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Abstract

Background: After mating, female mosquitoes need animal blood to develop their
eggs. In the process of acquiring blood, they may acquire pathogens, which may cause
different diseases to humans such as malaria, zika, dengue, and chikungunya. Therefore,
knowing the parity status of mosquitoes is useful in control and evaluation of infectious
diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be
potentially infectious. Ovary dissections, which currently are used to determine the
parity status of mosquitoes, are very tedious and limited to very few experts. An
alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can
estimate the age in days and the infectious state of laboratory and semi-field reared
mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of
NIRS for estimating the parity status of wild mosquitoes.
Methods and results: In this study, we train artificial neural network (ANN) models
on NIR spectra to estimate the parity status of wild mosquitoes. We use four different
datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae
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collected from Muleba, Tanzania (Muleba-GA); An. gambiae collected from Burkina
Faso (Burkina-GA); and An.gambiae from Muleba and Burkina Faso combined
(Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed
according to previous protocols. We then use autoencoders to reduce the spectra feature
dimensions from 1851 to 10 and re-train ANN models. Before the autoencoder was
applied, ANN models estimated parity status of mosquitoes in Minepa-ARA,
Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of
81.9± 2.8% (N=927), 68.7± 4.8% (N=140), 80.3± 2.0% (N=158), and 75.7± 2.5%
(N=298), respectively. With the autoencoder, ANN models tested on out-of-sample data
achieved 97.1± 2.2%, (N=927), 89.8± 1.7% (N=140), 93.3± 1.2% (N=158), and
92.7± 1.8% (N=298) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and
Muleba-Burkina-GA, respectively.
Conclusion: These results show that a combination of an autoencoder and an ANN
trained on NIR spectra to estimate parity status of wild mosquitoes yields models that
can be used as an alternative tool to estimate parity status of wild mosquitoes,
especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique
compared to ovary dissections.

Introduction

Evaluation of existing malaria control interventions such as insecticide-treated nets
(ITNs) and indoor residual spraying (IRS) relies upon, among other factors, the
assessment of the changes occurring in the mosquito parity structure prior to and after
implementation of an intervention [1–3]. The parity status of mosquitoes corresponds
with their capability to transmit Plasmodium parasites with an assumption that parous
mosquitoes are more highly capable than nulliparous mosquitoes, as they may have
accessed parasite-infected blood. A shift in the parity structure towards a population
with more nulliparous mosquitoes signifies a reduction in the risk of disease
transmission [1, 4, 5], as the chances that mosquitoes carry malaria parasite declines [6].

The current standard technique for estimating the parity status of female mosquitoes
involves dissection of their ovaries to separate mosquitoes into those that have
previously laid eggs, known as the parous group (assumed to be old and potentially
infectious), and those that do not have a gonotrophic history, known as the nulliparous
group (assumed to be young and non-infectious) [7]. Another standard technique also
based on the dissection of ovaries determines the number of times a female mosquito has
laid eggs [8]. However, both techniques are laborious, time consuming, and require
skilled technicians. These technical difficulties lead to analysis of small sample sizes that
often fail to capture the heterogeneity of a mosquito population.

Near infrared spectroscopy (NIRS) technology, complimented by techniques from
machine learning, has been demonstrated to be an alternative tool for predicting age,
species, and infectious status of laboratory and semi-field raised mosquitoes [9–20].
NIRS is a rapid, non-invasive, reagent-free technique that requires minimal skills to
operate, allowing hundreds of samples to be analyzed in a day. However, the accuracy of
NIRS techniques for predicting the parity status of wild mosquitoes has not been tested.
Moreover, recently, it has been reported that models trained on NIR spectra using an
artificial neural network (ANN) estimate the age of laboratory-reared An. arabiensis,
An.gambiae, Aedes aegypti, and Aedes albopictus with accuracies higher than models
trained on NIR spectra using partial least squares (PLS) [14].

