeline for processing and analysis. AME analysis was performed on the ranked
ROI list produced as an optional output from TFEA.

FANTOM data: Raw expression tables for the Macrophage LPS time series
were downloaded using the table extraction tool (TET) from the FANTOM Se-
mantic catalogue of Samples, Transcription initiation, And Regulations (SSTAR;
http://fantom.gsc.riken.jp/5/sstar/Macrophage_response_to_LPS). Because
the annotations for regions within hg38 counts tables contained "hg19", we
performed this analysis in the hg19 genome with the hg19 counts table instead
of the hg38 counts table. We then performed DE-Seq analysis (since there were
no replicates) on each time point compared to control and ranked the annotated
regions within the counts table similar to Figure 1. We then ran TFEA and
AME with default settings on each of the three donors. We displayed only data
for donor 2, as this sample had the most complete time series data.

Clustering FANTOM data: We retained TFs with at least 15 significant
(p-adj < 0.1) time points (representing 2/3 of all timepoints) from the TFEA
output and applied K-means clustering. Clustering of the time series data was
performed on the first two hours only, in order to distinguish the early responses
to LPS infection. K-means clustering was conducted using the Hartigan and
Wong algorithm with 25 random starts and 10 iterations for k = 3 [27]. The
optimal number of clusters was selected using the Elbow method [13].
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String database analysis: Protein names from TFs that were found to be
significant in at least 15 time points were taken from the HOCOMOCO database.
These proteins were inputted directly into the String database (https://string-
db.org). Clusters were formed by selecting the MCL clustering option with an
inflation parameter of 3 (default). Network edges were selected to indicate the
strength of the data support. Finally, nodes disconnected from the network were
hidden.
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5 Figure Captions

Figure 1: TFEA calculates motif enrichment using differential and
positional information. The TFEA pipeline requires, minimally, a ranked
list of ROIs. Optionally, a user may provide raw read coverage and regions, in
which case TFEA will perform ranking using DE-Seq [2, 41] analysis. With a
set of ranked ROIs, TFEA analyzes motif enrichment for each motif provided
as a .meme database. For each motif, positions are determined by FIMO scans
and an enrichment curve is calculated by weighting each motif instance (using
an exponential decay function) and adding this value to a running sum. An
E-Score is calculated as 2 * the AUC, e.g. the area under the curve between the
running sum and a uniform background (line). For statistical significance, the
ROI rank is shuffled 1000 times, and E-scores are recalculated for each shuffle.
The true E-Score is then compared to the distribution of E-Scores obtained from
the shuffling events. For example output of TFEA see Supp Fig 1 and Supp Fig
2.

Figure 2: muMerge precisely combines multiple samples into consensus
ROIs. Here we show a comparison of three methods (bedtools merge, bedtools
intersect, and muMerge) for generating ROIs from multiple samples (See Supp
Fig 4 for schematic of each method). Test 1 demonstrates the position and
width accuracy of a calculated ROI for a single loci, µ, as the number of
sample replicates are increased (from one to ten). With muMerge (a) the
positional uncertainty decreases quickly while the (b) estimated ROI width
remains relatively constant. Standard error, indicated by shading, is less than
the line width. Test 2 demonstrates the precision of the calculated ROI for two
closely spaced loci, µ1 and µ2, as the spacing between them is increased. In
this case, muMerge (c) transitions from a single loci to two distinct loci more
gradually and (d) the estimated ROI widths do not deviate from the expected
value. In all cases, expected value and variance for simulations is indicated by
grey lines and shading, respectively. For further detail on the results of Test 1
and 2 and how the simulations were performed, see Supp Fig 4 and methods
section 4.3.1.
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Figure 3: TFEA improves the detection of p53 following Nutlin-3a
treatment. (a) Application of the MD-Score, MDD-Score, and TFEA to GRO-
Seq data in HCT116 cells with 1hr Nutlin or DMSO treatment [1]. Cutoffs
determined by comparing untreated replicates (see Supp Fig 9). (b) Application
of the MD-Score, MDD-Score, and TFEA to PRO-Seq data in MCF10A cells
with 1hr Nutlin or DMSO treatment. (c) Motif displacement distribution (as
heatmap) of TP53 motif instances within 1.5kb of all ROI in either DMSO
(blue) or Nutlin-3a (red). (d) Percentage overlap of TP53 motifs within 150bp
in DMSO and Nutlin-3a ROIs. (e) Similar to (c) but in MCF10A cells.

Figure 4: TFEA balances TF positional and differential signal. (a)
Optimal cutoffs are determined using the mean true positive rate (TPR; green)
and mean false positive rate (FPR; orange) across different signal and background
levels as a function of varying the threshold cutoff. (b) F1-score of AME and
TFEA for varied signal and background, using optimal AME cutoff 1e-30 and
TFEA cutoff 0.1. (c) Difference in F1-score across all simulations (n=121).
TFEA outperforms AME in 26% of cases (red) whereas AME outperforms TFEA
in 21% of cases (blue). (d) F1-scores and (e) difference in scores for highest
signal tested (10% signal), now varying the standard deviation of the signal and
background. See Supp Fig 14 for more details on simulations.

Figure 5: TFEA dissects the temporal dynamics of infection. (a) Anal-
ysis of LPS timeseries CAGE data[21, 9] using AME (top) or TFEA (bottom).
Trajectories of activity profiles shows LPS triggers immediate activation of the
NF-κβ complex (TF65/RelB/NFKB1; yellow), observable at 15min (blue arrow).
TFEA detects a concomitant down regulation of a set of transcription factors,
exemplified here by TYY1 (purple). TFEA also resolves subsequent dynamics
(green bracket) of ISGF3 activation (containing IRF9/STAT1/STAT2; red lines).
(b) Schematic depicting the molecular insights gained from TFEA analysis. See
Supp Fig 16 for more analysis.

Figure 6: TFEA captures rapid dynamics of glucocorticoid receptor
(GR) following treatment with dexamethasone. (a) TFEA correctly iden-
tifies GR from time series ChIP data on the histone acetyl-transferase p300,
H3K27ac and DNase I. No signal is observed in the negative control H3K9me3.
TFEA correctly shows a temporal lag in H3K27ac signal (yellow arrow). (b)
Known cellular dynamics of GR induced by dexamethasone. (c) Mechanistic
and temporal insights gained by performing TFEA analysis, question marks
indicate datasets where earlier time points were not available to resolve temporal
information.
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