Interleukin-11 is a Marker for Both Cancer- and Inflammation-Associated 1

2	Fibroblasts that Contribute to Colorectal Cancer Progression
3	
4	Takashi Nishina ^{1, *} , Yutaka Deguchi ¹ , Wakami Takeda ^{1, 2} , Masato Ohtsuka ^{3, 4} , Daisuke
5	Ohshima ⁵ , Soh Yamazaki ¹ , Mika Kawauchi ¹ , Eri Nakamura ⁶ , Chiharu Nishiyama ² ,
6	Yuko Kojima ⁷ , Satomi Adachi-Akahane ⁵ , Mizuho Hasegawa ⁸ , Mizuho Nakayama ⁹ ,
7	Masanobu Oshima ⁹ , Hideo Yagita ¹⁰ , Kazutoshi Shibuya ¹¹ , Tetuo Mikami ¹² , Naohiro
8	Inohara ⁸ , Norihiro Tada ⁶ , Hiroyasu Nakano ^{1, 13, 14*}
9	
10	¹ Department of Biochemistry, Toho University School of Medicine, 5-21-16
11	Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.

²Laboratory of Molecular Biology and Immunology, Department of Biological Science 12

- and Technology, Faculty of Industrial Science and Technology, Tokyo University of 13
- Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan. 14
- ³Department of Molecular Life Science, Division of Basic Medical Science and 15
- Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, 16

- 17 Kanagawa, 259-1193, Japan.
- ⁴The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara,
- 19 Kanagawa, 259-1193, Japan.
- ⁵Department of Physiology, Toho University School of Medicine, 5-21-16 Omori-Nishi,
- 21 Ota-ku, Tokyo 143-8540, Japan.
- ²² ⁶Research Institute for Diseases of Old Age, Juntendo University School of Medicine,
- 23 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
- ²⁴ ⁷Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo
- 25 University Graduate School of Medicine, Tokyo 113-8421, Japan.
- ²⁶ ⁸Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
- 27 48109, USA.
- ⁹WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer
- 29 Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
- ¹⁰Department of Immunology, Juntendo University Graduate School of Medicine, 2-1-1
- 31 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
- ¹¹Department of Surgical Pathology, Toho University School of Medicine, 5-21-16

- 33 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
- ¹²Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi,
- 35 Ota-ku, Tokyo 143-8540, Japan.
- ¹³Host Defense Research Center, Toho University School of Medicine, 5-21-16
- 37 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
- 13 Lead contact.
- 39 *To whom correspondence should be addressed. E-mail:
- 40 takashi.nishina@med.toho-u.ac.jp or <u>hiroyasu.nakano@med.toho-u.ac.jp</u>

42 SUMMARY

43	Interleukin (IL)-11 is a member of the IL-6 family of cytokines and involved in multiple
44	cellular responses, including tumor development. However, the origin and functions of
45	IL-11-producing (IL-11 ⁺) cells are not fully understood. To characterize IL-11 ⁺ cells <i>in</i>
46	vivo, we generated <i>Il11</i> reporter mice. IL-11 ⁺ cells appeared in the colon of three murine
47	tumor models, and a murine acute colitis model. Ill1ra1 or Ill1 deletion attenuated the
48	development of colitis-associated colorectal cancer. IL-11 ⁺ cells expressed fibroblast
49	markers, and genes associated with cell proliferation and tissue repair. IL-11 induced
50	STAT3 phosphorylation in colonic fibroblasts, suggesting the activation of $IL-11^+$
51	fibroblasts. Analysis using the human cancer database revealed that genes enriched in
52	IL-11^+ fibroblasts were elevated in human colorectal cancer, and correlated with
53	reduced disease-free survival. Together, our results suggested that tumor cells induced
54	IL-11^+ fibroblasts, and that a feed-forward loop between IL-11 and IL-11^+ fibroblasts
55	might contribute to tumor development.
56	(149 words)

- 58 **KEYWORDS:** cancer-associated fibroblasts, colitis, colitis-associated colorectal cancer,
- 59 dextran sulfate sodium, inflammation-associated fibroblasts; interleukin-11, IL-11
- 60 receptor, reporter mice, STAT3.
- 61

INTRODUCTION

63	Maintenance of intestinal homeostasis involves a variety of cell types, including
64	epithelial, immune, and stromal cells ^{1, 2, 3} . Within the intestinal lamina propria, stromal
65	cells include fibroblasts, α smooth muscle actin (α SMA)-positive myofibroblasts,
66	endothelial cells, and pericytes ^{4, 5} . These stromal cells organize the tissue architecture,
67	and have recently been revealed to play crucial roles in regulating immune responses,
68	tissue repair, and tumor development ^{3, 4, 5} . Recent studies have focused on fibroblasts
69	that can support tumor growth, termed cancer-associated fibroblasts (CAFs) ^{6, 7, 8} . In a
70	very recent study, single-cell RNA-sequencing (scRNA-seq) was performed to analyze
71	colon biopsies from healthy individuals and ulcerative colitis (UC) patients. The results
72	revealed that UC patients' colon samples included a unique subset of fibroblasts, termed
73	inflammation-associated fibroblasts (IAFs), with high expression of IL11, IL24,
74	IL13RA2, and TNFSFR11B ⁹ . Another prior study demonstrated that CD10 and GPR77
75	might be markers of CAFs that mediate chemotherapy resistance in human cancer
76	through IL-6 and IL-8 production ¹⁰ . Combined these findings together, stromal
77	fibroblasts play a crucial role in the development of cancer and colitis, the full picture of

78 fibroblast function and heterogeneity remains unclear.

79	Interleukin (IL)-11 is a member of the IL-6 family, and exhibits pleiotropic
80	functions, including hematopoiesis, bone development, tissue repair, and tumor
81	development ^{11, 12} . The IL-11 receptor comprises IL-11R α 1, which binds IL-11, and
82	gp130, which transmits signals to the nucleus via Janus kinase (JAK) activation ¹³ . JAKs
83	phosphorylate STAT3, and phosphorylated STAT3 enters the nucleus where it activates
84	the transcription of various target genes associated with cell proliferation and apoptosis
85	suppression ^{14, 15, 16, 17} . IL-11 production is regulated by several cytokines, including
86	TGF β , IL-1 β , IL-17A, and IL-22 ^{18, 19, 20, 21} . We previously demonstrated that IL-11
87	production is induced by reactive oxygen species (ROS) and the electrophile
88	1,2-naphthoquinone, which, in turn, promotes liver and intestine tissue repair ^{22, 23} .
89	While IL-11 is reportedly produced in various cell types (including stromal,
90	hematopoietic, and epithelial cells) in response to different stimuli ^{16, 17, 24, 25} , the cellular
91	sources of IL-11 in vivo are not fully understood.
92	Colorectal cancers exhibit increased IL-11 expression in human and mice.

93

Moreover, deletion of the Ill1ra1 gene attenuates colitis-associated colorectal cancer

94	(CAC) development in mice treated with azoxymethane (AOM) and dextran sulfate
95	sodium (DSS), or in adenomatous polyps of mice harboring mutation of the
96	Adenomatous polyposis coli (Apc) gene $(Apc^{Min/+})^{17}$. On the other hand, IL11 gene
97	polymorphism is associated with increased ulcerative colitis (UC) susceptibility in
98	human patients ²⁶ . <i>IL11</i> expression is increased in patients with mild UC, but decreased
99	in patients with severe UC ²⁷ . These findings suggest that IL-11 may promote colorectal
100	cancer development, but could also attenuate colitis under certain conditions. Moreover,
101	recent studies report that IL-11 plays a crucial role in fibrosis development in various
102	organs, including the lung, heart, liver, and kidney ^{28, 29} .
102 103	organs, including the lung, heart, liver, and kidney ^{28, 29} . In the present study, we aimed to characterize IL-11-producing cells <i>in vivo</i> . We
103	In the present study, we aimed to characterize IL-11-producing cells <i>in vivo</i> . We
103 104	In the present study, we aimed to characterize IL-11-producing cells <i>in vivo</i> . We generated <i>Il11-Enhanced green fluorescence protein (Egfp)</i> reporter mice, and detected
103 104 105	In the present study, we aimed to characterize IL-11-producing cells <i>in vivo</i> . We generated <i>Il11-Enhanced green fluorescence protein (Egfp)</i> reporter mice, and detected IL-11 ⁺ cells in the colonic tumor tissues of a CAC mouse model and in $Apc^{Min/+}$ mice.
103 104 105 106	In the present study, we aimed to characterize IL-11-producing cells <i>in vivo</i> . We generated <i>II11-Enhanced green fluorescence protein (Egfp)</i> reporter mice, and detected IL-11 ⁺ cells in the colonic tumor tissues of a CAC mouse model and in $Apc^{Min/+}$ mice. Deletion of <i>II11ra</i> or <i>II11</i> attenuated CAC development in mice. When tumor organoids

110	repair, suggestive of colonic fibroblasts. IL-11 induced robust STAT3 phosphorylation
111	in colonic fibroblasts, but not in colonic epithelial organoids. Using the human cancer
112	database, we found that the genes enriched in IL-11 ⁺ fibroblasts were elevated in human
113	colorectal cancer, and that high expression of several of these genes was correlated with
114	reduced disease-free survival among CRC patients. Together, our present results
115	demonstrated that tumor cells induced IL-11^+ fibroblasts, and that a feed-forward loop
116	between IL-11 and IL-11 ^{$+$} fibroblasts may contribute to tumor development.
117	

118 **RESULTS**

119 Characterization of IL-11⁺ Cells in CAC Using *Il11-Egfp* Reporter Mice

- 120 To characterize IL-11-producing (IL-11⁺) cells *in vivo*, we generated transgenic mice in
- 121 which *Egfp* expression was under control of the *Ill1* gene promoter using a bacterial
- 122 artificial chromosome (BAC) vector (Supplementary Fig. 1a). Egfp cDNA and a polyA
- signal were inserted in-frame in the second exon of the *Il11* gene (Supplementary Fig.

124 1a). As expected, *1111* mRNA expression was correlated with *Egfp* mRNA expression in

- 125 various tissues (Supplementary Fig. 1b, c). Notably, *Il11* mRNA expression was highest
- 126 in the testis, and was very low in other tissues in mice under normal conditions
- 127 (Supplementary Fig. 1b).

128 Although *Il11* mRNA expression is elevated in colorectal cancer among mice 129 and human^{16, 17}, the origin of IL-11⁺ cells remains controversial. We used the *Il11-Egfp* 130 reporter mice to monitor the appearance of IL-11⁺ cells in a CAC model. AOM 131 administration followed by repeated exposure to DSS causes CAC development in 132 mice^{30, 31, 32, 33}. On day 77 after AOM/DSS administration, the *Il11-Egfp* reporter mice 133 developed large tumors in the colon (Fig. 1a, b). At this time, we isolated tumor and

134	nontumor tissues, and examined the Il11 mRNA expression by qPCR. Il11 and Egfp
135	mRNA expressions were elevated in tumor tissues compared to nontumor tissues from
136	mice with AOM/DSS-induced CAC (Fig. 1c).
137	We next isolated and characterized IL-11 ⁺ cells from tumors of <i>Il11-Egfp</i>
138	reporter mice. We observed increased numbers of EGFP (IL-11) ⁺ cells in tumor tissues
139	compared to nontumor tissues from the colon of AOM/DSS-treated Ill1-Egfp reporter
140	mice (Fig. 1d). While the majority of $IL-11^+$ cells expressed stroma cell markers, such
141	as Thy1.2 and podoplanin, numerous IL-11 $^+$ cells expressed CD45.2 or EpCAM (Fig.
142	1e). Immunohistochemistry (IHC) revealed IL-11 ⁺ cells in stroma tissues surrounding
143	tumor cells (Fig. 1f). IL-11 ⁺ cells also expressed vimentin, collagen I, and collagen IV,
144	but not α SMA (Supplementary Fig. 1d), suggesting that these cells were fibroblasts but
145	not myofibroblasts. Notably, a few E-cadherin-positive tumor cells exhibited weak
146	EGFP expression (Fig. 1g). Overall, these results suggest that the $IL-11^+$ cells
147	constituted heterogenous cell populations, which might explain previous apparently
148	inconsistent results showing that $IL-11^+$ cells were derived from hematopoietic,
149	epithelial, or stromal cells ^{17, 24} .

150	EGFP-positive cells were not detected in the colon of <i>Il11-Egfp</i> reporter mice
151	before AOM/DSS treatment (data not shown), possibly suggesting that small numbers
152	of resident IL-11 ⁺ cells might proliferate and expand <i>in situ</i> . Alternatively, IL-11 ⁻ cells
153	could be converted into IL-11 ⁺ cells after AOM/DSS treatment. To discriminate these
154	two possibilities, we investigated whether $IL-11^+$ cells expressed the cell-proliferating
155	antigen Ki67. The majority of IL-11 ⁺ cells did not express Ki67 (Fig. 1h), supporting
156	the possibility that IL-11^+ cells were derived from IL-11^- cells during tumor
157	development.