In this study, we train ANN models on NIR spectra preprocessed according to an
existing protocol [12] to estimate the parity status of wild An. gambiae s.s and An.
arabiensis. We then apply autoencoders to reduce the spectra feature space from 1851
to 10 and re-train ANN models. The ANN model achieved an average accuracy of 72%
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and 93% before and after applying the autoencoder, respectively. These results strongly
suggest ANN models trained on autoencoded NIR spectra as an alternative tool to
estimate the parity status of wild An. gambiae and An. arabiensis. High-throughput,
non-invasive, reagent free, and simple to use NIRS analysis complements the limitations
of ovary dissections.

Materials and Methods

Ethics approvals: Ethics approvals for collecting mosquitoes in Minepa-ARA,
Burkina-GA and Muleba-GA datasets from residents’ homes were obtained from Ethics
Review Boards of the Ifakara Health Institute (IHI-IRB/No. 17-2015), the Colorado
State University (approval No. 09-1148H), and the Kilimanjaro Christian Medical
College (Certificate No. 781), respectively.

Data

We use data from wild An. arabiensis (Minepa-ARA) collected from Minepa, a village
in southeastern Tanzania (already published in [21] and available for reuse), from wild
An. gambiae s.s (Muleba-GA) collected from Muleba, northwestern Tanzania
(mosquitoes published in [22], permission to reuse obtained from the senior author), and
from wild An. gambiae s.s collected from Bougouriba and Diarkadou-gou villages in
Burkina Faso (Burkina-GA) (published in [10]and publicly available for reuse) .

Mosquitoes in the Minepa-ARA and Muleba-GA datasets were captured using CDC
light traps placed inside residential homes. Mosquitoes that were morphologically
identified as members of the Anopheles gambiae complex were further processed. Prior
to scanning, wild mosquitoes collected in Minepa were killed by freezing at -20oC for 20
minutes and left to re-equilibrate to room temperature for 30 minutes. Wild mosquitoes
collected in Muleba were killed using 75% ethanol, dissected according to the technique
described by Detinova [23] to determine their parity status, and preserved in silica gel.
Mosquitoes in Minepa-ARA were dissected after scanning. Following a previous
published protocol to collect spectra [12], mosquitoes in both Minepa-ARA and
Muleba-GA were scanned using a LabSpec 5000 near-infrared spectrometer with an
integrated light source (ASD Inc., Longmont, CO). After spectra collection, mosquitoes
in Minepa-ARA were dissected to score their parity status. Then polymerase chain
reaction (PCR) was conducted on DNA extracted from mosquito legs (in both
Minepa-ARA and Muleba-GA) to identify species type as previously described [24].
Each mosquito was labeled with a unique identifier code linking each NIR spectrum to
parity dissection and PCR information.

Data from wild An. gambiae s.s from Burkina Faso were published in [10] and
publicly available for reuse. These mosquitoes are referred to as independent test sets 2
and 3 (ITS 2 and ITS 3) in [10]. ITS 2 has 40 nulliparous and 40 parous mosquitoes,
and ITS 3 has 40 nulliparous and 38 parous mosquitoes. In this study, we combine these
two datasets into one dataset and refer it as Burkina-GA. Mosquitoes in Burkina-GA
(N = 158) were collected in 2013 in Burkina Faso from Bougouriba and Diarkadou-gou
villages using either indoor aspiration or a human baited tent trap, and their ovaries
were dissected according to the Detinova method [23]. Mosquitoes were preserved in
silica gel before their spectra were collected using a LabSpec4i spectrometer (ASD Inc.,
Boulder, CO, USA).
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Model training and testing

We trained models on four datasets, namely Minepa-ARA, Muleba-GA, Burkina-GA,
and Muleba-Burkina-GA (Muleba-GA and Burkina-GA combined). Before training
models, spectra in all four datasets were pre-processed according to the previously
published protocol [12] and divided into two groups (nulliparous and parous). Spectra
in the nulliparous and parous groups were labeled zero and one, respectively. The two
groups were then merged, randomized, and divided into a training set (75%; N = 927
for Minepa-ARA, N = 140 for the Muleba-GA, N = 158 for Burkina-GA and N = 298
for Muleba-Burkina-GA) and a test set (the remaining 25% in each dataset). On each
dataset, using ten Monte-Carlo cross validations [14,25] and Levenberg-Marquardt
optimization, a one hidden layer, ten-neuron feed-forward ANN model with logistic
regression as a transfer function was trained and tested in MATLAB (Fig 1).

