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ABSTRACT 

A problem ubiquitous in almost all scientific areas is escape from a metastable state, or 
relaxation from one stationary distribution to a new one1. More than a century of studies lead to 
celebrated theoretical and computational developments such as the transition state theory and 
reactive flux formulation. Modern transition path sampling and transition path theory focus on an 
ensemble of trajectories that connect the initial and final states in a state space2, 3. However, it is 
generally unfeasible to experimentally observe these trajectories in multiple dimensions and 
compare to theoretical results. Here we report and analyze single cell trajectories of human A549 
cells undergoing TGF-β induced epithelial-to-mesenchymal transition (EMT) in a combined 
morphology and protein texture space obtained through time lapse imaging. From the trajectories 
we identify parallel reaction paths with corresponding reaction coordinates and quasi-potentials.  
Studying cell phenotypic transition dynamics will provide testing grounds for nonequilibrium 
reaction rate theories.  

 

INTRODUCTION 

Transition path theories and transition path sampling techniques have been developed to 
investigate transition dynamics between equilibrium and nonequilibrium attractors of nonlinear 
dynamical systems2, 3. Basically one divides the state space into regions containing the initial (A) 
and final (B) attractors, and an intermediate (I) region. A reactive trajectory is one that originates 
from region A, and enters region I then B before re-entering region A (Fig. 1A).  The reactive 
trajectories form an ensemble of transition paths that connect regions A and B, and those that fail 
to arrive at B before returning to A form an ensemble of nonreactive trajectories. The ensembles 
of reactive and nonreactive trajectories are subject to various theoretical analyses.  
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Central to rate theories is a one-dimensional variable called the reaction coordinate (RC, denoted 
as s), which is a geometric parameter describing the progression along a reaction path4. 
Continuous efforts have been made on defining an optimal RC for a dynamical system5. In 
practice, one often approximates the RC as a string of discrete points, and divides the generally 
multi-dimensional state space into an 1-D array of Voronoi cells that connects the initial and 
final states, so the system transits between neighboring Voronoi cells (Fig. 1B). Theoretically, 
for a stochastic system, one can define an action S, e.g., the Onsager-Machlup action, for a 

reactive trajectory, so the probability of observing this trajectory is ∝exp(−S) . Minimization of 

the action through variational analysis leads to one or more most probable paths (MPPs), and 
reactive trajectories mainly fluctuate around each MPP forming a tube in the state space that 
connects A and B. Correspondingly algorithms such as finite temperature string method have 
been developed to define a RC as the center of the tube6. 

 

Figure1 Schematic diagram of defining reaction coordinate from reactive trajectory 
ensemble. (A) Example reactive and nonreactive trajectories in a quasi-potential system. Also 
shown is a valley (tube) connecting regions A and B that most reactive trajectories fall in. (B) 
Discrete representation of a 1-D reaction coordinate (colored dots) on the filled contour map with 
corresponding Voronoi cells. The cyan line is a reactive trajectory that starts from A and ends in 
B.  

 

Advances of the field of transition rate theories would undoubtedly benefit from direct 
experimental recording of the multi-dimensional trajectories, which unfortunately is technically 
challenging especially for a chemical system. To address this challenge, we studied instead a 
cellular process in which cells change between different phenotypes7. A cell is a nonlinear 
dynamical system, and a cell phenotype is a stable or metastable state of the system8. Cells of 
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multicellular organisms can be induced to undergo cell phenotypic transitions (CPTs) such as 
differentiation and reprogramming.  

 

RESULTS 

Applying rate theories to cell phenotypic transitions first requires a mathematical representation 
of the cell states and cell trajectories. Mathematically one can represent a cell state by a point in 
a multi-dimensional space defined by gene expression9 or other cell properties10. Noticing that 
cells have phenotype-specific morphological features that can be monitored even with 
transmission light microscopes, recently we developed a framework that defines cell states in a 
combined morphology and texture feature space7. The framework allows one to trace individual 
cell trajectories during a CPT process through live-cell imaging. 