159 Attenuated CAC Development in *Ill1ra1^{-/-}* and *Ill1^{-/-}* Mice

160	A previous study reported attenuated CAC development in <i>Ill1ra1^{-/-}</i> mice ¹⁷ .
161	Consistently, our present data confirmed the attenuation of AOM/DSS-induced CAC in
162	$II11ra1^{-/-}$ mice compared to wild-type mice (Supplementary Fig. 2a). To further
163	substantiate that the IL-11/IL-11R-dependent signaling pathway contributed to CAC
164	development, we investigated $IIII^{-/-}$ mice. As we previously reported ³⁴ , $IIII^{-/-}$ mice
165	showed no abnormalities. When wild-type and $IIII^{-/-}$ mice were treated with

166	AOM/DSS, we observed attenuated CAC development in $IIII^{-/-}$ mice compared to
167	wild-type mice (Supplementary Fig. 2b). Moreover, reciprocal BM transfer
168	experiments revealed that II11 expression in non-hematopoietic cells might be
169	primarily responsible for the increased tumor numbers and tumor load in the colon
170	(Supplementary Fig. 2c, d), although <i>Il11</i> expression in hematopoietic cells also partly
171	contributed the increased tumor area in the colon (Supplementary Fig. 2c, d). We
172	focused our subsequent analyses on IL-11 ⁺ colonic fibroblasts, which are hereafter
173	referred to as IL-11 ⁺ colon cancer-associated fibroblasts (CAFs).
174	

175 IL-11⁺ CAFs Appear in Tumor Tissues in the Absence of Inflammation

The above-described results suggested that tumor cells may have educated the surrounding IL-11⁻ cells to become IL-11⁺ CAFs. An alternative possibility is that IL-11⁻ cells might cell-autonomously become IL-11⁺ CAFs within the setting of an inflammatory milieu triggered by DSS administration. To discriminate these possibilities, we used two different inflammation-independent murine tumor models: adenomatous polyps in $Apc^{Min/+}$ mice³³ and transplantation of tumor organoids into

182	wild-type mice. In Apc ^{Min/+} mice, Ill1 and Egfp mRNA expression levels were elevated
183	in colon tumors compared to nontumor tissues (Fig. 2a), and IL-11 ⁺ CAFs appeared in
184	stroma tissues surrounding tumor cells in the colon (Fig. 2b). Consistent with the results
185	of IHC, we found increased numbers of IL-11 ⁺ CAFs in the tumor tissues compared to
186	non-tumor tissues from the colon of $Apc^{Min/+}$ mice (Fig. 2c). Moreover, most IL-11 ⁺
187	CAFs expressed podoplanin and Thy1.2, and small numbers of IL-11 ⁺ cells expressed
188	hematopoietic and epithelial cell markers (Fig. 2d). Again, we observed weak EGFP
189	expression in some E-cadherin-positive tumor cells themselves (Fig. 2e). Notably, most
190	IL-11 ⁺ CAFs were not Ki67 ⁺ (Fig. 2f). IL-11 ⁺ CAFs expressed vimentin, collagen I, and
190 191	IL-11 ⁺ CAFs were not Ki67 ⁺ (Fig. 2f). IL-11 ⁺ CAFs expressed vimentin, collagen I, and collagen IV, but not α SMA (Fig. 2g).
191	collagen IV, but not αSMA (Fig. 2g).
191 192	collagen IV, but not αSMA (Fig. 2g). We previously generated tumor organoids from the intestines of AKTP mice,
191 192 193	collagen IV, but not α SMA (Fig. 2g). We previously generated tumor organoids from the intestines of AKTP mice, which exhibit mutations of <i>Apc, Kras, Tgfbr2</i> , and <i>Tp53</i> in intestinal epithelial cells ³⁵ .
191 192 193 194	collagen IV, but not αSMA (Fig. 2g). We previously generated tumor organoids from the intestines of AKTP mice, which exhibit mutations of <i>Apc, Kras, Tgfbr2</i> , and <i>Tp53</i> in intestinal epithelial cells ³⁵ . These tumor organoids were transferred into the colon of <i>Il11-Egfp</i> reporter mice, and

198	tumor tissues (Figure Supplementary Fig. 3b). Moreover, these IL-11 ⁺ CAFs expressed
199	podoplanin and vimentin, but not CD45 or E-cadherin (Supplementary Fig. 3c).
200	Together, these results strongly support that tumor cells instructed IL-11 ⁻ cells to
201	become IL-11 ⁺ CAFs in the absence of inflammation.
202	
203	IL-11 ⁺ Cells Appear in the Colon of DSS-Treated Mice and Express Stromal Cell
203 204	IL-11 ⁺ Cells Appear in the Colon of DSS-Treated Mice and Express Stromal Cell Marker
204	Marker

208 reporter mice on day 7 after DSS treatment (Fig. 3a). IHC revealed that on day 6 after DSS treatment, large numbers of IL-11⁺ cells appeared in the subepithelial tissues, 209 where intestinal epithelial cells were detached due to severe inflammation (Fig. 3b). 210 Moreover, we detected the rapid appearance of IL-11⁺ cells just one day after DSS 211 treatment (Fig. 3c). For a more detailed comparison of the phenotypes of IL-11⁺ CAFs 212 in tumor tissues and the IL-11⁺ cells that appeared in colitis, we used flow cytometry to 213

214	analyze the expressions of various cell surface markers. After DSS treatment, we
215	observed increased numbers of $IL-11^+$ cells in the colon (Fig. 3d). These $IL-11^+$ cells
216	expressed stroma cell markers, including Thy1.2, podoplanin, CD29, PDGFR-α,
217	ICAM-1, VCAM-1, and Sca-1, but not CD45.2, EpCAM, CD31, or Ter119 (Fig. 3e).
218	IL-11 ⁺ cells were also positive for vimentin, collagen I, and collagen IV, but not α SMA
219	(Fig. 3f), suggesting that these cells were fibroblasts, but not myofibroblasts. Moreover,
220	these IL-11 ⁺ cells did not incorporate 5-bromo-2'-deoxyuridine (BrdU), a hallmark of
221	cell proliferation, suggesting that they did not proliferate in situ (Fig. 3g). Together,
222	these findings suggest that inflammation alone was sufficient to induce $IL-11^+$ cell
223	development.
224	

IL-11⁺ Cells Express Genes Associated with Cell Proliferation and Tissue Repair
To further characterize the IL-11⁺ cells that appeared in colitis, we used a cell sorter to
isolate IL-11⁺ cells as EGFP⁺ cells from the colon of DSS-treated *Il11-Egfp* reporter
mice. These sorted EGFP⁺ cells were subjected to transcriptome analysis, and their gene
expression profiles were compared with those of EGFP⁻ cells. Heat-map analysis

230	revealed different gene expression patterns in these two populations (Fig. 4a). A volcano
231	plot showed significantly elevated expressions of several genes, including Il11, Mmp3,
232	and Timp1, in IL-11 ⁺ cells compared to IL-11 ⁻ cells (Fig. 4b). Gene Ontology (GO)
233	enrichment analysis revealed that EGFP ⁺ cells exhibited enriched expressions of genes
234	associated with cell proliferation, organ morphogenesis, angiogenesis, and wound
235	healing (Fig. 4c). qPCR confirmed that $IL-11^+$ cells showed elevated levels of cytokines
236	(116 and 1111), chemokines (Ccl2 and Ccl11), and genes associated with organ
237	development (Hgf and Tnfsf11) (Fig. 4d). We also detected elevated expression levels of
238	genes associated with colorectal cancer susceptibility loci (e.g., Grem, Bmp2, and
239	Bmp4) and tumor development and invasion (e.g., Wnt5a, Ereg, Mmp3, Mmp13, and
240	Timp1) (Figure 4D).
241	Of note, two unique subsets of fibroblasts termed inflammation-associated

fibroblasts (IAFs)⁹ and cancer-associated fibroblasts (CAFs) with mediating chemotherapy resistance¹⁰ have been recently reported in ulcerative colitis (UC) patients and chemotherapy-resistant cancer patients, respectively. To investigate the relationship between IL-11⁺ fibroblasts and IAFs or CAFs with mediating

246	chemotherapy resistance, we examined their hallmark gene expressions. We found
247	elevated expressions of Il13ra2 and Tnfsfr11b (markers of IAFs), but not Cd10 or
248	Gpr77 (markers of CAFs with mediating chemotherapy resistance) in $IL-11^+$ cells
249	compared to $IL-11^-$ cells (Fig. 4e). These findings indicated that the $IL-11^+$ cells
250	appearing in the colon of DSS-treated mice were phenotypically similar to the IAFs
251	observed in UC patients, but not CD10 ⁺ GPR77 ⁺ CAFs. Thus, these cells were referred
252	to as IL-11 ⁺ IAFs.
253	We next examined whether the gene expression profiles were similar between
254	IL-11 ⁺ IAFs and IL-11 ⁺ CAFs. The genes enriched in IL-11 ⁺ IAFs, including Ccl2,
254 255	IL-11 ⁺ IAFs and IL-11 ⁺ CAFs. The genes enriched in IL-11 ⁺ IAFs, including <i>Ccl2</i> , <i>Osmr, Wnt5a, Ereg, Mmp13, Timp1</i> , and <i>Tnfrsf11b</i> , were also elevated in
255	Osmr, Wnt5a, Ereg, Mmp13, Timp1, and Tnfrsf11b, were also elevated in
255 256	<i>Osmr; Wnt5a, Ereg, Mmp13, Timp1,</i> and <i>Tnfrsf11b,</i> were also elevated in AOM/DSS-induced tumor tissues (Supplementary Fig. 4). Although we did not examine

260 The MEK/ERK Pathway is Involved in *Il11* Upregulation in Tumor Tissues

261 Since IL-11⁺ CAFs might promote tumor development, it is crucial to investigate the

262	mechanisms by which inflammation or tumor cells induce IL-11 expression. We
263	previously reported that oxidative stress induces Ill1 mRNA expression in an
264	ERK/Fra-1-dependent manner ^{22, 23} . Thus, we tested whether DSS treatment induced
265	oxidative stress in the colon. We observed enhanced oxidative stress in colonic cells
266	after DSS treatment, and found that an antioxidant, N-acetyl cysteine (NAC)
267	administration attenuated this DSS-induced oxidative stress (Fig. 5a). Additionally,
268	DSS-induced oxidative stress was ameliorated by administration of antibiotics (Abx)
269	(Fig. 5b), suggesting that bacterial infection induces oxidative stress. Consistent with
270	these findings, both an antioxidant, NAC and Abx blocked the DSS-induced
271	upregulation of <i>Il11</i> mRNA (Fig. 5c, d). Furthermore, DSS induced ERK
272	phosphorylation, which was blocked by administration of the MEK inhibitor trametinib
273	or NAC, accompanied by downregulation of <i>Il11</i> expression (Fig. 5e-g). These results
274	indicated that oxidative stress-dependent ERK activation might contribute to Il11
275	expression in the colon. Although several studies report that TGF β induces IL-11
276	production in various cells ^{20, 21} , we found that neutralization of TGF β signals using
277	anti-TGF β antibody did not block <i>ll11</i> expression in the colon after DSS treatment (Fig.

278 5h, i).

279	We next investigated whether 1111 expression was induced in the tumor
280	microenvironment in a manner similar to those in DSS-induced colitis. Administration
281	of trametinib, but not Abx, NAC, or neutralizing antibody against TGF β , decreased <i>Il11</i>
282	expression in CAC after AOM/DSS treatment (Fig. 5j-o). Moreover, we observed a
283	similar inhibitory effect of Trametinib, but not Abx, NAC, or neutralizing antibody
284	against TGF β in colon tumors in $Apc^{min/+}$ mice (Supplementary Fig. 5a-f). Together,
285	these results suggested that 1111 expression was induced in a MEK/ERK-dependent
286	manner, although the upstream signals that induce activation of the MEK/ERK pathway
287	could differ between cases of inflammation versus tumors. Of note, induction of <i>II11</i> in
288	the colon might be independent of $TGF\beta$ in the tumor microenvironment at least under
289	our experimental conditions.

