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Abstract

Vector control has been a key component in the fight against malaria for decades, and
chemical insecticides are critical to the success of vector control programs worldwide.
However, increasing resistance to insecticides threatens to undermine these efforts.
Understanding the evolution and propagation of resistance is thus imperative to
mitigating loss of intervention effectiveness. Additionally, accelerated research and
development of new tools that can be deployed alongside existing vector control
strategies is key to eradicating malaria in the near future. Methods such as gene drives
that aim to genetically modify large mosquito populations in the wild to either render
them refractory to malaria or impair their reproduction may prove invaluable tools.
Mathematical models of gene flow in populations, which is the transfer of genetic
information from one population to another through migration, can offer invaluable
insight into the behavior and potential impact of gene drives as well as the spread of
insecticide resistance in the wild. Here, we present the first multi-locus, agent-based
model of vector genetics that accounts for mutations and a many-to-many mapping
cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of
gene drives in Anopheline populations. This model is embedded within a large scale
individual-based model of malaria transmission representative of a high burden, high
transmission setting characteristic of the Sahel. Results are presented for the selection
of insecticide-resistant vectors and the spread of resistance through repeated deployment
of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in
concert with existing vector control tools such as ITNs. The roles of seasonality, spatial
distribution of vector habitat and feed sites, and existing vector control in propagating
alleles that confer phenotypic traits via gene drives that result in reduced transmission
are explored. The ability to model a spectrum of vector species with different genotypes
and phenotypes in the context of malaria transmission allows us to test deployment
strategies for existing interventions that reduce the deleterious effects of resistance and
allows exploration of the impact of new tools being proposed or developed.

Author summary

Vector control interventions are essential to the success of global malaria control and
elimination efforts but increasing insecticide resistance worldwide threatens to derail
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these efforts. Releasing genetically modified mosquitoes that use gene drives to pass on
desired genes and their associated phenotypic traits to the entire population within a
few generations has been proposed to address resistance and other issues such as
transmission heterogeneity that can sustain malaria transmission indefinitely. While the
ethics and safety of these methods are being debated, mathematical models offer an
efficient way of predicting the behavior and estimating the efficacy of these
interventions if deployed to specific regions facing challenges to reaching elimination.
We have developed a detailed mathematical model of vector genetics where specific
genomes code for physical attributes that influence transmission and are affected by the
surrounding environment. This is the first model to incorporate an individual-based
multi-locus genetic model into a detailed individual-based model of malaria
transmission. This model opens the door to investigate a number of subtle but
important questions such as the effects of small numbers of mosquitoes in a region
sustaining malaria transmission during the low transmission season, and the success of
gene drives in regions where extant vector control interventions could kill off gene drive
mosquitoes before establishment. Here, we investigate the reduced efficacy of current
vector control measures in the presence of insecticide resistance and evaluate the
likelihood of achieving local malaria elimination using gene drive mosquitoes released
into a high transmission setting alongside other vector control measures.

Introduction 1

Malaria remains a deadly disease in a number of regions around the world but increased 2

surveillance, improved access to care and vector control have put elimination in sight in 3

a number of countries worldwide. In sub-Saharan Africa, where malaria is largely 4

endemic [1], vector control is a cornerstone of control and elimination efforts, and 5

insecticide based interventions such as insecticide treated nets (ITNs) and indoor 6

residual spraying (IRS) are the most widely used vector control tools [2]. This has led 7

to large decreases in malaria transmission in the region with ITNs being responsible for 8

around 68% of averted cases [3]. 9

However, the effectiveness of malaria control through insecticides is being threatened 10

by growing insecticide resistance in a number of countries [2, 4, 5]. Of the 81 endemic 11

countries surveyed between 2010 and 2018, 73 showed at least one major malaria species 12

being resistant to at least one of four insecticide classes approved for malaria control [6]. 13

Additionally, pyrethroids have thus far been the only approved class of insecticides for 14

ITNs, and resistance to these insecticides is widespread, which severely compromises 15

insecticide-based vector control [7]. To further complicate matters, mechanisms for 16

resistance vary widely given the different target sites in the vector genome for different 17

classes of insecticides and the differing decay rates of killing efficacy across insecticides. 18