 

Figure 2 Summary of pipeline for recording and analyzing single cell trajectories. (A) Time 
lapse imaging of A549-Vimentin-RFP cells treated with TGF-β. (B) Deep-learning aided single 
cell segmentation and tracking on the acquired time lapse images. (C) Extraction of morphology 
and vimentin features of single cells. (D) Representation of single cell states in a 
multidimensional morphology/texture feature space. (E) Transition path analyses over recorded 
trajectories. Right: A representative single cell trajectory of EMT in the feature space. Color 
represents time (unit: hour). Left: the same trajectory colored by the regions in the feature space 
(E, I, and M) each data point resides. Reduced units are used in this and all other figures. 
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We applied the framework to study the TGF-β induced EMT with a human A549 cell line with 
mCherry fused to endogenous vimentin7. Vimentin is a type of intermediate filament protein 
commonly used as a mesenchymal marker11. We performed time lapse imaging of the EMT 
process of A549 induced by TGF-β continuously for two days sampled every 10 minutes (Fig. 
2A), and performed single cell segmentation and tracking on the acquired images (Fig. 2B). We 
then quantified the images and performed principal component analysis (PCA) to form a set of 
orthonormal basis vectors of collective variables, which include cell body shape of 296 degrees 
of freedom (DoF) quantified by an active shape model12, and texture features of cellular vimentin 
distribution quantified by 13 Haralick features13 (Fig. 2C). Then the state of a cell at a given 
instant is represented as a point in the composite morphology/texture feature space (Fig. 2D), and 
the temporal evolution of the state forms a continuous trajectory in the space. Before TGF-β 
treatment, a population of cells assumes a localized stationary distribution in this 309 
dimensional composite space, and most cells are epithelial. TGF-β treatment destabilizes such 
distribution, and the cells relax into a new stationary distribution dominated by mesenchymal 
cells. We recorded 196 continuous trajectories in the state space. Figure 2E (left) and Fig. S1 
show such a trajectory revealing how a cell transits step-by-step from an epithelial cell with 
round polygon shapes and a localized vimentin distribution, to the mesenchymal phenotype with 
elongated spear shapes and a dispersive vimentin distribution. For transition path analyses we 
divided the space into epithelial (E), intermediate (I), and mesenchymal (M) regions (Fig. 2E 
right)7. With this division of space we identified a subgroup of 139 recorded single cell 
trajectories that form an ensemble of reactive trajectories that connect E and M by day 2. 

First, we set to identify the RC using a modification of the finite temperature string method6, 14, 

15. The procedure starts with a trial RC to define the initial division of the Voronoi cells. One 
then optimizes the trial RC iteratively by minimizing the distance dispersion between the string 
point and sample points within each Voronoi cell. Since here we have an ensemble of continuous 
trajectories, we modified the iteration procedure slightly.  Specifically, we minimized both the 
distance between the ensemble of measured reactive trajectories and the string point within each 
individual Voronoi cell, as well as the overall distance between each individual trajectory and the 
trial RC (Fig. S2, see Methods for details). The iteration procedure gives the RC of TGF-β 
induced EMT in A549 cells (Fig. 3A left, Fig. S3), which characterizes common features of the 
reactive trajectories (Fig. 3A right). Along the curve s the cell shape changes dominantly through 
elongation and growth (Fig. 3B top), and most of the 13 vimentin Haralick features increase or 
decrease monotonically and continuously over time (Fig. 3B bottom).  

For quantitative analysis, it is reasonable to assume that dynamics of the collective variables (x) 
can be described by a set of Langevin equations in the morphology/texture feature space, 

dx / dt = F(x)+η(t) , where F(x) is a governing vector field, and η are white Gaussian noises 

with zero mean. Then in principle one can reconstruct F(x) from the single cell trajectory data, 
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F(x) = dx / dt . Specifically we restricted to reconstructing the dynamics along the RC, and the 

ansatz becomes a 1-D convection-diffusion process, ds / dt = −dφ / ds+η . Notice that for a 1D 

system even without detailed balance one can define a quasi-scalar potential ϕ16, 17. Figure 3C 
presents an enlarged view of an area in Fig. 3A, which shows the instant velocities (ds/dt) of 
various trajectories segments. Numerically we related the potential gradient with the mean 
velocity within the i-th Voronoi cell by (Fig. 3D), 

dφ(si ) / ds = ds / dt
the i -th cell

≈
1
NiΔt

s(tα +Δt)− s(tα )( )α
∑ . 