290

291 IL-11 Preferentially Induces Signals to Fibroblasts

292 Previous studies report that IL-11 induces signals in colonic epithelial cells and 293 fibroblasts^{17, 29}. To determine which cells were the primary targets of IL-11, we

294	examined the Ill1ra1 expression on colonic fibroblasts and normal colonic epithelial
295	organoids. Since IL-22 induces signals in intestinal epithelial cells ³⁶ , we also examined
296	the IL-22 receptor expression on both cell types. Colonic epithelial organoids showed
297	high expression of <i>Il22r</i> , but not <i>Il11ra1</i> , while colonic fibroblasts exhibited high
298	expression of Ill1ra1, but not Il22ra1 (Fig. 6a). Consistently, robust STAT3
299	phosphorylation in colonic fibroblasts was induced by IL-11, but not IL-22 (Fig. 6b). To
300	further characterize IL-11-inducible genes in vivo, we injected IL-11R agonist into
301	wild-type mice ²² , which induced upregulation of many genes in the colon (Fig. 6c-e),
302	some of which were enriched in IL-11 ⁺ IAFs (Fig. 6e). We performed qPCR to verify
303	the induction of these genes (including Hgf, Osmr, Rspo3, Mmp3, Timp1, and Pdpn) in
304	the colon after injection of IL-11R agonist (Supplementary Fig. 6). It is likely that IL-11
305	released from colonic fibroblasts might activate IL-11 ⁺ IAFs or CAFs in an autocrine or
306	paracrine manner. Overall, our findings suggested that expression of IL-11-stimulated
307	genes in IL-11 ⁺ CAFs might further modulate the tumor microenvironment.
308	

309 Genes Enriched in IL-11⁺ IAFs Show Elevated Expression in Human Colorectal

310 Cancer

311	Assuming that the appearance of IL-11 ⁺ CAFs was correlated with CAC development in
312	mice (Fig. 1, 2), we hypothesized that the genes enriched in $IL-11^+$ IAFs might also be
313	elevated in human colorectal cancer. We focused on genes with over two-fold greater
314	expression in IL-11 ^{$+$} IAFs compared to IL-11 ^{$-$} cells (Fig. 4), and extracted 17 genes
315	matching our criteria from the human cancer database (GSE33133). Intriguingly,
316	subsets of genes elevated in IL-11 ⁺ IAFs, including HGF, TNFSF11, MMP3, MMP13,
317	and TIMP1, were significantly upregulated in colon cancer tissues compared to normal
318	mucosa (Supplementary Fig. 7a).
319	Since many of the genes enriched in IL-11 ⁺ IAFs were also upregulated in tumor
320	tissues (Fig. 4d, e, Supplementary Fig. 7a), we hypothesized that the genes elevated in
321	IL-11 ⁺ IAFs, along with <i>IL11</i> , might critically affect the prognosis of cancer patients.
322	Thus, we compared disease-free survival of colorectal cancer patients according to the
323	expression levels of genes enriched in IL-11 ⁺ IAFs. We found that reduced disease-free
324	survival time was associated with higher expression of IL6, MMP13, and TIMP1, but
325	not of IL6/IL6R, IL11, or IL11/IL11R (Supplementary Fig. 7b). Notably, higher

326	expression of <i>IL6/IL6R/IL11/IL11R/GP130</i> was associated with significantly diminished
327	disease-free survival time. These results suggested that prognosis of human colorectal
328	cancer patients may be critically determined by IL-11 ⁺ IAFs and, possibly, by IL-11 ⁺
329	CAFs, but not by IL-11.

331 IL-11 Expression is Correlated with Progression of Human Cancers

To characterize IL-11⁺ cells in human colon tumor samples, we performed staining with 332 333 anti-human IL-11 antibody. First, we verified that anti-human IL-11 antibody detected endogenous IL-11, using lysates of the human breast cancer cell line MDA-MB-231, in 334 the absence or presence of siRNA against human *Ill1* (Fig. 7a). IL-11⁺ cells were 335 336 scarcely detected in normal colonic tissues, but were numerous in adenomas and in early and advanced colorectal cancer tissues (Fig. 7b). Intriguingly, the relative area of 337 IL-11⁺ cells and the IL-11 signaling intensity were increased in advanced colon cancers 338 compared to normal tissues (Fig. 7c, d). Moreover, positive staining for IL-11 was 339 observed in vimentin-positive stromal cells, E-cadherin-positive tumor cells, and 340 CD45-positive hematopoietic cells (Fig. 7e). Thus, IL-11⁺ cells comprised 341

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 342 heterogeneous cell populations in the tumor microenvironment, although the majority
- 343 were fibroblasts.

DISCUSSION 344

345	In the present study, we generated $III1-Egfp$ reporter mice to characterize IL-11 ⁺ CAFs
346	or IL-11 ⁺ IAFs in different murine tumor and colitis models. We found that IL-11 ⁺ cells
347	in tumor tissues constituted heterogenous cell populations, including stromal, epithelial,
348	and hematopoietic cells, and that $II11ra^{-/-}$ or $IIII^{-/-}$ deletion attenuated CAC
349	development in mice. Reciprocal BM transfer experiments revealed that stromal cells
350	critically contributed to tumor progression; thus, we focused on IL-11 ⁺ CAFs. IL-11
351	activated $IL-11^+$ colonic fibroblasts. Transcriptome analysis showed that $IL-11^+$ IAFs
352	expressed genes associated with tissue repair and cell proliferation. Moreover, some of
353	the genes enriched in IL-11 ⁺ IAFs were elevated in human colorectal cancer tissues, and
354	their high expression was associated with poor prognosis of human colorectal cancer.
355	Thus, our results suggest that a feed-forward loop between IL-11 and IL-11 ⁺ CAFs may
356	contribute to tumor development.
357	The newly developed <i>Ill1-Egfp</i> reporter mice enabled us to characterize the
358	IL-11 ⁺ IAFs and CAFs that appeared in mouse models of colitis and CAC, respectively.
359	In the colitis model, IL-11 ⁺ IAFs exclusively expressed stromal cell markers, such as

360	Thy1 and podoplanin. A recent cRNA-seq analysis of colon biopsies from healthy
361	individual and UC patients revealed that colon samples from UC patients exhibited a
362	unique subset of fibroblasts, termed IAFs, that express IL11, IL24, IL13RA2, and
363	$TNFSFR11B^9$. Here we found elevated expression of these genes in IL-11 ⁺ IAFs
364	compared to $IL-11^-$ cells. Thus, $IL-11$ is a hallmark of IAFs. Since $IL-11^+$ IAFs
365	expressed genes associated with cell proliferation and tissue repair, IL-11 ⁺ IAFs might
366	contribute to colitis attenuation in human UC patients.
367	In contrast to in DSS-induced colitis, in tumor tissues, we detected numerous
368	$IL-11^+$ cells expressing epithelial or hematopoietic cell markers, including EpCAM or
369	CD45.2. Consistently, previous studies report that IL-11 ⁺ cells are derived from stromal,
370	epithelial, or hematopoietic cells ^{17, 24} . Our present results revealed that IL-11 ⁺ , EpCAM ⁺ ,
371	and E-cadherin ⁺ epithelial cells might be tumor cells themselves, whereas we did not
372	fully investigate the nature and origin of CD45.2 ⁺ cells. Future scRNA-seq analysis of
373	IL-11^+ cells will further elucidate the origin and characterization of heterogenous
374	populations of IL-11 ⁺ cells in the tumor microenvironment.

375 Tumors cells may support tumor growth by educating the surrounding

376	fibroblasts, which are referred to as CAFs ^{8, 37, 38} . On the other hand, a recent study
377	reported that surface expression of CD10 and GPR77 may be markers of CAFs that
378	mediate chemotherapy resistance in human cancer through IL-6 and IL-8 production ¹⁰ .
379	CD10 and GPR77 expression were not elevated in IL-11 ⁺ IAFs or CAC in mice,
380	suggesting that IL-11 ⁺ IAFs and possibly IL-11 ⁺ CAFs might be different from human
381	$\text{CD10}^{+}\text{GPR77}^{+}\text{ CAFs.}$
382	Elucidation of the mechanisms underlying IL-11 production by stromal cells in
383	the tumor microenvironment may be crucial for understanding how tumor cells instruct
384	stromal cells. Previous studies demonstrate that TGF β induces IL-11 upregulation in
385	various cell types ^{20, 21} . Indeed, we found that TGF β stimulation induced IL-11
386	production by colonic fibroblasts. Moreover, in murine xenograft models, human tumor
387	cell lines that ectopically express human TGF β 1 can elicit IL-11 ⁺ CAFs ²⁴ . However, in
388	our present study, anti-TGF β antibody treatment did not downregulate <i>Il11</i> expression
389	in colonic adenomas of Apc ^{min/+} mice, or in AOM/DSS-induced CAC. Furthermore,
390	culture supernatants of tumor organoids did not induce upregulated <i>Il11</i> expression by
391	colonic fibroblasts in the absence or presence of anti-TGF β antibody. Overall, although

392	TGF β per se was able to induce IL-11 production, TGF β may not be involved in the
393	induction of IL-11 ⁺ CAFs in the tumor microenvironment, at least under our
394	experimental conditions. On the other hand, blockade of the ERK pathway attenuated
395	<i>II11</i> expression in the colon of mice after DSS treatment, in colon adenomas of $Apc^{min/+}$
396	mice, and in AOM/DSS-induced CAC in mice. Thus, the signaling pathway(s) leading
397	to MEK/ERK activation might be critically involved in IL-11 production. Further
398	investigations are needed to address this subject.
399	Previous studies show that IL-11 and IL-22 induce proliferation and cell survival
400	
400	of colonic epithelial cells through STAT3 activation ^{15, 36} . Indeed, under our
400 401	experimental conditions in colonic epithelial organoids, IL-22 induced strong STAT3
401	experimental conditions in colonic epithelial organoids, IL-22 induced strong STAT3
401 402	experimental conditions in colonic epithelial organoids, IL-22 induced strong STAT3 phosphorylation, whereas IL-11 induced only weak STAT3 phosphorylation. In sharp
401 402 403	experimental conditions in colonic epithelial organoids, IL-22 induced strong STAT3 phosphorylation, whereas IL-11 induced only weak STAT3 phosphorylation. In sharp contrast, IL-11 induced robust phosphorylation of STAT3 in colonic fibroblasts. Thus, it
401 402 403 404	experimental conditions in colonic epithelial organoids, IL-22 induced strong STAT3 phosphorylation, whereas IL-11 induced only weak STAT3 phosphorylation. In sharp contrast, IL-11 induced robust phosphorylation of STAT3 in colonic fibroblasts. Thus, it appears that colonic fibroblasts produced IL-11 in response to factors from tumor cells,

408	CAC development was attenuated in Ill1ra1 ^{-/-} and Ill1 ^{-/-} mice treated with
409	AOM/DSS, but deletion of these genes did not dramatically affect tumor development
410	compared to in a previous study ¹⁷ . The reason for these discrepancies is currently
411	unknown. However, it is possible that the genetic background of the mice (C57/BL6 vs.
412	129/C57/BL6 mixed background) might affect the tumor cells' dependence on IL-11
413	signaling. On the other hand, our transcriptome analysis revealed that $IL-11^+$ CAFs
414	expressed various genes associated with tissue repair and cell proliferation. Indeed, we
415	found that high expression of the genes enriched in IL-11 ⁺ IAFs (including <i>IL6</i> , <i>MMP3</i> ,
416	and TIMP1, but not IL11 itself) was associated with reduced disease-free survival of
417	CRC patients. Thus, it would be interesting to investigate whether depletion of $IL-11^+$
418	CAFs might have profound effects on colorectal cancer progression.
419	

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

420 METHODS

421 Reagents

- 422 Recombinant mouse IL-11 (R&D), IL-22 (Biolegend), mouse TGFβ1 (Biolegend),
- 423 N-acetyl cysteine (NAC) (Nakalai), and Trametinib (LC Laboratories) were purchased
- 424 from the indicated sources. The following antibodies used in this study were obtained
- 425 from the indicated sources: anti-phospho-ERK (4370, CST), anti-Ki67 (ab16667,
- 426 Abcam), anti-GFP (GFP-Go-Af1480 or GFP-Rb-Af2020, Frontier Institute), anti-BrdU
- 427 (BU1/75, BIO-RAD), anti-IL-11 (LS-C408373, LSBio), anti-CD45 (13917, CST),
- 428 anti-CD45 (IR751, Dako), anti-podoplanin (127403, BioLegend), anti-α-SMA (ab5694,
- 429 Abcam), anti-collagen I (ab34710, Abcam), anti-collagen IV (ab6586, Abcam),
- 430 anti-E-cadherin (560062, BD Biosciences), anti-E-cadherin (NCH-38, Dako),
- 431 anti-vimentin (9856, CST), anti-phospho-STAT3 (9145, CST), anti-STAT3 (SC-482,
- 432 Santa Cruz), anti-β-Actin (622102, Biolegend), and anti-tubulin (T5168,
- 433 Sigma-Aldrich). Anti-horseradish peroxidase (HRP) -conjugated anti-rabbit IgG
- 434 (NA934), HRP-conjugated anti-rat IgG (NA935), and HRP-conjugated anti-mouse IgG
- 435 (NA931) antibodies were from GE Healthcare. Alexa Fluor 488-conjugated donkey
- 436 anti-rabbit IgG (A21206), Alexa Fluor 594-conjugated donkey anti-rabbit IgG