Point mutations result in reduced sensitivity of the mosquito nervous system to 19

insecticides [8] while amplification or over-expression of certain genes that result in 20

increased enzymatic metabolism of insecticides [9] is another form of resistance. 21

Behavioral changes in a vector population within a few generations due to extreme 22

stress exerted by the introduction of insecticides [10] has remained a more difficult form 23

of resistance to identify and mitigate. There is a critical need to address these threats 24

expeditiously to not lose ground in the fight against malaria. 25

The use of transgenic mosquitoes that carry gene drives has been proposed as 26

another form of vector control [11]. The use of gene drives has been put forward as a 27

means to address loss of intervention effectiveness in a region due to insecticide or drug 28

resistance [12]. Furthermore, gene drives could be a potentially ideal modality to 29

drastically reduce vectorial capacity [13] in high transmission settings where current 30

vector control interventions under the most optimal conditions could fail to achieve 31
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elimination [14]. Gene drives could also address changing mosquito behavior such as 32

increased outdoor biting due to increasing indoor vector control pressure [15]. A gene 33

drive system based on preferential inheritance can result in an entire population 34

acquiring an engineered genetic trait and a desired effect within a few generations [16]. 35

Gene drive methods for the purposes of vector control broadly fall under two categories: 36

first, modifying a population to make it refractory to malaria, a practice referred to as 37

population replacement [17], and second, restricting the population of a specific 38

subspecies, which is referred to as population suppression [18]. James et al. [19], and 39

Hammond and Galizi [20] provide an overview of different gene drive strategies being 40

currently considered or developed. 41

There are a number of challenges to be addressed before gene drives become an 42

accepted tool for vector control. Besides technical challenges such as engineering 43

genetically modified (GM) mosquitoes with reduced fitness costs and deploying gene 44

drive mosquitoes in areas with existing vector control that could kill GM mosquitoes 45

before establishment, addressing community concerns and communicating the ecological 46

risks and epidemiological benefits of gene drives in a region are crucial to deploying gene 47

drives to fight malaria [21]. 48

Due to these challenges, mathematical models offer one of the best methods to 49

evaluate the spread and impact of transgenic mosquitoes in a given setting. Examples of 50

in silico models include population suppression by driving the Y chromosome or 51

replacement using dual germline homing in different spatiotemporal settings [22,23], 52

optimal homing rates of multiplexed guide RNAs to reduce resistant alleles and increase 53

the chances of population suppression or replacement [24,25], and a reaction diffusion 54

model to study fixation of deleterious gene drives through accidental release [26,27]. 55

These models include both agent-based approaches [22,28], which are excellent for 56

modeling small, isolated populations characteristic of a suppression drive, or continuous 57

well-mixed populations [26,29], which offer a rapid way of estimating long term effects 58

of a gene drive campaign. Additionally, insecticide resistance has been modeled using 59

either compartment models [30–32] or statistical approaches based on field data [33,34]. 60

However, given future release scenarios for gene drives into regions with existing vector 61

control, insecticide resistance, distinct seasonalities, and specific physical barriers that 62

could result in complex situations where small numbers of mosquitoes could be 63

responsible for a strategy succeeding or failing, an agent-based approach to modeling 64

vector genetics within the context of a vector-borne disease that includes all of these 65

features would be invaluable. 66

With the aim of addressing all of these requirements we have developed, and 67

describe in this article, the key components of a new stochastic, agent-based vector 68

genetics model that follows Mendelian inheritance rules influenced by mosquito life and 69

feeding cycle dynamics in a spatiotemporal setting. An agent-based modeling approach 70

involves simulating individual agents such as humans or mosquitoes that follow both 71

intra-agent and inter-agent rules. Intra-agent rules could govern phenomena such as the 72

development of intra-host immunity or the expression of phenotypic traits by an 73

individual based on their genotype while rules governing interaction between individuals 74

also determine population-wide phenomena such as the transmission of disease. Key 75

details about the differences between an agent-based approach to modeling malaria and 76

mosquito dynamics versus other modeling approaches such as compartmental models 77