The sum was over all Ni recorded trajectory segments that locate within the i-th Voronoi cell at 
any time t (Fig. 3A & C). On the obtained curve of dϕ/ds v.s. s (Fig. 3E), the zeroes correspond 
to stationary points of the potential. We then reconstructed the quasi-potential through 

integrating over s, φ(si ) = φ(s0 )+ (dφ / ds)ds
s0

si∫  (Fig. 3G). Also shown in Fig. 3G is the 

quasi-potential of the untreated cells, defined from the steady state distribution of untreated cells 

along the RC, ( ) ( )0 logi ss is p sφ ∝ −  (Fig. 3F).  
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Figure 3 Reaction coordinate reconstruction from reactive A549 EMT trajectory ensemble 
with a modified string method. (A) Reconstructed RC. Left: representation of RC in the plane 
of morphology PC1 and vimentin Haralick PC1. Smaller cyan dots are single cell data points. 
Right: superimposition of the RC with four reactive trajectories (each with distinct line color) in 
the space of morphology PC1, vimentin Haralick PC1, and vimentin Haralick PC3. The two ends 
of the RC are extrapolated from epithelial and mesenchymal attractors (see Methods for details). 
(B) Cell shape (top) and viment Haralick feature (bottom) evolution along the RC. Haralick 
feature 1: Angular Second Moment; 2: Contrast; 3: Correlation; 4: Sum of Squares: Variance; 5: 
Inverse Difference Moment; 6: Sum Average; 7: Sum Variance; 8: Sum Entropy; 9: Entropy; 10: 
Difference Variance; 11: Difference Entropy; 12: Information Measure of Correlation 1; 13: 
Information Measure of Correlation 2. (C) Enlarged view of the red box region in Fig. 2D. The 
arrow associated with each data point (cyan dot) represents the value of ds/dt (white: >0, yellow: 
= 0, black: <0). (D) Theoretical framework of dynamics reconstruction along the RC. (E) 
Reconstructed dϕ/ds along the RC s (given by image point indices). (F) The RC superimposed 

with single cell data without TGF-β treatment (cyan dots).（G) Reconstructed quasi-potentials 
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along the RC with and without TGF-β treatment. The latter is arbitrarily shifted vertically 
relative to the potential with treatment. The colors of the curves in panels A, E-F, and the cell 
shapes in B top represent progression of EMT (starts from blue and ends in red). 

 

The quasi-potentials in Fig. 3G provide mechanistic insights on the TGF-β induced EMT. Before 
TGF-β induction, cells reside on the untreated cell potential centered with a potential well 
corresponding to the epithelial attractor. After induction, the system relaxes following the new 
potential into a new well corresponding to the mesenchymal attractor. Notably in the new 
potential the original epithelial attractor almost disappears, reflecting that the epithelial 
phenotype is destablized under the applied TGF-β concentration.  