Figure 1. Training and testing ANN model on spectra preprocessed accord-
ing to Mayagaya et al. [26]. ‘M’ is either Minepa-ARA, Muleba-GA, Burkina-GA,
or Muleba-Burkina-GA

Based on the accuracy of the model presented in Tables 2 and 3, and Figs 7 and 8 in
the Results and Discussion section, we explored how to improve the model accuracy.
Normally a parous class, unlike a nulliparous class, often is represented by a limited
number of samples, posing a problem of data imbalance during model training. In this
case, a large amount of data is required to obtain enough samples in a parous class for a
model to learn and characterize it accurately. Obtaining enough data for model training
is always challenging. The most common ways of dealing with the data imbalance are
either to discard samples from a nulliparous class to equal the number of samples in a
parous class or to bootstrap samples in a parous class [27]. However, discarding data to
equalize the data distribution in two classes in the training set leaves an imbalanced test
set. Also, it is this imbalanced scenario to which the model will be applied in real cases.
In addition, throwing away samples, especially from data sets with a high dimension
feature space, can lead to over-fitting the model. Alternatively, for datasets with a high
dimension feature space, instead of discarding data from a class with a large number of
samples, feature reduction techniques are employed [27]. Feature reduction reduces the
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size of the hypothesis space initially presented in the original data, thereby reducing the
size of data required to adequately train the model. Principal component analysis
(PCA) and partial least squares (PLS) are the commonly used unsupervised and
supervised feature reduction methods, respectively, especially for cases whose features
are linearly related [28, 29]. Autoencoders recently are used as an alternative to PCA in
cases involving both linear and non-linear relationships [30–33].

An autoencoder is an unsupervised ANN that learns both linear and non-linear
relationships present in data and represents them in a new reduced dimension data
space (which also can be used to regenerate the original data space) without losing
important information [34–36]. The autoencoder has two parts, the encoder part where
an original dataset is encoded to a desired reduced feature space (encoded dataset) and
the decoder part where the encoded dataset is decoded to an original dataset to
determine how accurately the encoded dataset represents the original dataset. Fig 2
illustrates an example of an autoencoder in which an 1850-feature dataset is stepwise
encoded to a 10-feature dataset. There is no formula for the number and size of steps to
take to get to a desired feature size. However, taking several steps results on losing very
little information, compared with taking a single step.

Figure 2. Autoencoders reducing feature space dimension

Once an encoded feature space can reconstruct the original feature space with an
acceptable accuracy, the decoder is detached, and a desired model (in our case an ANN
binary classifier) is trained on the encoded feature space as shown in Fig 3.

Egg laying appears to be affected by both linear and non-linear relationships. Hence,
we separately train autoencoders on the Minepa-ARA, Muleba-GA, Burkina-GA, and
Muleba-Burkina-GA datasets to reduce spectra feature dimensions from 1851 to 10 (Fig
4). Table 1 presents accuracies of reconstructing original feature spaces from their
respective encoded feature spaces.
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Figure 3. ANN model trained on a dataset with an encoded feature space

Table 1. Accuracies of reconstructing original feature spaces from encoded
feature spaces. MSE = mean square error.

Metric Steps Encoded-Minepa-ARA Encoded-Muleba-GA Encoded-Burkina-GA
Step 1 0.0046 0.0029 0.0031

MSE Step 2 0.00005 0.0027 0.0022
Step 3 0.00008 0.0029 0.0011

We refer to the autoencoded Minepa-ARA, Muleba-GA, Burkina-GA, and
Muleba-Burkina-GA datasets as Encoded-Minepa-ARA, Encoded-Muleba-GA,
Encoded-Burkina-GA, and Encoded-Muleba-Burkina-GA, respectively. We then train
ANN models on Encoded-Minepa-ARA, Encoded-Muleba-GA, Encoded-Burkina-GA,
and Encoded-Muleba-Burkina-GA (Fig 5).