can be found in a number of articles [35–38]. To orient the reader towards the working 78

of this model, we then present examples of how phenotypes and genotypes interact in 79

the model, how gene drives establish themselves in a population, and how species 80

introgression may be captured in the model. We then proceed to more complex 81

examples where the vector genetics model is embedded into an agent-based model of 82

malaria dynamics. We demonstrate the impact on mosquitoes interacting with vector 83
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control interventions that are deployed in a region with high malaria transmission. We 84

also look at factors for success of population replacement gene drives that result in 85

vectors becoming refractory to malaria with or without the presence of vector control in 86

a given setting, and the role of transmission heterogeneity and vector migration on 87

malaria elimination efforts. Finally, we present future use cases of the vector genetics 88

model ranging from vector control deployment strategies that combat insecticide 89

resistance to optimizing gene drive releases to achieve malaria elimination. 90

Methods 91

Vector genetics model 92

Mosquitoes in EMOD v2.20 [39] can be modeled as individuals or cohorts. Detailed 93

descriptions of how mosquito dynamics and malaria transmission are modeled in EMOD 94

can be found in previous work [36,38]. Each individual or cohort has a 64-bit diploid 95

genome that is a recombination of two haploid genomes or gametes inherited from each 96

parent, respectively. This diploid genome can account for up to 10 different loci or genes 97

with up to 8 different alleles per gene. Four bits are reserved to code for the presence of 98

microbial interventions such as Wolbachia [40] or other biological insecticides such as 99

Metarhizium [41] (supplementary figure S1). Microbial interventions are not explored in 100

this article but the modeling of Wolbachia and cytoplasmic incompatibility within 101

EMOD has been covered in previous work [38]. When mating occurs in the model, the 102

male and female produce offspring with a combination of genes and alleles obtained 103

from the gametes of the parents via Mendelian inheritance (Fig. 1). Mutations can 104

occur during gametogenesis (supplementary figure S2), and phenotypic traits can be 105

assigned to specific genotypes (Fig. 1). Broadly, the traits that can be modified 106

currently could affect the ability of a vector to transmit malaria, generate progeny 107

biased towards a specific gender, confer fitness costs such as reduced fecundity or 108

increased mortality, and simulate partially or fully insecticide-resistant vectors. The 109

model also captures genetic drift due to factors such as spatial bottlenecks, initial allele 110

skewness and fitness costs associated with environmental factors. By defining species 111

complexes, the model can be extended to simulate subspecies introgression as well. 112

Gene drives within EMOD 113

Various gene drive strategies can also be simulated using this model such as classic 114

endonuclease drives where driver and effector genes are driven as one construct [42], 115

integral drives with independent autonomous driver and non-autonomous effector 116

genes [43], as well as daisy-chain drives with serially dependent but unlinked drive 117

elements [44]. In the model, gene drive dynamics are based on endonuclease drives, 118

which work by cutting a chromosome at a specific location that does not include the 119

drive prompting the cell to repair the cut with a copy of the drive. Godfray et al. [23] 120

provide a detailed explanation of the mechanism of endonuclease gene drives. Cleaving 121

at the target site and copying of the desired allele occurs during gametogenesis (Fig. 2). 122

For Mendelian inheritance rules, see supplementary figure S2. This allows for simulated 123

mosquitoes to carry the drive in a heterozygous or homozygous configuration to 124

facilitate modeling fully or partially recessive traits associated with driven alleles, as 125

used in either population suppression or replacement contexts. 126

Insecticide resistance within EMOD 127

Insecticide resistance is modeled as a phenotypic trait associated with the expression of 128

specific alleles or allele combinations in an individual vector or a cohort of vectors. 129
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Fig 1. Representative genomes of cohorts or individual mosquitoes within
EMOD. The model supports the inheritance of traits from parents (a), random
mutations of alleles (b), and definitions of phenotypic traits associated with a
combination of genes or alleles, that are expressed only when those combinations are
present (c). Inheritance of genes is modeled as a Mendelian process, and combinations
of alleles can be mapped to combinations of traits via a many-to-many mapping.