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

437	(A21207), Alexa Fluor Plus 594-conjugated donkey anti-rabbit IgG (A32754), Alexa
438	Fluor 647-conjugated donkey anti-rabbit IgG (A31573), Alexa Fluor 594-conjugated
439	donkey anti-mouse IgG (A21203), and Alexa Fluor 488-conjugated donkey anti-goat
440	IgG (A11055) antibodies, and Alexa Fluor 594-conjugated streptavidin (S11227) were
441	purchased from Invitrogen.
442	Unless otherwise indicated, the following antibodies used for flow cytometry
443	were obtained from TONBO Biosciences; anti-CD11b (20-0112, clone M1/70),
444	anti-CD16/CD32-mAb (2.4G2) (made in house), anti-CD24a (Biolegend, 101813, clone
445	M1/69), anti-CD31 (eBioscience, 17-0311-82, clone 390), anti-CD34 (eBioscience,
446	13-0341-81, clone RAM34), anti-CD45.1 (35-0453, clone A20), anti-CD45.2 (20-0454,
447	clone 104), anti-EpCAM (BioLegend, 118214, clone G8.8), anti-Thy1.2 (20-0903,
448	clone 30-H12), anti-podoplanin (BioLegend, 127414, clone 8.1.1), anti-TER-119
449	(BioLegend, 116212, clone TER-119), anti-MHC Class II (Miltenyi Biotec,
450	130-102-139, clone M5/114.15.2), anti-ICAM-1 (BD Biosciences, 561605, clone 3E2),
451	anti-VCAM-1 (BioLegend, 105718, clone 429), anti-Sca-1 (BioLegend, 122512, clone

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

452	E13161.7), anti-Lyve1 (eBioscience, 50-0443-80, clone ALY7), anti-PDGFR α
453	(eBioscience, 17-1401-81, clone APA5), and Streptavidin APC (eBioscience).
454	The hybridoma cell line (1D11) ³⁹ that produces neutralizing antibody against
455	all TGF β isoforms (β 1, β 2, and β 3) was purchased from ATCC, and anti-TGF β
456	antibody was produced in house. Control mouse IgG was purchased from
457	Sigma-Aldrich (I5381).
458	
459	Mice
460	Ill11 ^{-/-} mice (generated in our lab) and Ill1ra1 ^{-/-} mice (provided by L. Robb) were
461	previously described ^{34 40} . Apc ^{min/+} (002020) were purchased from Jackson Lab.
462	C57BL/6 (CD45.2 ⁺) and C57BL/6-SJL (CD45.1 ⁺) mice were purchased from
463	Japan-SLC.
464	Mice in different cages or derived from different sources were cohoused for 2
465	weeks for normalization of the microbiota composition before experiments. All animals
466	were housed and maintained under specific pathogen-free conditions in the animal
467	facility at Juntendo University School of Medicine or Toho University School of

468	Medicine. All e	xperiments v	were performed acco	rding to the guide	lines approved by the
469	Institutional An	imal Experii	ment Committee of J	untendo Universit	y School of Medicine
470	or Toho Univer	sity School o	of Medicine (19-51-4	14, 19-51-411).	
471					
472	Generation of	<i>ll11-Egfp</i> re	porter mice		
473	The Egfp report	ter gene was	introduced into the	BAC clone (RP23	-285B12) by two-step
474	Red/ET recom	bineering tee	chnology according	to the manufact	urer's protocol (Gene
475	Bridges). In the	e first step, a	rpsL-neo cassette in	cluded in the kit v	was amplified by PCR
476	using	а	primer	set	(<i>1111</i> -ET1-F2:
477	ACTCCCTCA	GACCCAGA	AGTTTGGCCTGAT	ТТСТСССТТСТ	GTCCACAGGTGG
478	CCTGGTGAT	GATGGCGC	GGATCG	and	<i>III1</i> -ET1-R2:
479	ACGACTCTAT	ICTGGCCA	GAGGCTCAGCAG	CCACCAGGACC	AGGCGACAAACT
480	CAGAAGAAC	CTCGTCAA	GAAGGCG) and in	serted into the targ	get region of the BAC
481	clone. In a seco	ond step, the	<i>rpsL-neo</i> cassette in	the modified BA	C clone was replaced
482	with Egfp-poly.	A cassette w	which was amplified	from <i>Egfp</i> -expre	ession vector (pAWZ)
483	using	a	primer	set	(<i>II11</i> -ET2-F2:

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

ACTCCCTCAGACCCAGAGTTTGGCCTGATTTCTCCCTTCTGTCCACAGGTATG

484

485 GTGAGCAAGGGCGAG and *Ill1-*ET2-R2: 486 ACGACTCTATCTGGCCAGAGGCTCAGCACCACCAGGACCAGGCGACAAACct 487 CTAGTGGATCATTAACGCTTAC). A resultant clone designated as IL11-Egfp was 488 verified by restriction digestion of BAC DNA and by sequencing. Intracytoplasmic sperm injection (ICSI) was performed as previously 489 described with slightly modifications⁴¹. The mixture of sperm and *Ill1-Egfp* DNA was 490 491 diluted with Hepes-modified CZB containing 12% polyvinylpyrrolidone (Sigma-Aldrich) before being used for ICSI. Injections were performed by 492 micromanipulators (Leica) with a PMM-150 FU piezo-impact drive unit (Prime Tech) 493 494 using a blunt-ended mercury-containing injection pipette. After discarding the midpiece and tail, the head of spermatozoa was injected into an oocyte from C57/BL6 mice. 495 496 Oocytes matured into two-cell stage embryos at 24 hours after injection, and then two-cell stage embryos were transferred to oviducts of pseudopregnant females. 497 Transgenic founders were backcrossed to C57/BL6J mice for several generations. 498 Among them, one line exhibited an intimate correlation of *Ill1* and *Egfp* expressions 499

500 were selected and used for further experiments.

501

502 Induction of DSS-induced colitis and colitis-associated cancer (CAC) in mice 503 Nine- to fifteen-week-old wild-type or Ill1-Egfp reporter mice received 1.5 % DSS 504 (MW: 36,000-50,000 D; MP Biomedicals) ad libitum in drinking water for 5 days, which then was changed to regular water. To reduce gut commensal microflora, mice 505 received mixtures of antibiotics in drinking water containing ampicillin (1 g/L, 506 507 Sigma-Aldrich), kanamycin (0.4 g/L, Sigma-Aldrich), gentamicin (0.035 g/L, Sigma-Aldrich), metronidazole (0.215 g/L, Sigma-Aldrich), vancomycin (0.18 g/L, 508 Sigma-Aldrich), and colistin (0.042 g/L, Sigma-Aldrich). Administration of antibiotics 509 510 into mice started at 4 weeks before DSS treatment and continued during DSS treatment. To attenuate oxidative stress in DSS-treated mice, mice received NAC (10 g/L) along 511 with DSS in drinking water for 5 days. To neutralize TGF β in DSS-treated mice, mice 512 were intraperitoneally injected with anti-TGF β antibody (1D11) or control mouse IgGs 513 (5 mg/kg) on day 2 and day 4 after DSS treatment. To inhibit ERK activation in 514 DSS-treated mice, a MEK inhibitor, Trametinib (2 mg/kg) was administered into mice 515

516	by gavage at 30 and 6 hours before the start of DSS treatment at a fine suspension in
517	0.5% Hydroxypropyl Cellulose (Alfa Aesar) and 0.2 % Tween-80.
518	To induced CAC, 9- to 15-week-old mice were intraperitoneally injected with
519	10 mg/kg AOM (Sigma-Aldrich). One week later, mice received 1.5 % DSS ad libitum
520	in drinking water for 5 days, followed by 2 weeks of regular water, and this was
521	repeated for two additional cycles. To reduce numbers of commensal bacteria and
522	oxidative stress in AOM/DSS-treated mice or $Apc^{min/+}$ mice, we administered mixtures
523	of antibiotics and NAC into the indicated mice for the last 8 weeks and 4 weeks just
524	before sacrifice, respectively. Trametinib (2mg/kg) (–6 and –30 hours) or anti-TGF β
525	antibody (5 mg/kg) (on day -1 , -3 , -5) were administered into AOM/DSS-treated mice
526	or $Apc^{min/+}$ mice at the indicated days just before sacrifice.
527	

528 Flow cytometry

529 To isolate IL-11⁺ cells, the colon was removed from DSS-treated *Il11-Egfp* reporter 530 mice. Then, the colon was minced with scissors and digested in RPMI 1640 containing 531 100 U/mL Penicillin and 100 μ g/mL Streptomycin, 1mg/mL Collagenase (Wako), 50

532	$\mu g/mL$ DNase (Roche), 0.5 mg/mL Dispase (Roche), and 2% (v/v) fetal bovine serum
533	(FBS, Gibco) for 60 min. Single cell suspensions were prepared, and cells were stained
534	with the indicated antibodies and analyzed by LSRFortessa X-20 (BD Biosciences) or
535	BD Verse (BD Biosciences). Data were processed by FlowJo software (FlowJo). To
536	further characterize IL-11 ⁺ cells, EGFP ⁺ cells were sorted by MoFlo Astrios cell sorter
537	(Beckman Coulter) and subjected to microarray analysis.
538	To isolate $IL-11^+$ cells from tumors in the colon of <i>Il11-Egfp</i> reporter mice
539	treated with AOM/DSS or Apc ^{min/+} ;Ill1-Egfp mice, tumor tissues were removed from
540	non-tumor tissues. Then, single cell suspension from tumor tissues was prepared as
541	described above. Cells were stained with the indicated antibodies and expression of
542	various cell surface markers on GFP^+ cells were analyzed by flow cytometry.
543	
544	Generation of bone marrow chimeras
545	After BM cells were prepared from $IIII^{+/+}$ or $IIII^{-/-}$ mice (CD45.2), 3-5 x 10 ⁶ BM cells
546	were transferred to 8-week-old recipient mice [C57BL/6-SJL mice (CD45.1)] that had

been exposed to lethal irradiation (9.0 Gray). In reciprocal BM transfer experiments,

547

548	BM cells from wild-type C57BL/6-SJL mice (CD45.1) were transferred to $II11^{+/+}$ or
549	$IIII^{-/-}$ mice (CD45.2) that had been exposed to lethal irradiation (9.0 Gray). At 2 to 3
550	months after transfer, peripheral blood mononuclear cells were collected and stained
551	with FITC-conjugated anti-CD45.1 and allophycocyanin (APC)-conjugated
552	anti-CD45.2 antibodies. The chimerism of bone marrow cells was calculated by
553	counting numbers of CD45.1 ⁺ and CD45.2 ⁺ by flow cytometry. Average chimerisms
554	were more than 90 %.

555

556 Quantitative PCR (qPCR) Assays

Total RNAs were extracted from the indicated tissues of mice by using TRI Reagent (Molecular Research Center) or Sepasol II Super (Nacalai Tesque), and cDNAs were synthesized with the RevertraAce qPCR RT Kit (Toyobo). To remove residual DSS, mRNAs prepared from the colon of mice treated with DSS were further purified by LiCl precipitation as described previously ⁴². Quantitative polymerase chain reaction (qPCR) analysis was performed with the 7500 Real-Time PCR detection system with CYBR green method of the target genes together with murine *Hprt* an internal control

with 7500 SDS software (Thermo Fisher Scientific). The primers used in this study areshown in Table S1.

566

567 Microarray analysis

568 We compared gene expression profiles of RNAs from EGFP-positive and negative cells from the colon of *Il11-Egfp* reporter mice. EGFP⁺ and EGFP⁻ cells were sorted from the 569 colon of *Il11-Egfp* mice (n = 3 mice) on day 7 after DSS administration, total RNAs 570 571 were extracted using TRI-reagent according to the manufacturer's instructions (Molecular Research Center). Purified RNAs were subjected to a LiCl purification to 572 remove residual DSS. cDNA was synthesized with the Ambion WT Expression Kit 573 574 (Affymetrix) and labeled with GeneChip WT Terminal Labeling Kit (Affymetrix) according to the manufacturer's protocol. Affymetrix GeneChip Hybridization wash 575 stain kit was used to hybridize samples to GeneChip Mouse Gene ST 1.0 ST Array 576 577 (Affymetrix). Signals were scanned with the Genechip Scanner 3000 7G, and obtained 578 data were analyzed with Affymetrix Expression Console software (Affymetrix). The gene expression was analyzed using GeneSpring (Silicon Genetics). Functional 579

580	enrichment analysis of differentially expressed genes from the data of microarray
581	analysis was performed using DAVID Bioinformatics Resources ^{43, 44} . Data were
582	deposited in NCBI as a GSE140411.
583	To identify target genes by IL-11 in the colon, we intravenously injected 10
584	μ g of IL-11R agonist into wild-type mice (n=2-3 mice). Generation, purification, and
585	characterization of IL-11R agonist were described previously ²² . Mice were sacrificed at
586	3 hours after injection. Total RNAs were extracted from the colon of mice by using
587	Sepasol II Super. Labeled cRNA were prepared from total RNA using the Agilent's
588	Quick Amp Labeling Kit (Agilent). Following fragmentation, cRNA were hybridized to
589	SurePrint G3 Mouse Gene Expression 8x60K (Agilent) according to the manufacturer's
590	instruction. Raw data were extracted using the software provided by Agilent Feature
591	Extraction Software (v11.0.1.1). The raw data for same gene was then summarized
592	automatically in Agilent feature extraction protocol to generate raw data text file,
593	providing expression data for each gene probed on the array. Array probes that have
594	Flag A in samples were filtered out. Selected processed signal value was transformed by
595	logarithm and normalized by quantile method. Statistical significance of the expression

596	data was determined using fold change and LPE test in which the null hypothesis was
597	that no difference exists among 2 groups. Hierarchical cluster analysis was performed
598	using complete linkage and Euclidean distance as a measure of similarity.
599	Gene-Enrichment and Functional Annotation analysis for significant probe list was
600	performed using Gene Ontology (http://geneontology.org). All data analysis and
601	visualization of differentially expressed genes was conducted using R 3.0.2
602	(www.r-project.org). Data were deposited in NCBI as a GEO accession number
603	GSE141643.