Finally, we used the Encoded-Burkina-GA and the Encoded-Muleba-GA datasets as
independent test sets to test accuracies of ANN models trained on the
Encoded-Muleba-GA dataset and on the Encoded-Burkina-GA dataset, respectively
(Figure 6A and B).
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Figure 4. Reducing spectra feature space using an autoencoder and recon-
structing original feature spaces from their respective encoded feature spaces
(reconstruction accuracies presented in Table 1). Figures generated from
MATLAB.

Figure 5. Training and testing of ANN model on autoencoded spectra. M
is either Minepa-ARA, Muleba-GA, Burkina-GA, or Muleba-Burkina-GA
dataset
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Figure 6. Independent testing of ANN model trained on encoded datasets.
A) Applying ANN model trained on Encoded-Muleba-GA dataset to estimate the parity
status of mosquitoes in autoencoded Burkina-GA dataset. B) Applying ANN model
trained on Encoded-Burkina-GA dataset to estimate the parity status of mosquitoes in
Encoded-Muleba-GA dataset

Results and discussion

In this study, we demonstrated that near-infrared spectroscopy (NIRS) can estimate
accurately the parity status of wild collected An. arabiensis and An. gambiae s.s.
Referring to the published results in [14] (ANN models achieve higher accuracies than
PLS models), we trained and tested an ANN model on NIRS spectra in four different
datasets pre-processed according to a previous published protocol [12]. The model
achieved accuracies between 55.9 and 81.9% (Tables 2 and 3, Figs 7 and 8). Table 2
further presents various metrics to score performance of our classifiers, namely
sensitivity, specificity, precision, and area under the receiver operating characteristic
(ROC) curve (AUC). We calculated sensitivity, specificity, accuracy, and precision of the
model using Equations 1, 2, 3, and 4, respectively [37–40].
Let

• TP = Number of mosquitoes correctly classified by the model as parous,

• FP = Number of mosquitoes wrongly classified by the model as parous,

• TN = Number of mosquitoes correctly classified by the model as nulliparous,

• P = Total number of mosquitoes in test set that are parous, and

• N = Total number of mosquitoes in test set that are nulliparous.

. Then

Sensitivity =
TP

P
, (1)

Specificity =
TN

N
, (2)

Accuracy =
TP + TN

P + N
, and (3)

Precision =
TP

TP + FP
. (4)

.
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Sensitivity (also known as recall) is the percentage of correctly predicted parous
mosquitoes, specificity is the percentage of correctly predicted nulliparous
mosquitoes [14], and precision is the proportion of true parous mosquitoes out of all
mosquitoes estimated by the model as parous [39]. We presented both sensitivity and
precision because different scholars prefer one metric to another, especially for cases
with imbalanced data [39]. AUC was computed from the receiver operating
characteristic (ROC) curve shown in Fig 8 generated by plotting the true parous rate
against the false parous rate at different threshold settings. A higher AUC is interpreted
as higher predictivity performance of the model [41,42]. The ROC curve normally
presents the performance of the model at different thresholds (cut-off points), providing
more information on the accuracy of the classifier [41,42].

We hypothesized that results presented in Tables 2 and 3, and in Figs 7 and 8 were
influenced by the size of a dataset used to train the model. The model that was trained
on a dataset with a relatively larger number of mosquitoes, especially in the parous
class, performed better than the model trained on the dataset with fewer mosquitoes.

Table 2. Performance of an ANN model trained on 75% of mosquito spectra with 1851 features
(before autoencoder) and tested on the remaining 25% spectra (out of the sample testing).
Minepa-ARA (Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21) Burkina-GA
(Nulliparous = 80, Parous = 78)

Minepa-ARA Muleba-GA Burkina-GA Muleba-Burkina-GA
(N=927) (N=140) (N=158) (N=298)

Accuracy (%) 81.9± 2.8 68.7± 4.8 80.3± 2.0 75.7± 2.5
Sensitivity (%) 79.7± 3.2 37.8± 6.6 76.5± 2.1 70.2± 3.1
Specificity (%) 86.0± 1.6 80.1± 2.7 88.3± 2.3 77.6± 2.9
Precision (%) 74.3± 3.4 31.3± 5.2 77.8± 1.8 68.8± 3.2
AUC (%) 77.2 55.9 83.6 76.4

Table 3. Confusion matrices showing accuracies of the models in absolute values when the models
were trained on spectra before feature reduction by autoencoder. A) Minepa-ARA, B) Muleba-GA, C)
Burkina-GA and D) Muleba-Burkina-GA. Results from the last Monte-Carlo cross validation.