Resistant alleles are defined for each insecticide at the start of the simulation. The 130

expression of resistant alleles in a vector could code for changes in either killing efficacy 131

or the efficiency of repellence of insecticides applied to various interventions such as 132

insecticide treated nets (ITNs), indoor residual spraying (IRS), attractive targeted sugar 133

baits (ATSBs) and space spraying. Additionally, vector host seeking behavior can also 134

be modified to model behavioral resistance. Fitness costs affecting the lifespan of 135

vectors or their fecundity can also be imposed and associated with combination of genes 136

and alleles. 137

Simulation framework 138

All simulations were carried out with EMOD v2.20 [39], an agent-based mechanistic 139

model of Plasmodium falciparum malaria transmission with vector life cycle [38], and 140

parasite and immune dynamics calibrated to within-host asexual and sexual stages of 141

the parasite [45]. The vector life cycle in the model consists of four stages : eggs, larvae, 142

immature adults and host seeking adults. The larval habitat available at a given time 143

dictates the total number of larvae that can be accommodated per habitat type at that 144

time, which in turn governs the number of vectors emerging at the end of the life cycle. 145

For simulations modeled as a single location, a single peak seasonality characteristic 146

of the Sahel [45–47] is used to model the amount of vector habitat available at a given 147

time (Fig. 3A). Malaria transmission is modeled in a population of approximately 1000 148
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Fig 2. Inheritance rules for gene drives. In this example, ‘a1’ is the driven allele
and ‘a0’ is the wild-type allele. Red mosquitoes represent mosquitoes with the driven
allele ’a1’ either in the homozygous or heterozygous configuration. Black mosquitoes
represent wild-type mosquitoes, which are homozygous in ’a0’. The drive successfully
cleaves the target site 95% of the time. In the event of drive failure, the wild-type allele
remains. This is akin to modeling drive failure in terms of the driven allele failing to
home in to the target site. This does not include target site resistance through natural
mutation or non-homologous end joining (NHEJ). No other mutations are considered.
Three mating scenarios are presented: (A) When a drive carrying heterozygous
mosquito mates with a homozygous wild-type mosquito, (B) a heterozygous-with-drive
mosquito mates with a homozygous-with-drive mosquito, and (C) two
heterozygous-with-drive mosquitoes mating.

individuals with birth and death rates observed in the Sahel, and an effective annual 149

entomological innoculation rate (EIR) of 120 absent any interventions [45]. For 150

multi-location spatial simulations, population data was obtained using the High 151

Resolution Settlement Layer (HRSL) generated by the Facebook Connectivity Lab and 152

Center for International Earth Science Information Network (CIESIN) at Columbia 153

University [48]. An area covering 300 square kilometers in rural Burkina Faso was 154

resolved into one square kilometer grid cells, and only grid cells with more than 5 people 155

were assumed to be inhabited, which resulted in a total of 150 populated grid cells and 156

total of 4000 individuals (Fig. 3B). 157

Human individuals in these spatial simulations are assigned a daily probability to 158

take overnight trips to other grid cells according to a distance decay relationship [49]. 159

The distance decay is calibrated to human movement on scales of one to tens of 160

kilometres observed in geotagged campaign data [50] leading to an average of 5 161

overnight trips per person per year. There is no disease importation from outside the 162

modelled area. vector carrying capacity in each node is scaled to human population 163

such that humans have the same probability of being bitten across all nodes. Vector 164

migration also follows the same distance decay model with migration rates scaled by the 165

ratio of total vector to total human population, and with preferential migration to 166

nodes with higher larval habitat. There is no human or vector migration into or out of 167

the modeled area. 168

Fitness costs can be modeled using the genotype to phenotype mapping feature, as 169

demonstrated for the simple gene drive example in figure 6. However, in every other 170

gene drive example, we consider all genotypes to be equally fit To show the maximum 171

impact achievable on malaria transmission by gene drives. 172
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Fig 3. Seasonality and spatial simulation setup using EMOD. (A) Single peak
seasonality profile characteristic of a Sahelian seasonal and transmission setting. All
simulations presented here with a prevalence endpoint measure use this seasonality
profile resulting in an annual EIR of around 125 infectious bites per person. (B) Spatial
grid used for spatiotemporal gene drive simulations. Six nodes with the largest human
population are selected as release sites for genetically modified mosquitoes carrying
drives and are marked in red.