604

605 Immunohistochemistry (IHC)

Tissues were fixed in 10% formalin and embedded in paraffin blocks. Paraffin-embedded colonic sections were used for H&E staining, immunohistochemical, and immunofluorescence analyses. For immunohistochemistry, paraffin-embedded sections were treated with Instant Citrate Buffer Solution (RM-102C, LSI Medicine) or Target Retrieval Solution (S1699, Dako) as appropriate to retrieve antigen. Then tissue sections were stained with the indicated antibodies, followed by visualization of

612	Alexa-conjugated secondary antibodies, or biotin-conjugated secondary antibodies
613	followed by Streptavidin-HRP (Vector Laboratories).
614	In human tumor samples, tissue sections were preincubated with $MaxBlock^{TM}$
615	Autofluorescence Reducing Kit (MaxVision Biosciences) according to the
616	manufacturer's instructions. After blocking, tissue sections were stained with the
617	indicated antibodies as described above.
618	Pictures were obtained with an all-in-one microscope (BZ-X700, Keyence) or
619	BX-63 (Olympus) and analyzed with BZ-X Analyzer (Keyence) or cellSens (Olympus)
620	software. Confocal microscopy was performed on an LSM 880 (Zeiss) or A1R (Nikon).
621	Images were processed and analyzed using the ZEN software (Zeiss) or the
622	NIS-Elements (Nikon).
623	
624	Histological scoring of severity of colitis

Severity of colitis was evaluated by the following criteria, including infiltration of 625 inflammatory cells and the degree of tissue damage as previously described 45. 626 Infiltration of inflammatory cells; 0, the presence of rare inflammatory cells in the 627

628	colonic lamina propria; 1, increased numbers of inflammatory cells; 2, confluence of
629	inflammatory cells; 3, extending of inflammatory cells into the submucosa and
630	transmural extension of the inflammatory cell infiltrate. The degree of tissue damage; 0,
631	absence of mucosal damage; 1, discrete focal lymphoepithelial lesions; 2, mucosal
632	erosion and ulceration; 3, extensive mucosal damage and extension through deeper
633	structure of the intestinal tract wall. Total severity scores ranging from 0 to 6 represent
634	that 0 and 6 indicate no changes and extensive cell infiltration with tissue damage,
635	respectively.

636

Organoid Culture and transplantation of tumor organoids 637

638	Mouse colon organoids were established from isolated crypts of wild-type mice as
639	previously described with slight modification ⁴⁶ . Obtained colonic organoids were
640	cultured in Advanced DMEM/F12 (Thermo Fisher Scientific) containing 10 mM
641	HEPES (Thermo Fisher Scientific), 1 x GlutaMAX (Thermo Fisher Scientific), 1 x B27
642	(Thermo Fisher Scientific), N-acetyl cysteine (1 μ M), murine epidermal growth factor
643	(50 ng/mL, Peprotech), murine Noggin (100 ng/mL, Peprotech), 0.5 mM A83-01

644	(Tocris), 3 μ M SB202190 (Sigma), 1 μ M nicotinamide (Sigma), Afamin and
645	Wnt3A-condition medium (CM) (final concentration of 50%) which was provided by J.
646	Takagi47 and R-spondin 1-CM (final concentration of 10%) (Trevigen).
647	The small intestinal tumor organoids from
648	<i>villin-CreER-Apc^{min/+}-Kras^{+/LSL-G12D}-Tgfbr2^{flox/flox}-Tp53^{+/LSL-R270H}</i> (AKTP) mice were
649	described previously ³⁵ . AKTP organoids were cultured in Advanced DMEM/F12
650	containing 10 mM HEPES, 1 x GlutaMAX, 1 x B27, N-acetyl cysteine (1 μ M), murine
651	epidermal growth factor (50 ng/mL), murine Noggin (100 ng/mL).
652	For transplantation, AKTP organoids were mechanically dissociated, and 3 \mathbf{x}
653	10^5 organoid cells mixed in Matrigel were injected into the subepithelial tissues of the
654	rectum of <i>Il11-Egfp</i> reporter mice. At five weeks after transplantation, tumors were
655	removed and subjected to histological analysis.
656	

Isolation and stimulation of colonic fibroblasts 657

658 To isolate colonic fibroblasts, single cell suspensions were prepared as described above and cultured in DMEM containing 10% FBS, 1% GlutaMAX (Thermo Fisher 659

660	Scientific),	10 mM	HEPES,	1%	MEM	Non-Essential	Amino	Acids	Solution	(100x))
-----	--------------	-------	--------	----	-----	---------------	-------	-------	----------	--------	---

- 661 (Nacalai Tesque), 100 U/mL Penicillin, 100 μg/mL Streptomycin, and 2.5 μg/mL of
- 662 Amphotericin B (Sigma). Culture medium was changed every day until colonic
- 663 fibroblasts started to grow spontaneously.
- To detect phosphorylation of STAT3 in colonic fibroblasts, colonic fibroblasts
- were stimulated with the indicated concentrations of IL-11 or IL-22 for 30 min. Total

and phosphorylated STAT3 were analyzed by Western blotting.

667

668 Western Blotting

669 Cells were lysed in a RIPA buffer (50mM Tris-HCl, pH 8.0, 150mM NaCl, 1% Nonidet

670 P-40, 0.5% deoxycholate, 0.1% SDS, 25 mM β-glycerophosphate, 1mM sodium

- orthovanadate, 1mM sodium fluoride, 1 mM PMSF, 1 μ g/ml aprotinin, and 1 μ g/ml
- 672 leupeptin). After centrifugation, cell lysates were subjected to SDS-PAGE and
- 673 transferred onto polyvinylidene difluoride membranes (Millipore). The membranes
- 674 were immunoblotted with the indicated antibodies. The membranes were developed
- 675 with Super Signal West Dura extended duration substrate (Thermo Scientific) and
- analyzed by Amersham Biosciences imager 600 (GE Healthcare). In some experiments,

- 677 blots were quantified using freeware program Fiji.
- 678

679 Enzyme-linked immunosorbent assay (ELISA)

680 Concentrations of murine IL-11 in the culture supernatants were determined by ELISA

according to the manufacturers' instruction (R&D Systems).

682

683 Knockdown of *Il11* by siRNAs

A human breast cancer cell line, MDA-MB-231 cells were provided by T. Sakamoto.

MDA-MB-231 cells were maintained in DMEM containing 10% FBS. MDA-MB-231

686 cells were transfected with control or *1111* siRNAs using Lipofectamine 2000

687 (Invitrogen) at a final concentration of 50 nM. At 36 h after transfection, knockdown

- 688 efficiency of IL-11 by siRNAs was analyzed by immunoblotting with anti-IL-11
- antibody using cell lysates. Stealth RNAiTM siRNAs Negative Control, Med GC and
- 690 human *1111*, NM_000641.3 (HSS179893, HSS179894, HSS179895) were purchased
- 691 from Thermo Fisher Scientific.
- 692

693 Comparison of the expression of enriched genes in IL-11⁺ IAFs between human

694 normal mucosa and colon cancer tissues

- 695 The publicly available data set (GSE33113) was obtained from the Gene Expression
- 696 Omnibus (GEO). This data set contains gene expression data from 90 colon cancer
- 697 patients and 6 healthy persons. The expression data of enriched genes in IL-11⁺ IAFs
- was retrieved from the data set (GSE33113) and their signaling intensities of each gene
- in normal mucosa and colon cancer tissues were compared.
- 700

701 Survival analysis

702	Two publicly available data sets (GSE17536 and GSE17537) were obtained from the
703	Gene Expression Omnibus (GEO). These data sets contain gene expression data and
704	disease-free survival information from 232 primary CRC patients. The expression levels
705	of enriched genes in IL-11 ⁺ IAFs in these data sets was classified by the hierarchical
706	clustering. Each enriched gene in IL-11 ⁺ IAFs was correlated with survival using the
707	Kaplan-Meier method. Statistical significance was analyzed by Mantel-Cox log-rank
708	test. R software was used for all statistical analysis.

709

710 Human colorectal cancer tissues

711	Human colon tumors and adjacent normal tissues were obtained from Toho University
712	Omori Medical Center and analyzed in accordance with approval by the Ethics
713	Committee of Toho University School of Medicine (A16111). Colon tumors included 10
714	cases of adenomas, 10 cases of early cancers, and 10 cases of advanced cancers.
715	Histological assessment of adenomas and adenocarcinomas was according to the
716	guidelines of the World Health Organization ⁴⁸ . Early and advanced colon cancers were
717	determined according to the TNM criteria (pT1, early cancer; pT2-4, advanced
718	cancers) ⁴⁹ .
719	

720 Statistical analysis

Statistical significance was determined by the unpaired two-tailed Student's *t*-test, Mann-Whitney U test, two-way ANOVA with Boniferroni's test, or one-way ANOVA with Tukey's post-hoc test, Mantel-Cox log-rank test as indicated. *p < 0.05 was considered to be statistically significant. All statistical analysis was performed with

725 Graph Pad Prism 7 software (GraphPad Software).

732 ACKNOWLEDGEMENTS

733	We thank T. Sakamoto for MDA-MB-231 cells. We also thank Y. Kurashima, H. Kiyono,
734	M. Kikkawa, M. Aoki, A. Nakajima, E. Tosti, and L.S. Lopez for technical advice. This
735	work was supported in part by Grants-in-Aid for Scientific Research (B) 17H04069 (to
736	HN); Young Scientists (B) 17K15626 (to TN); Grants-in-Aid for Scientific Research
737	(C) 26460397 (to TN); Challenging Exploratory Research 17K19533 (to HN) from
738	Japan Society for the Promotion of Science (JSPS); Scientific Research on Innovative
739	Areas 26110003 (to HN); the Japan Agency for Medical Research and Development
740	(AMED) through AMED-CREST (JP19gm1210002, to HN); Private University
741	Research Branding project (to TM and HN) from the MEXT (Ministry of Education,
742	Culture, Sports, Science and Technology), Japan; and research grants from the Uehara
743	Memorial Foundation (to TN) and the Takeda Science Foundation (to TN).
744	

745 AUTHOR CONTRIBUTIONS

746 T.N. and H.N. designed research; T.N., Y.D., W.T., M.O., D.O., S.Y., M.K., E.N., Y.K.,

747 S.A-A., M.H., N.I., and N.T. performed research; M.N., M.O., H.Y., K.S., and T.M.

- 748 contributed to new reagents/analytical tools; T.N., Y.D., W.T., D.O., N.I., and H.N.
- analyzed data; T.N., N.I., and H.N. wrote the paper.