Actual Parity
Estimates Nulliparous Parous Total
Nulliparous 165 17 182

A Parous 31 61 92
Total 196 78 274

Nulliparous 28 4 32
B Parous 8 3 11

Total 36 7 43
Nulliparous 20 6 26

C Parous 4 18 22
Total 24 24 48

Nulliparous 46 9 55
D Parous 14 22 36

Total 60 31 91
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Figure 7. Box plots showing results when ANN models trained on 75% of
spectra before the autoencoder was applied and tested on the remaining
spectra (25%) (out of the sample testing). A, B, C, and D represent results for
Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba & Burkina-GA (mosquitoes in
Muleba-GA and Burkina-GA datasets combined) datasets, respectively

The current standard preprocessing technique [12] leaves a mosquito spectrum with
an 1851-dimensional feature space. Mathematically, binary inputs with a

1851-dimensional feature space present 22
(1851)

hypothesis space dimensions for the
model to learn [43–45]. Successful learning of such hypothesis space dimensions requires
many data points (mosquitoes in our case). Finding enough wild mosquitoes, especially
parous mosquitoes, for a model to learn such a hypothesis space is expensive and time
consuming. Feature reduction is an alternative to overcome this, as it reduces the
hypothesis space dimension initially presented by the original data, hence lowering the
number of data required to train the model efficiently. Techniques such as principal
component analysis (PCA) [28,29], partial least squares (PLS) [28,46,47], singular value
decomposition (SVD) [31,46,48], and autoencoders can reduce feature space to a size
that can be learned by the available data without losing important information. PCA,
PLS, and SVD are commonly used when features are linearly dependent [28,29],
otherwise, an autoencoder, which can be thought as a nonlinear version of PCA, is
used [30–33].

Therefore, we applied an autoencoder as illustrated in Fig 2 to reduce the spectra
feature space from 1851 features to 10 features (Table 1 presents the accuracies of
reconstructing original feature spaces from the encoded (reduced) feature spaces),

cutting down hypothesis space dimensions from 22
(1851)

to 22
(10)

, and re-trained ANN
models (Figs 3 and 5).
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Figure 8. ROC curves (AUCs presented in the last row of Table 1) showing
results when ANN models trained on 75% of spectra before the autoencoder
was applied and tested on the remaining spectra (25%) (out of the sample
testing). A, B, C, and D represent results for Minepa-ARA, Muleba-GA, Burkina-
GA, and Muleba & Burkina-GA (mosquitoes in Muleba-GA and Burkina-GA datasets
combined) datasets, respectively

As presented in Tables 4 - 5 and in Figs 9 - 10, the accuracy of the model improved
from an average of 72% to 93%, suggesting an ANN model trained on autoencoded NIR
spectra as an appropriate tool to estimate the parity status of wild mosquitoes.

Table 4. Performance of an ANN model trained on 75% of the encoded mosquito spectra (10
features) and tested on the remaining 25% of the encoded mosquito spectra.
Minepa-ARA (Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21) Burkina-GA
(Nulliparous = 80, Parous = 78)

Minepa-ARA Muleba-GA Burkina-GA Muleba-Burkina-GA
(N=927) (N=140) (N=158) (N=298)

Accuracy (%) 97.1± 2.2 89.8± 1.7 93.3± 1.2 92.7± 1.8
Sensitivity (%) 94.9± 1.6 70.1± 2.3 91.7± 1.9 88.2± 2.9
Specificity (%) 98.6± 1.3 96.9± 1.2 96.4± 1.6 94.7± 2.1
Precision (%) 93.7± 2.4 62.5± 3.2 91.3± 1.4 93.1± 2.5
AUC (%) 96.7 91.5 93.1 94.9
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Table 5. Confusion matrices showing accuracies of the models in absolute values when the models
were trained on spectra after feature reduction by autoencoder. A) Minepa-ARA, B) Muleba-GA, C)
Burkina-GA and D) Muleba-Burkina-GA. Results from the last Monte-Carlo cross validation.