One might question whether by approximating a complex dynamical process such as EMT along 
the 1D RC one may miss some key dynamical information. To examine such possible limitation, 
we adopted a different strategy of dimension reduction over the original reactive trajectories 
using self-organizing map (SOM). SOM is an unsupervised artificial neural network that utilize 
neighborhood function to represent the topology structure of input data18. The algorithm clusters 
the recorded cell states into 144 discrete states (Fig. 4A), and represents the EMT process as a 
Markovian transition process among these states (Fig. 4B). Shortest path analysis using the 
Dijkstra algorithm 19 over the transition matrix reveals two groups of paths: vimentin Haralick 
PC1 varies first, and concerted variation of morphology PC1 and vimentin Haralick PC1, with 
finite probabilities of transition between the two groups (Fig. 4C). This result is consistent with 
our previous trajectory clustering analysis using soft dynamics time warping (DTW) distance 
between reactive trajectories20, and suggests that indeed the 1D approximation misses some 
dynamical features of the process.  To further support this conclusion, we also examined the 
density of reactive trajectories, ρR, in the plane of morphology PC1 and vimentin Haralick PC1. 
The contour map of ρR shows two peaks corresponding of the two groups of shorted paths in the 
directed network (Fig. 4D). The peak that vimentin Haralick PC1 varies firstly is higher than the 
peak of concerted variation, indicating more reactive trajectories along this path.  
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Figure 4 Reaction coordinates of two parallel paths. (A) Space approximation of the whole 
single cell data set (cyan dots) with self-organizing map into 12×12 discrete states (clusters). Red 
dots are centers of the clusters. (B) Directed network generated base on the self-organizing map 
and the transition between states. The distance between two states is defined as the negative 
logarithm of transition probability. (C) Shortest paths (white lines) between epithelial states 
(purple stars) and mesenchymal states (red stars). Green dots are the states that the shorted paths 
passed by. The size of a dot stands for the frequency of this dot passed by shortest paths. The 
width of a white line represents the frequency that these shortest paths passed by. (D) Contour 
map (top, superimposed with the shortest paths in panel C) and 3D surface-plot (bottom) of 
density of reactive trajectories in the plane of morphology PC1 and vimentin Haralick PC1. (E) 
RCs of the two parallel paths. (F) Cell shape (top), Haralick feature (middle), and quasi-potential 
evolution along RC s1. (F) Similar to E but along RC s2. The colors of the curves in panels E, 
F/G bottom, and the cell shapes in F/G top represent progression of EMT (starts from blue and 
ends in red). 
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To go beyond the 1D RC formalism, we grouped the reactive trajectories based on the DTW 
distance, then identified the RCs for each group separately following the modified string method 
(Fig. 4E). The two RCs first diverge from the E region to follow two distinct paths, then 
converge within the M region. In one group (Fig. 4F), most of the Haralick feature changes take 
place before major morphology change. The two segments of the quasi-potential curve with 
shallow and steep slopes also reflect the two-stage dynamics. For the group with concerted 
dynamics (Fig. 4G), both cell shape and Haralick features vary gradually along the RC. The 
quasi-potential also decreases steadily, only interrupted by a short transition region. These 
analyses provide direct evidence that TGF-β induced EMT proceeds through parallel paths with 
distinct dynamical features.   

DISCUSSIONS 

In summary, through analyzing experimentally measured single cell trajectories with dynamical 
systems theories we obtained quantitative mechanistic insights of TGF-β induced EMT. The 
dynamics can be mapped to that of a chemical system transiting from the ground to an excited 
potential then relaxing to a new stable state. This work demonstrates the existence of a unified 
theoretical framework describing transition and relaxation dynamics in systems with and without 
detailed balance. CPTs, with relevant spatial and temporal scales orders of magnitude larger than 
typical molecular systems and thus more accessible for multiplex quantitative measurements, can 
serve as an ideal test ground for reaction rate theories.   
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SUPPLEMENTAL FIGURE CAPTION 

 

Figure S1 Different views of the trajectory shown in Fig. 2E. (A) Representation in the 
Morphology PC1-Vimentin Haralick PC1 space. (B) Representation in the Vimentin Haralick 
PC3- Vimentin Haralick PC4 space. 
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Figure S2 Iterative procedure of the finite temperature string method. (A) Flow chart of the 
procedure. (B) Example RC curves obtained at different iteration cycle.   
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Figure S3 Different views of the obtained RC shown in Fig. 3A. The RC is shown in the 
Vimentin Haralick PC3-Vimentin Haralick PC4 spacesuperimposed with data points (cyan dots) 
under TGF-β treatment (A) and under control condition (B), respectively. 
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METHODS 

1) Procedure for determining a reaction coordinate 

We followed a procedure adapted from what used in the finite temperature string method for 
numerical searching of reaction coordinate and non-equilibrium umbrella sampling14, 15, with a 
major difference that we used experimentally measured single cell trajectories (Fig. S2). 