750

751 CONFLICT OF INTEREST

752 The authors declare that they do not have competing financial interests.

753

754

755

756

REFERENCES

758	1.	Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function
759		and immune homeostasis. Nat Rev Immunol 14, 141-153 (2014).
760		
761	2.	Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A. Wound repair: role
762		of immune-epithelial interactions. Mucosal Immunol 8, 959-968 (2015).
763		
764	3.	Kurashima Y, Kiyono H. Mucosal Ecological Network of Epithelium and
765		Immune Cells for Gut Homeostasis and Tissue Healing. Annu Rev Immunol 35,
766		119-147 (2017).
767		
768	4.	Powell DW, Pinchuk IV, Saada JI, Chen X, Mifflin RC. Mesenchymal cells of
769		the intestinal lamina propria. Annu Rev Physiol 73, 213-237 (2011).
770		
771	5.	Nowarski R, Jackson R, Flavell RA. The Stromal Intervention: Regulation of
772		Immunity and Inflammation at the Epithelial-Mesenchymal Barrier. Cell 168,
773		362-375 (2017).
774		
775	6.	Isella C, et al. Stromal contribution to the colorectal cancer transcriptome. Nat
776		Genet 47 , 312-319 (2015).
777		
778	7.	Calon A, et al. Stromal gene expression defines poor-prognosis subtypes in
779		colorectal cancer. Nat Genet 47, 320-329 (2015).
780		
781	8.	Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon
782		Cancer. Gastroenterology 152, 964-979 (2017).
783		
784	9.	Smillie CS, et al. Intra- and Inter-cellular Rewiring of the Human Colon during
785		Ulcerative Colitis. Cell 178, 714-730.e722 (2019).
786		
787	10.	Su S, et al. CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer

788 789		Formation and Chemoresistance by Sustaining Cancer Stemness. <i>Cell</i> 172 , 841-856 e816 (2018).
790		041-050 0010 (2010).
791	11.	Putoczki T, Ernst M. More than a sidekick: the IL-6 family cytokine IL-11 links
792		inflammation to cancer. J Leukoc Biol 88, 1109-1117 (2010).
793		
794	12.	Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in
795		inflammatory diseases and cancer. Nat Rev Immunol 18, 773-789 (2018).
796		
797	13.	West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines.
798		<i>Front Immunol</i> 10 , 1093 (2019).
799 800	14	Cibaan DL at al Interlaybin 11 and year TI D4 in dyood calific in
800 801	14.	Gibson DL, <i>et al.</i> Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. <i>Gastroenterology</i>
801		139 , 1277-1288 (2010).
802		139, 1277-1200 (2010).
804	15.	Kiessling S, et al. Functional expression of the interleukin-11 receptor
805		alpha-chain and evidence of antiapoptotic effects in human colonic epithelial
806		cells. J Biol Chem 279, 10304-10315 (2004).
807		
808	16.	Yoshizaki A, Nakayama T, Yamazumi K, Yakata Y, Taba M, Sekine I.
809		Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal
810		adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of
811		human colorectal carcinoma cells. Int J Oncol 29, 869-876 (2006).
812		
813	17.	Putoczki TL, et al. Interleukin-11 is the dominant IL-6 family cytokine during
814		gastrointestinal tumorigenesis and can be targeted therapeutically. <i>Cancer Cell</i>
815		24 , 257-271 (2013).
816	10	
817	18.	Molet S, <i>et al.</i> IL-17 is increased in asthmatic airways and induces human bronchial fibrablests to produce systekings. <i>LAlleren Clin Immunol</i> 108 , 430, 438
818 819		bronchial fibroblasts to produce cytokines. <i>J Allergy Clin Immunol</i> 108 , 430-438 (2001).
819		(2001).
020		

821	19.	Andoh A, et al. Interleukin-22, a member of the IL-10 subfamily, induces
822		inflammatory responses in colonic subepithelial myofibroblasts.
823		Gastroenterology 129, 969-984 (2005).
824		
825	20.	Bamba S, Andoh A, Yasui H, Makino J, Kim S, Fujiyama Y. Regulation of IL-11
826		expression in intestinal myofibroblasts: role of c-Jun AP-1- and
827		MAPK-dependent pathways. Am J Physiol Gastrointest Liver Physiol 285,
828		G529-538 (2003).
829		
830	21.	Tang W, Yang L, Yang YC, Leng SX, Elias JA. Transforming growth factor-beta
831		stimulates interleukin-11 transcription via complex activating
832		protein-1-dependent pathways. J Biol Chem 273, 5506-5513 (1998).
833		
834	22.	Nishina T, et al. Interleukin-11 links oxidative stress and compensatory
835		proliferation. Sci Signal 5, ra5 (2012).
836		
837	23.	Nishina T, et al. Critical Contribution of Nuclear Factor Erythroid 2-related
838		Factor 2 (NRF2) to Electrophile-induced Interleukin-11 Production. J Biol Chem
839		292 , 205-216 (2017).
840		
841	24.	Calon A, et al. Dependency of colorectal cancer on a TGF-beta-driven program
842		in stromal cells for metastasis initiation. Cancer Cell 22, 571-584 (2012).
843		
844	25.	Zhang X, et al. IL-11 Induces Th17 Cell Responses in Patients with Early
845		Relapsing-Remitting Multiple Sclerosis. J Immunol 194, 5139-5149 (2015).
846		
847	26.	Klein W, et al. A polymorphism in the IL11 gene is associated with ulcerative
848		colitis. Genes Immun 3 , 494-496 (2002).
849		
850	27.	Sabzevary-Ghahfarokhi M, et al. The expression analysis of Fra-1 gene and
851		IL-11 protein in Iranian patients with ulcerative colitis. BMC Immunol 19, 17
852		(2018).
853		

854	28.	Strikoudis A, et al. Modeling of Fibrotic Lung Disease Using 3D Organoids
855		Derived from Human Pluripotent Stem Cells. Cell Rep 27, 3709-3723 e3705
856		(2019).
857		
858	29.	Schafer S, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature
859		552 , 110-115 (2017).
860		
861	30.	Neufert C, Becker C, Neurath MF. An inducible mouse model of colon
862		carcinogenesis for the analysis of sporadic and inflammation-driven tumor
863		progression. Nat Protoc 2, 1998-2004 (2007).
864		
865	31.	Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel
866		inflammation-related mouse colon carcinogenesis model induced by
867		azoxymethane and dextran sodium sulfate. Cancer Sci 94, 965-973 (2003).
868		
869	32.	Moser AR, Pitot HC, Dove WF. A Dominant Mutation That Predisposes to
870		Multiple Intestinal Neoplasia in the Mouse. Science 247, 322-324 (1990).
871		
872	33.	Su LK, et al. Multiple Intestinal Neoplasia Caused by a Mutation in the Murine
873		Homolog of the Apc Gene. Science 256, 668-670 (1992).
874		
875	34.	Deguchi Y, et al. Generation of and characterization of anti-IL-11 antibodies
876		using newly established Il11-deficient mice. Biochem Biophys Res Commun 505,
877		453-459 (2018).
878		
879	35.	Sakai E, et al. Combined Mutation of Apc, Kras, and Tgfbr2 Effectively Drives
880		Metastasis of Intestinal Cancer. Cancer Res 78, 1334-1346 (2018).
881		
882	36.	Pickert G, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to
883		mucosal wound healing. J Exp Med 206, 1465-1472 (2009).
884		
885	37.	Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program
886		Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the

887		Associated Therapeutic Strategies. Int J Mol Sci 20, (2019).
888		
889	38.	Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in
890		the tumour microenvironment. Nat Rev Immunol 15, 669-682 (2015).
891		
892	39.	Dasch JR, Pace DR, Waegell W, Inenaga D, Ellingsworth L. Monoclonal
893		antibodies recognizing transforming growth factor-beta. Bioactivity
894		neutralization and transforming growth factor beta 2 affinity purification. J
895		Immunol 142, 1536-1541 (1989).
896		
897	40.	Nandurkar HH, Robb L, Tarlinton D, Barnett L, Kontgen F, Begley CG. Adult
898		mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display
899		normal hematopoiesis. Blood 90, 2148-2159 (1997).
900		
901	41.	Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol
902		<i>Reprod</i> 52 , 709-720 (1995).
903		
904	42.	Viennois E, Chen F, Laroui H, Baker MT, Merlin D. Dextran sodium sulfate
905		inhibits the activities of both polymerase and reverse transcriptase: lithium
906		chloride purification, a rapid and efficient technique to purify RNA. BMC Res
907		<i>Notes</i> 6 , 360 (2013).
908		
909	43.	Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths
910		toward the comprehensive functional analysis of large gene lists. Nucleic Acids
911		<i>Research</i> 37 , 1-13 (2009).
912		
913	44.	Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
914		large gene lists using DAVID bioinformatics resources. Nature Protocols 4,
915		44-57 (2009).
916		
917	45.	Lochner M, et al. Microbiota-induced tertiary lymphoid tissues aggravate
918		inflammatory disease in the absence of RORgamma t and LTi cells. J Exp Med
919		208 , 125-134 (2011).

921	46.	Sato T, et al. Long-term expansion of epithelial organoids from human colon,
922		adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141,
923		1762-1772 (2011).
924		
925	47.	Mihara E, et al. Active and water-soluble form of lipidated Wnt protein is
926		maintained by a serum glycoprotein afamin/alpha-albumin. <i>Elife</i> 5, (2016).
927		
928	48.	Aaltonen LA, Hamilton SR, World Health Organization., International Agency
929		for Research on Cancer. Pathology and genetics of tumours of the digestive
930		system. IARC Press;
931	Oxfor	d University Press (distributor (2000).
932		
933	49.	Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer.
934		TNM classification of malignant tumours, 7th edn. Wiley-Blackwell (2010).
935		
026		
936		
937		
937		
938		
939		
040		
940		
041		
941		

942 FIGURE LEGENDS

943	Fig. 1. Characterization of IL-11 ⁺ Cells in CAC Using <i>1111-Egfp</i> Reporter Mice. a
944	Protocol for induction of AOM/DSS-induced CAC in mice. Il11-Egfp reporter mice
945	were intraperitoneally injected with AOM on day 0, followed by repeated DSS
946	administration. Colorectal cancer gradually develops on ~30 days after AOM injection.
947	Unless otherwise indicated, the following experiments used tumor and nontumor tissues
948	collected on day 98–105 after AOM/DSS treatment. b Representative image of tumor
949	and adjacent nontumor tissues in the colon of mice on day 77 after AOM injection.
950	Colonic sections were stained with hematoxylin & eosin (H&E). Scale bar, 200 $\mu m.~c$
951	Prepared mRNA samples from tumor and nontumor tissues were analyzed by qPCR to
952	determine expression of the indicated genes. Results are mean \pm SE (n = 6–10 mice). d ,
953	e From colonic tumor tissues of wild-type or Ill1-Egfp reporter mice, single-cell
954	suspensions were prepared, and percentages of IL-11 ⁺ cells were determined.
955	Representative flow cytometry images are shown (d). Results are mean \pm SE (n = 7
956	mice). Cells were stained with the indicated antibodies, and expression on $EGFP^+$ cells
957	was analyzed by flow cytometry (e). Results are representative of four independent

958	experiments. f Nontumor and tumor tissue sections were stained with anti-GFP antibody.
959	Scale bars, 100 μ m. g , h Tumor sections were stained with the indicated antibodies (red)
960	and with anti-GFP antibody (green) ($n = 3$ mice). Right panels show enlarged images of
961	white boxes from left panels. White arrowheads indicate merged cells. Scale bars, 100
962	μ m, unless otherwise indicated. Statistical significance was determined by two-tailed
963	unpaired Student's <i>t</i> -test (c , d). *p < 0.05; **p < 0.01; ***p < 0.001.
964	
965	Fig. 2. $IL-11^+$ Cells Appear in Tumor Tissues in the Absence of Inflammation. a
966	Elevated <i>II11</i> and <i>Egfp</i> expression in colonic tumors from <i>Apc^{min/+};II11-Egfp</i> reporter
967	mice. Experiments were performed using tumor and nontumor tissues from the colon of
968	20- to 24-week-old Apc ^{min/+} ;III1-Egfp reporter mice. II11 and Egfp mRNA expression
969	was determined by qPCR. Results are mean \pm SE (n = 5 mice). b Colonic tissue sections
970	from <i>Apc^{min/+};II11-Egfp</i> reporter mice were stained with H&E (upper panels) or
971	anti-GFP antibody (lower panels). Middle and right panels, respectively, show
972	enlargements of the black and red boxes from the left panels. Red arrowheads indicate
973	tumor cells. Scale bar, 100 μ m. c, d IL-11 ⁺ cells express stromal cell markers and, to a

974	lesser extent, hematopoietic or epithelial cell markers. Colonic cells were prepared from
975	tumors of Apc ^{min/+} ;Il11-Egfp reporter mice, stained with the indicated antibodies, and
976	analyzed by flow cytometry. Percentages of $IL-11^+$ cells were determined (c). Results
977	are mean \pm SE (n = 3 mice). Representative histograms show expressions of the
978	indicated markers on EGFP ^{$+$} cells (d). Results are representative of three independent
979	experiments. $e-g$ Characterization of IL-11 ⁺ cells by IHC. Colonic tumor sections from
980	Apc ^{min/+} ;Il11-Egfp reporter mice were stained with the indicated antibodies (red) and
981	anti-GFP antibody (green). White arrowheads indicate merged cells. Scale bar, 100 μ m,
982	unless otherwise indicated. Statistical significance was determined by two-tailed
983	unpaired Student's <i>t</i> -test (a , c). ** $p < 0.01$; *** $p < 0.001$.
984	
985	Fig. 3. IL-11 ⁺ Cells Appear in the Colon of DSS-Treated Mice and Express Stromal Cell
986	Marker. a <i>Ill1-Egfp</i> reporter mice were treated with 1.5% DSS in drinking water for 5
987	days, followed by a change to regular water. On day 7 after DSS treatment, <i>Il11</i> and
988	<i>Egfp</i> mRNA expression in the colon was determined by qPCR. Results are mean \pm SE
989	(n = 9 mice). b , c Appearance of $IL-11^+$ cells in submucosal tissues of the colon of

990	1111-Egfp reporter mice on post-DSS treatment day 5 (b) or day 1 (c). Colonic tissue
991	sections from untreated or DSS-treated Il11-Egfp reporter mice were H&E stained or
992	immunostained with anti-GFP antibody. Right panels show enlargements of the boxes
993	(b). Scale bar, 100 μ m. d , e Characterization of cell surface markers on IL-11 ⁺ cells.
994	Colonic cells were prepared from the colon of <i>ll11-Egfp</i> reporter mice as in (b). We
995	determined the percentages of $EGFP^+$ (IL-11 ⁺) cells from the colon before and after
996	DSS treatment (d). Cells were stained with the indicated antibodies, and marker
997	expressions were analyzed on GFP-positive cells (e). Results are representative of three
998	independent experiments. f Representative immunostaining of $IL-11^+$ cells. Colonic
999	tissue sections were prepared from <i>Il11-Egfp</i> reporter mice as in (b), and
1000	immunostained with the indicated antibodies and anti-GFP antibody. Results are merged
1001	images. Right panels are enlarged images from the boxes (n = $3-4$ mice). White
1002	arrowheads indicate merged cells. g IL-11 ⁺ cells do not proliferate in situ. Il11-Egfp
1003	reporter mice were treated with DSS as in (a), and intraperitoneally administered BrdU
1004	(40 mg/kg) on day 6. On day 7, colonic sections were prepared and stained with
1005	anti-GFP and anti-BrdU antibodies. Results are representative images from three

1006	independent experiments. Scale bars, 100 µm, unless otherwise indicated. Statistical
1007	significance was determined by two-tailed unpaired Student's <i>t</i> -test (a). $*p < 0.05$.
1008	
1009	Fig. 4. IL-11 ⁺ Cells Express Genes Associated with Cell Proliferation and Tissue Repair.