Interventions 173

Treatment with artemether–lumefantrine (AL) is available for symptomatic cases in all 174

simulation scenarios. 80% of severe malaria cases are assumed to seek treatment, and 175

treatment is sought within 2 days of symptoms occurring. We assume only 50% of 176

clinical cases seek treatment, which happens within 3 days of symptom onset [51]. 177

Intervention scenarios are simulated for six years. ITN distributions occur every 178

three years per WHO recommendations [52] on July 1 just as the peak season starts to 179

pick up. ITN retention is modeled as decaying with exponential rate of two years [3]. In 180

the insecticide resistance scenario, ITN killing efficacy starts at 80% with an 181

exponential decay rate of four years per WHO guidelines for classifying a vector 182

population as susceptible. In the gene drive scenarios, ITN killing starts at 60% to 183

account for efficacy loss due to insecticide resistance [53]. A fixed killing rate is chosen 184

to keep these scenarios focused on the gene drive aspect of the vector genetics model. 185

ITN blocking starts at 90% with an exponential decay rate of two years to model the 186

physical integrity of nets for all scenarios [53]. 187

In the gene drive scenarios, mosquitoes carrying a population replacement drive are 188

released on July 1 just as the peak season begins to pick up to give the drive maximum 189

chance of spreading. In the single location simulations, the likelihood of elimination is 190

evaluated for different levels of transmission efficacy from mosquitoes to humans, and 191

drive cleave-and-copy success probability. The efficiency of the drive, that is the copying 192

over of the drive allele at the target locus, is varied from 50% to 100%. The probability 193

of infected vectors carrying the drive transmitting malaria to humans is varied from 0 to 194

50% compared to a vector without drive. For the spatial simulation, the likelihood of 195

drive copying over is maintained at 100% while the probability of transmitting malaria 196

to a human when the vector carries the drive is reduced to 30% compared to a vector 197

without drive. These parameter values were chosen in the spatial simulation to highlight 198

any differences between the multi-node and single node simulations that may arise from 199

the migration of mosquitoes. 200

Given the absence of importation or migration outside the simulated area, 201

elimination is defined as zero infected individuals at the end of the sixth year. Each 202

scenario is run for 50 stochastic realizations. 203
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Results 204

In each of the simulation scenarios, values for the parameters within the model are 205

chosen within physiologically plausible limits. Additionally, these values were chosen to 206

demonstrate the capabilities of the model and reflect malaria transmission in a Sahelian 207

setting. Calibration of the model to entomology, genetics, and epidemiological data 208

representative of a specific setting are required before simulating future scenarios and 209

outcomes that are predictive of the same setting. 210

The vector genetics model can capture the effects of fitness 211

costs and benefits of specific phenotypes on an entire 212

population as well as the inheritance of gene drives in the model 213

To demonstrate how different mosquito phenotypes interact with each other in the 214

model, we released 1000 male mosquitoes homozygous with a mutated allele, which 215

reduces the mortality of male mosquitoes by half (Fig. 4A), into a wild-type population 216

of 100000 adult male and female mosquitoes each. The reduced mortality is modeled as 217

a dominant trait conferring the same phenotypic characteristics to the male mosquito 218

irrespective of its zygosity with respect to the mutated allele. For this single location 219

simulation, no seasonality was imposed to isolate conferred physical traits as the cause 220

for propagation of different alleles in the population. The modified males were released 221

six months after the start of the simulation (Fig. 4B). We have chosen not to include 222

mutations in any of the genotypes in this simulation to focus solely on the effects of 223

fitness benefits. 224

Fig 4. Example of how traits and alleles interact in the vector genetics
model. There is no seasonal variation and no spatial component. (A) Genomes of
mosquitoes in the model. Mosquitoes homozygous in ‘a0’ are the wild-type mosquitoes.
Male mosquitoes carrying the ‘a1’ allele in a homozygous or heterozygous configuration
have decreased mortality, which is thus a dominant trait, and is modeled as a halving of
their probability of dying. (B) Distributions of genomes in the population over time
average over 50 stochastic realizations. Male mosquitoes homozygous in the ‘a1’ allele
are released mid-year during the first year of the simulation.