a) Identify the starting and ending points of the reaction path as the means of data points in 
the epithelial and mesenchymal regions, respectively. The two points are fixed in the 
remaining iterations. 

b) Construct an initial guess of the reaction path that connects the two ending points in the 
feature space through linear interpolation. Discretize the path with N (= 35) points (called 
images, and the k-th image denoted as 𝑠!  with corresponding coordinate X(sk)) 
uniformly spaced in arc length. 

c) Collect all the reactive single cell trajectories that start from the epithelial region and end 
in the mesenchymal region. 

d) Divide the multi-dimensional state space by a set of Voronoi polyhedra containing 
individual images. Associate each point of measured single cell trajectories, denoted as 

Xu,tα
for the point on trajectory u at time tα, to a polyhedron containing the image closest 

to the point. Define the distance between image sk and a given single cell reactive 
trajectory, dk,u, as the distance between each image on the path to the closest point on the 

trajectory, dk ,u
2 = argmin X(sk )−Xu,tα

2
. Then the reaction coordinate is the path (image 

set) that minimizes the following score function,
 2

, , ,( ) |k u t u t k k u
k u k u

F s s w d
α α

α

= − ∈ +∑∑∑ ∑∑X X X , where w is a parameter that 

specifies the relative weights between the two terms in the right hand of the expression, 
and we used w = 30 in our calculations. We carried out the minimization procedure 
through an iterative process. For a given trial path defined by the set of image points, we 
calculated a set of average points using the following equations, 

{ } 2
,

, , ,argmin ( )
|

( )
1

k u t
u t u t k u su u

k

s w
s

w

α α
αα

−
∈ +

=
+

∑∑ ∑ X X
X X X

X . Next we updated the 

continuous reaction path through cubic spline interpolation of the average positions21, and 

generated a new set of N images ( ){ }kX s  that are uniformly distributed along the new 
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reaction path. We set a smooth factor, i.e., the upper limit of ( ) ( )( )
1

N

k k
k

X s X s
=

−∑ , as 

0.05 for calculating the RC in Fig. 3, and 0.1 for the paths in Fig. 4. We used a larger 
smooth factor for the latter to avoid overfitting as there is less data in each of the two 
groups compared to the overall data set used in Fig. 3.  

e) We iterated the whole process in step 3 until there was no further change of Voronoi 
polyhedron assignments of the data points. 

f) For obtaining the quasi-potential of a larger range of s, extrapolate the obtained reaction 
path forward and backward by adding additional image points (5 for the single reaction 
path and 2 for the two parallel reaction paths) beyond the two ends of the path linearly, 
respectively. These new image points are also uniformly distributed along s as the old 

image sets do. Re-index the whole set of image points as {s0 ,s1,...,si ,...,sN ,sN+1} . 

 

2) Reconstruction of quasi-potential along the reaction coordinate 

Based on the theoretical framework in Fig. 3D, we followed the procedure below: 

(a) The N + 2 image points of an identified RC divide the space in N + 2 Voronoi cells that 
data points can assign to. Ignore the first and last Voronoi cells, and use the remaining N 
cells for the remaining analyses.  

(b) Within the i-th Voronoi cell, calculate the mean drift speed (and thus dφ / ds ) at is  

approximately by dφ
ds si

= −
dsi
dt

≈ −
s X t +Δt( )( )− si

Δt
s X t( )( )=si

where s(X) is the assumed 

value along s for a cell state X in the morphology/texture feature space. The sum is over 
all time and all data points from all the recorded trajectories that lie within the i-th 

Voronoi cell ( s X t( )( ) = si ), and Δt =1 is one recording time interval. Using data points 

from all instead of just reactive trajectories is necessary for unbiased sampling within 

each Voronoi cell with η
si
= 0 . 