1010 On day 7 after DSS treatment, cells were isolated from the colon of *Ill1-Egfp* reporter

1011 mice, and IL-11⁺ cells (EGFP⁺) were sorted by flow cytometry. We isolated mRNA

1012 from IL-11⁻ and IL-11⁺ cells, and analyzed the gene expression by microarray analysis

1013 (n = 3). **a** Heat map of microarray gene expression of IL-11^- and IL-11^+ cells. Legend

1014 on right shows gene-expression color normalized by Z-score transformation. **b** Volcano

1015 plot of whole genes. Horizontal line indicates genes differentially regulated in IL-11⁺

1016 cells compared to IL-11⁻ cells, shown in log2. Vertical line indicates p values of

1017 statistical significance, shown in -log10. Significantly upregulated and downregulated

1018 genes are indicated by red and blue dots, respectively. Several upregulated genes are

1019 plotted. **c** Gene Ontology (GO) terms that were significantly enriched in $IL-11^+$ cells

1020 compared to IL-11⁻ cells. **d**, **e** Gene expressions were analyzed by qPCR. Results are

1021 mean \pm SE (n = 4 mice). Statistical significance was determined by two-tailed unpaired

1022 Student's *t*-test (**c**, **d**). *
$$p < 0.05$$
; ** $p < 0.01$; *** $p < 0.001$; ns, not significant.

1024	Fig. 5. The MEK/ERK Pathway is Involved in <i>Il11</i> Upregulation in Tumor Tissues. a, b
1025	Wild-type mice were treated with DSS with or without NAC (a) or Abx (b). Colonic
1026	cells were prepared and stained with CellRox-green, and ROS accumulation was
1027	analyzed by flow cytometry. Left panels show representative histograms of ROS levels
1028	in colonic cells. Right panels show percentages of CellRox-green-positive cells of an
1029	individual mouse. Results are mean \pm SE (n = 3–4 mice). c Wild-type mice were treated
1030	as in A. Colonic expressions of 16S rRNA, Hmox1, and Il11 mRNA were determined by
1031	qPCR. Results are mean \pm SE (n = 11). d Abx blocked <i>Il11</i> mRNA upregulation in the
1032	colon of DSS-treated mice. Wild-type mice were untreated or treated with DSS in the
1033	absence or presence of Abx. On day 7 after DSS treatment, qPCR was performed to
1034	determine the expression of bacterial 16S rRNA and Il11 mRNA in the colon. Results
1035	are mean \pm SE (n = 10). e , f Trametinib inhibits ERK phosphorylation and <i>Il11</i> mRNA
1036	expression in the colon of DSS-treated mice. Wild-type mice were treated with DSS in
1037	the absence or presence of trametinib, and then colonic sections were prepared and

1038	stained with anti-pERK antibody (e). Scale bars, 100 μ m. <i>Il11</i> mRNA expression was
1039	determined by qPCR (f). Results are mean \pm SE (n = 13–14). g NAC inhibits ERK
1040	phosphorylation in the colon of DSS-treated mice. Wild-type mice were treated with
1041	DSS in the absence or presence of NAC in the drinking water for 5 days. Colonic
1042	sections were stained with anti-pERK antibody. Results are representative of three
1043	independent experiments. Scale bar, 100 μ m. h Tgfbs expression in the colon of
1044	DSS-treated wild-type mice. Wild-type mice were treated with DSS as in Fig. 4a. On
1045	day 7 after DSS treatment, qPCR was performed to determine Tgfb1, Tgfb2, and Tgfb3
1046	mRNA expression in the colon. Results are mean \pm SE (n = 8–10 mice). i Treatment
1047	with anti-TGF β antibody does not downregulate <i>Il11</i> mRNA expression in the colon of
1048	DSS-treated mice. Mice were intraperitoneally administered 100 μg anti-TGF β
1049	antibody on days 2 and 4 after DSS administration, and sacrificed on day 5. Ill1 mRNA
1050	expression was determined by qPCR. Results are mean \pm SE (n = 11-16 mice). j
1051	Schema of administration of various inhibitors in AOM/DSS-treated mice. Mice were
1052	treated with Abx for 8 weeks, NAC for 4 weeks, trametinib at -6 and -30 hours, or
1053	anti-TGF β antibody on day -1, -3, -5 (just before sacrifice). k–m, o Mice were treated

as in Figure 1A, and then treated with Abx (\mathbf{k}) (n = 7–9 mice), NAC (\mathbf{l}) (n = 7–11 mice),

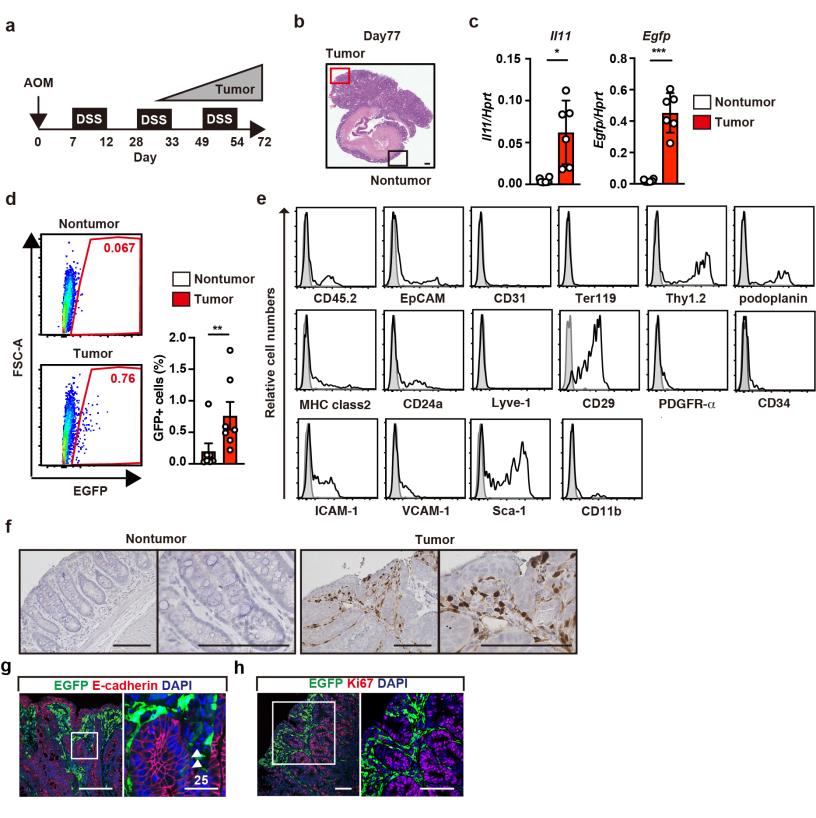
1054

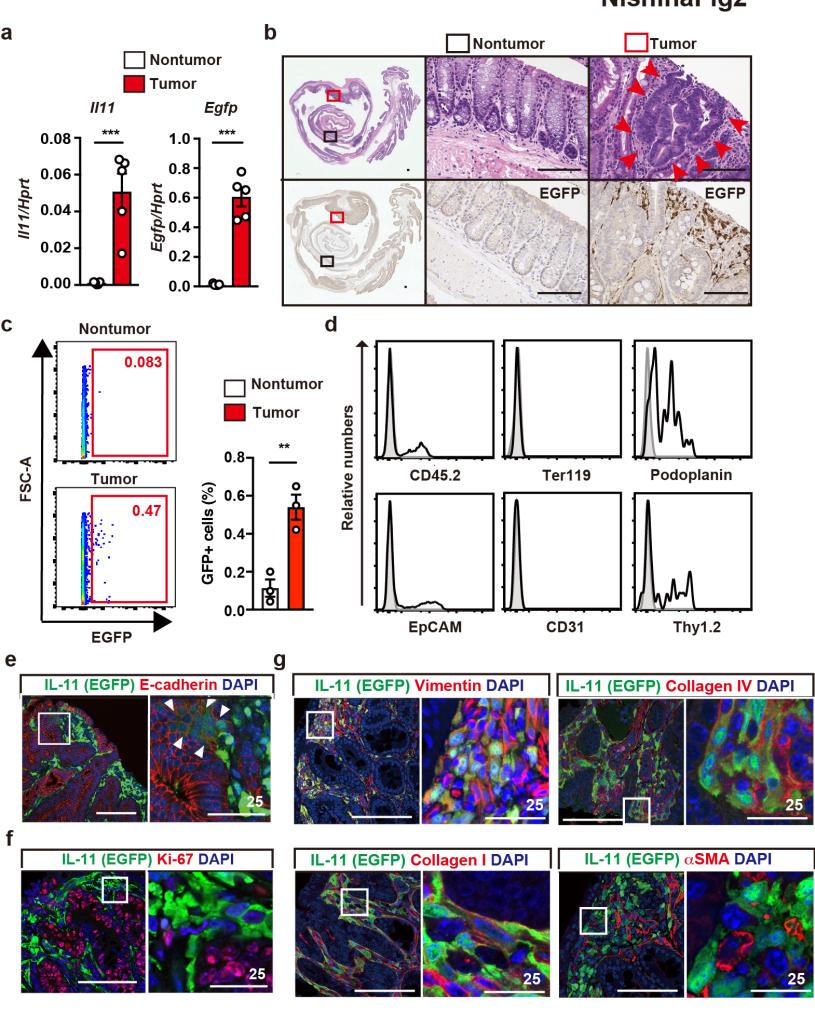
1055	trametinib (m) (n = 10–12 mice), or anti-TGF β antibody (n = 6–7 mice) (o) as in (j). On
1056	day 98-105 after AOM injection, mRNA was extracted from tumor and non-tumor
1057	tissues, and <i>Il11</i> expression was determined by qPCR. Results are mean \pm SE. n Mice
1058	were treated as in Fig. 1a. Tgfb1, Tgfb2, and Tgfb3 expressions in tumor and nontumor
1059	tissues were determined by qPCR. Results are mean \pm SE (n = 7 mice). Statistical
1060	significance was determined using the unpaired two-tailed Student's t-test (c, h),
1061	Mann-Whitney U test (f, i), two-way ANOVA with Bonferroni's test (d, k, l, m, o), or
1062	one-way ANOVA with Tukey's post-hoc test (a, b). *p < 0.05; **p < 0.01; ***p <
1063	0.001; ns, not significant.
1064	

Fig. 6 IL-11 Preferentially Induces Signals to Fibroblasts. **a** Relative expressions of *Ill1ra1*, *Il22ra1*, and *Il6st* in colonic epithelial organoids and colonic fibroblasts. Colonic epithelial organoids and fibroblasts were established from wild-type mice as described in the methods. Expressions of the indicated genes were determined by qPCR. Results are mean \pm sd of triplicate samples and representative of two independent