Actual Parity
Estimates Nulliparous Parous Total
Nulliparous 192 7 199

A Parous 4 71 95
Total 196 78 274

Nulliparous 33 2 35
B Parous 3 5 8

Total 36 7 43
Nulliparous 22 3 25

C Parous 2 21 23
Total 24 24 48

Nulliparous 58 4 62
D Parous 2 27 29

Total 60 31 91

Figure 9. Box plots showing results when ANN models trained on 75% of
encoded spectra in datasets were tested on the remaining encoded spectra
(25%). A, B, C, and D represent results for Encoded-Minepa-ARA, Encoded-Muleba-GA,
Encoded-Burkina-GA, and Encoded-Muleba & Burkina-GA (mosquitoes in Encoded-
Muleba-GA and Encoded-Burkina-GA datasets combined) datasets, respectively
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Figure 10. ROC curves (AUCs presented in the last row of Table 2) showing
results when ANN models trained on 75% of encoded spectra were tested
on the remaining encoded spectra (25%). A, B, C, and D represent results
for Encoded-Minepa-ARA, Encoded-Muleba-GA, Encoded-Burkina-GA and Encoded-
Muleba & Burkina-GA (mosquitoes in Encoded-Muleba-GA and Encoded-Burkina-GA
datasets combined) datasets, respectively

We further applied a model trained on the Muleba-GA dataset to estimate the parity
status of mosquitoes in the Burkina-GA dataset and a model trained on the Burkina-GA
dataset to estimate the parity status of mosquitoes in the Muleba-GA dataset. Here we
wanted to test how the model performs on mosquitoes from different cohorts. As
presented in Table 6, the model performed with accuracies of 68.6% and 88.3%,
respectively, showing a model trained on the Burkina-GA dataset extrapolates well to
mosquitoes from a different cohort than a model trained on the Muleba-GA dataset.

Table 6. Independent testing of ANN models trained on Muleba-GA and Burkina-GA encoded
datasets

ANN model trained on ANN model trained on
Encoded-Muleba-GA, tested on Encoded-Burkina-GA, tested on
Encoded-Burkina-GA Encoded-Muleba-GA

Accuracy (%) 68.6 88.3
Sensitivity (%) 26.5 86.1
Specificity (%) 94.4 92.2
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A possible explanation of the results shown in Table 6 could be that, unlike for the
Burkina-GA dataset, the number of parous mosquitoes (N = 21) in the Muleba-GA
dataset was not representative enough for a model to learn important characteristics
that extrapolate to mosquitoes in a cohort other than the one used to train the model.
Although the Muleba-GA model had the poor sensitivity as presented in Table 6, the
Burkina-GA model results still suggest that the ANN model trained on acceptable
number of both encoded parous and nulliparous can be applied to estimate parity status
of mosquitoes from different cohorts other than the one used to train the model.

Conclusion

These results strongly suggest applying autoencoders and artificial neural networks to
NIRS spectra as an appropriate complementary method to ovary dissections to estimate
the parity status of wild mosquitoes. The high-throughput nature of near-infrared
spectroscopy provides a statistically acceptable sample size to draw conclusions on
parity status of a particular wild mosquito population. Before this method can be used
as a stand-alone method to estimate parity status of wild mosquitoes, we suggest
repeating of the analysis on different datasets with much larger mosquito sample sizes
to test the reproducibility of the results. Hence, with the results presented in this
manuscript, we recommend complementing ovary dissection with ANN models trained
on NIRS spectra with their feature reduced by an autoencoder to estimate the parity
status of a wild mosquito population.
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