(c) Calculate the quasi-potential through numerical integration, 

φ si( ) = φ s0( )+ dφ
dss0

si∫ ds ≈ φ s0( )+Δs dφ
ds sij=1

i

∑ . The exact value of ϕ(s0) does not affect the 

quasi-potential shape. 
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3) calculation of dynamics of morphology and Haralick features along reaction path 

The reaction path is calculated in the principal component (PC) space of morphology PC1, 
vimentin Haralick PC1, PC3 and PC4. Distribution of cells show significant shift before and 
after TGF-β treatment in these dimensions7. To reconstruct dynamics in the original features 
space from PCs, the reaction path’s coordinates on the other dimensions of PC are set as means 
of data in the corresponding Voronoi cell of each point on the reaction path. We obtain the 
reaction path in full dimension of PC space. The dynamics of morphology and Haralick features 
are calculated by inverse-transform of coordinates of PCs. 

4) Self-organizing map and shortest transition paths in the directed network 

The self-organizing map is an unsupervised machine learning method to represent the topology 
structure of date sets. We used a 12x12 grid (neurons) to perform space approximation of all 
reactive trajectories (Fig. 4A). The SOM was trained for 50 epochs on the data with Neupy 
(http://neupy.com/pages/home.html). We set the learning radius as 1 and standard deviation 1. 

These neurons divide the data into 144 micro-clusters ({ }ψ ). With the single cell trajectory data, 

we counted the transition probabilities from cluster i to cluster j (including self), with pi , j
j
∑ =1. 

If the transition probability is smaller than 0.01, the value is then reset as 0. With the transition 
probability matrix, we built a directed network of these 144 neurons (Fig. 4B). The distance 

(weight) of the edge between neuron iψ  and neuron jψ  is defined as the negative logarithm of 

transition probability ( ,log i jp− ). We ignored the connection between two clusters. We set the 

neurons that close to the center of epithelial and mesenchymal state (sphere with radius = 0.7) as 
epithelial community and mesenchymal community, respectively, and used Dijkstra algorithm to 
find the shortest path between each pair of epithelial and mesenchymal neurons19 with 
NetworkX22. We recorded the frequency of neurons and edge between these neurons that are past 
by these shortest paths. 

5) Calculation of density of reactive trajectory 

The density of reactive trajectory on the plane of morphology PC1 and vimentin Haralick PC1 is 
calculated with the following procedure: 

a) Divide the whole plane into 200×200 grids. 
b) In each grid, count the number of reactive trajectory (only the parts of each reactive 

trajectory that are in the intermediate region are taken into consideration) that enters and 
leaves it. If a reactive trajectory passes certain grid multiple times, only 1 is added in this 
grid’s density. Thus, the density matrix is obtained. 
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c) Use Gaussian filter to smooth the obtained density matrix. The standard deviation is 2 
and the truncation is 2 (truncate at twice of the standard deviation). 

6) Reconstruction of quasi-potential along parallel paths 

We used tslearn to calculate the DTW distance between two reactive trajectories, then performed 
K-Means clustering23 on the DTW distance matrix7, 20 to cluster the reactive trajectories into two 

groups. We set DTW γ  (parameter of the kernel in the algorithm) as 50. We then followed the 

procedure in Methods (1) to reconstruct the RC for each group. We reconstructed the 
quasi-potentials using all trajectories. For a trajectory not belonging to the reactive trajectory 
ensemble, we assigned it to one of the two group associated to the two RCs, 

{s1}= s1,1,...,s1,i ,...,s1,N{ }  and {s2}= s2,1,...,s2,i ,...,s2,N{ }  as follows. We first assigned data points 

of this trajectory to the Voronoi cells of s1{ }   and s2{ } , respectively, and identified its 

maximum coordinates 1,ms  and 2,ms on the RCs. We then calculated the DTW distances 

between this non-reactive trajectory and { }1,1 1, 1,,..., ,...,i ms s s , and { }2,1 2, 2,,..., ,...,i ms s s , 

respectively. This trajectory was grouped into the reaction path that has smaller DTW distance 

with it. After grouping all the trajectories, we calculated the drift speed /ds dt  and 

quasi-potential ( )sφ  of each path using their corresponding trajectories, following the 

definition and procedure described in Methods (2). 
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