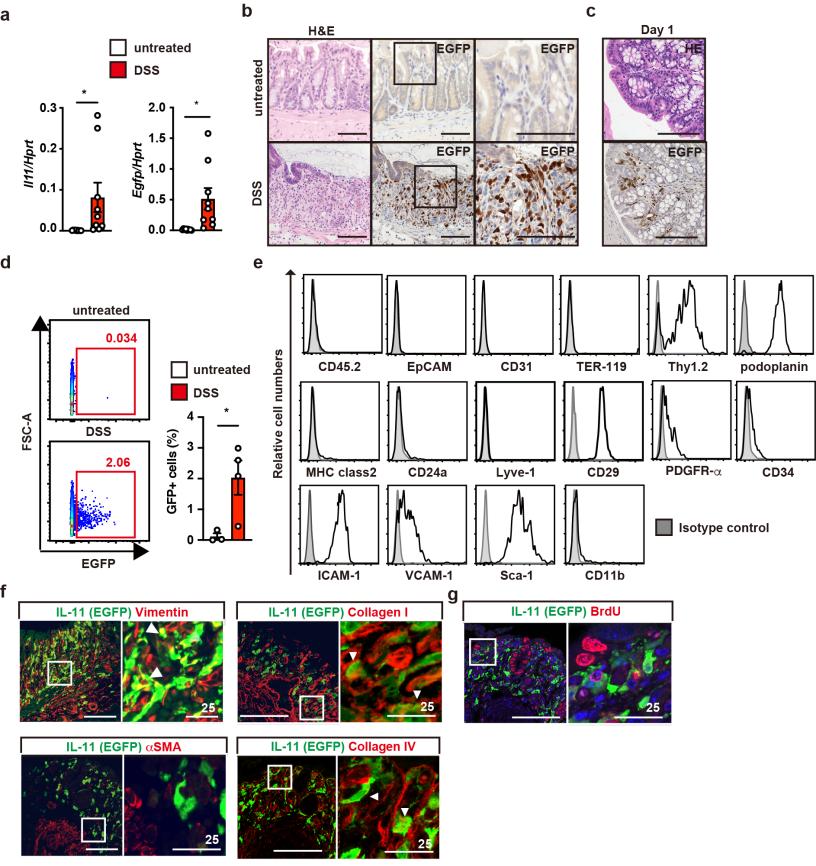
1070	experiments. b Colonic epithelial organoids and fibroblasts were unstimulated or
1071	stimulated for 30 min with IL-11 (10 or 100 ng/mL) or IL-22 (10 or 100 ng/mL). Total
1072	STAT3 and phosphorylated STAT3 (pSTAT3) were analyzed by Western blotting.
1073	STAT3 and pSTAT3 signaling intensities were calculated by Fiji, and the relative ratio
1074	of pSTAT3/STAT3 is shown. Results are representative of two independent experiments.
1075	c Administration of IL-11R agonist induces expression of the genes expressed in IL-11 ⁺
1076	cells. We injected 8-week-old wild-type mice with 10 μg IL-11R agonist. At 3 hours
1077	after injection, mRNA was isolated from the colon, and gene expressions were analyzed
1078	by microarray analysis ($n = 2$ for untreated samples; $n = 3$ for injected samples). Heat
1079	map of microarray gene expression in the colon of untreated and treated mice (c) .
1080	Legend on the right shows gene-expression color normalized by Z-score transformation.
1081	d Volcano plot of whole genes. Horizontal line indicates differentially regulated genes
1082	in the colon after IL-11R agonist injection compared to before injection, shown in log2.
1083	Vertical line indicates p values of statistical significance, shown in -log10. Significantly
1084	upregulated genes are indicated by red dots. Several upregulated genes are plotted. e
1085	Venn diagram of genes elevated in IL-11 ⁺ IAFs compared to IL-11 ⁻ cells, and genes

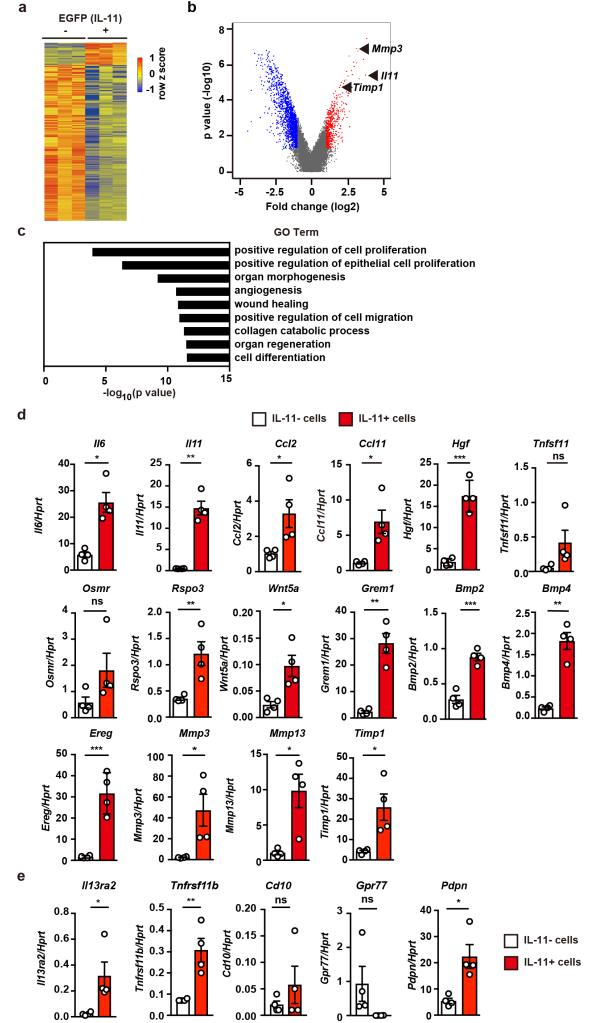
elevated in the colon with IL-11R agonist treatment compared to untreated colon.

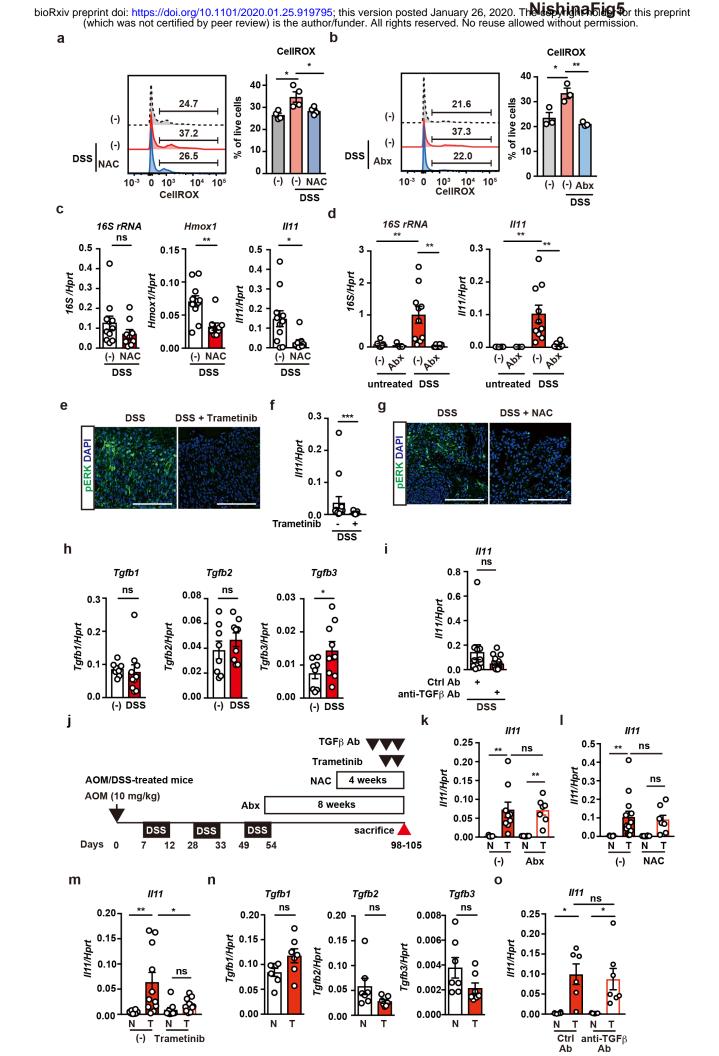

1086

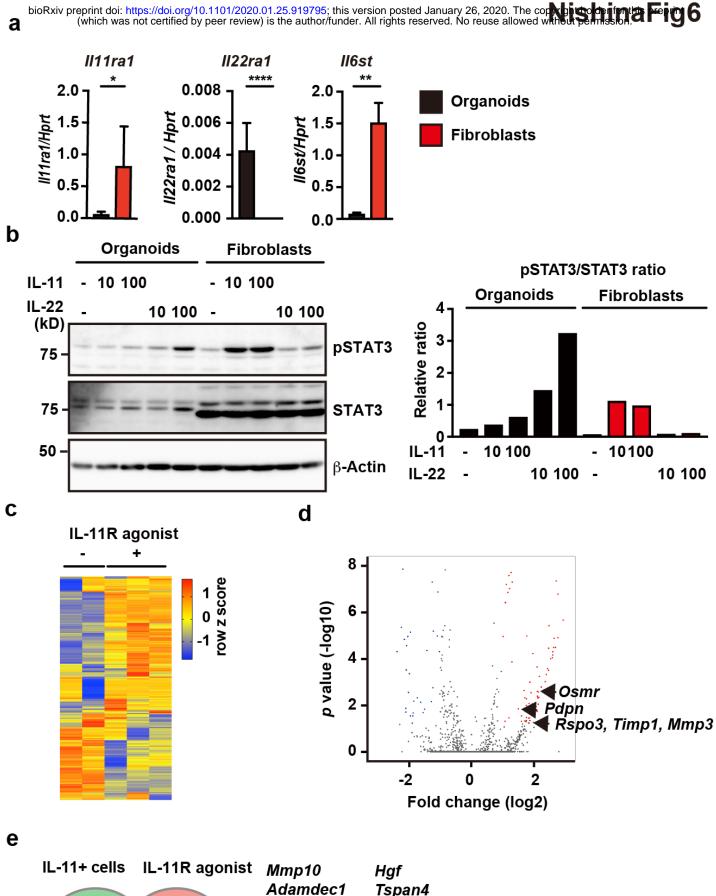

1087	Overlapping area includes 18 genes. Statistical significance was determined by
1088	two-tailed unpaired Student's <i>t</i> -test (a). * $p < 0.05$; ** $p < 0.01$; **** $p < 0.0001$.
1089	
1090	Fig. 7. IL-11 Expression is Correlated with Progression of Human Cancers. a
1091	Specificity of anti-IL-11 antibody used in the study. MDA-MB-231 cells were treated
1092	with control or three different siRNAs against human <i>Ill1</i> , and IL-11 expression in cell
1093	lysates was analyzed by Western blotting with anti-IL-11 and anti-tubulin antibodies.
1094	Results are representative of two independent experiments. b-d Adenomas ($n = 10$),
1095	early (n = 10) and advanced (n = 10) colorectal cancers were stained with anti-IL-11
1096	antibody (b). Representative staining of respective tumors and adjacent normal tissues.
1097	Scale bars, 100 μ m. Areas (c) and intensities (d) of IL-11 ⁺ signals were calculated as in
1098	the methods. Results are mean \pm SE. e Tissues of advanced colorectal cancers were
1099	stained with anti-vimentin, anti-CD45, or anti-E-cadherin antibodies along with
1100	anti-IL-11 antibody ($n = 3$). Right panels are enlarged images of the white box in the

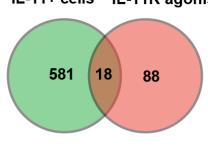
1101 left panels. Signaling intensities stained with the indicated antibodies on the white

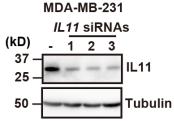

- 1102 arrows were calculated and plotted in the right panels. Scale bars, 100 µm. Statistical
- significance was determined by Mann-Whitney U test (c, d). **p < 0.01; ns, not
- 1104 significant.
- 1105
- 1106

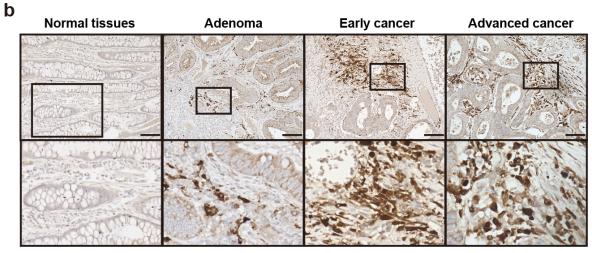

NishinaFig1

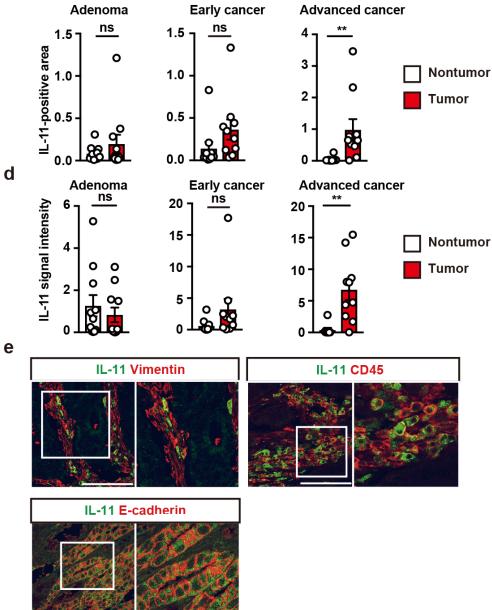











Mmp10 Adamdec1	Hgf Tanan f
Nbl1	Tspan4 Timp1
Mmp3	Cxcl5
Osmr	Chrdl2
Rasl11a	Gem
Serpina3m	lfitm1
ligp1	Pdpn Bana 2
Ccl7	Rspo3

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.25.919795; this version posted January 26, 2020. The single for group of the served. No reuse allowed without permission:

С