Just under a year after the start of the simulation, heterozygous females start to 225

emerge. A year after the release of the male mosquitoes carrying the mutated allele, 226

homozygous in ’a1’ females start to emerge. As the simulation progresses, the mutated 227

’a1’ allele dominates the population while the ’a0’ allele-carrying females die out. Males 228

carrying the ’a1’ allele either in a homozygous or heterozygous configuration live longer 229
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and have a greater chance of passing on their genes to offspring. This results in the ’a1’ 230

allele being propagated to almost the entire population five years after release. 231

Introgression of genes from different species may also be accounted for in this model. 232

If genes from one species do not introgress into the genome of another, and each species 233

has separate but equal access to breeding sites, we see a quick redistribution of genome 234

frequencies to reflect a 50-50 split of vectors in a site (Fig. 5A) when a new species is 235

introduced. If, however, genes from the newly introduced species may introgress with 236

the existing species in the site, we see the emergence of a new hybrid population. 237

Adaptive introgression has been observed in many species including mosquitoes as a 238

result of factors such as insecticide pressure or environmental changes due to, for 239

example, anthropogenic climate change, and could confer phenotypically advantageous 240

characteristics to the emergent hybrid population (Norris et al., 2015). In figure 6B, the 241

hybrid population has a 10% lower mortality rate than both the native and introduced 242

species, and becomes the dominant mosquito in the region just over 2 years after the 243

introduction of Species 2. In addition to the fitness benefit of the hybrid mosquito, all 244

three subspecies of mosquitoes - Species 1, Species 2, and hybrid - compete with each 245

other for existing larval habitat, which dictates the final establishment rates of each 246

genotype in the simulation. 247

Fig 5. Example of species introgression in the vector genetics model. The
mean (solid line) and one standard deviation (shaded area) of genomes in the
population over time of 50 stochastic realizations when 10000 male and female
mosquitoes of species 2 that are homozygous in ‘b0’ are introduced into a population
containing only species 1 mosquitoes homozygous in ‘a0’ 200 days after simulation
starts. (A) When no introgression occurs, and each species has equal habitat to
procreate. (B) Hybrid mosquitoes heterozygous in ‘a0’ and ‘b0’ have a 10% lower
mortality rate than species 1 or species 2 mosquitoes.

As an example of how gene drives work in the model, we released 1000 male 248

mosquitoes carrying a gene drive allele ’a1’ in a heterozygous configuration into a 249

population of 100000 male and female mosquitoes carrying the wild-type ’a0’ allele in a 250

homozygous configuration. The ’a1’ allele cleaves and copies the ’a0’ allele at the target 251

site of the second chromosome with a success rate of 50%. This is representative of 252

drive failing to home in on the target site 50% of the time. There are no mutations 253

modeled. Males carrying the gene drive allele are released 200 days after the start of the 254

simulation. Again, no seasonality was imposed in this single location simulation (Fig. 6). 255

Heterozygous females start to emerge almost immediately after release and just as 256

the homozygous in ’a1’ females start to form a large fraction of the population about a 257

year after the release, there is a precipitous drop in the wild-type allele, ’a0’, in the 258

population (Fig. 6A). A homing rate of 50% results in the ’a1’ fixating in the 259

June 2, 2020 9/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 6. Example of how gene drives behave in the vector genetics model.
The mean (solid line) and one standard deviation (shaded area) of genomes in the
population over time of 50 stochastic realizations when male mosquitoes with drive are
released into a wild-type population. There is no seasonal variation and no spatial
component. Mosquitoes homozygous in ‘a0’ are the wild-type mosquitoes. Male
mosquitoes carrying the ‘a1’ allele in a homozygous configuration are released 200 days
after simulation starts. The ’a1’ allele is a driven allele and has a homing rate of 50% to
the ’a0’ site. (A) There are no fitness costs associated with drive mosquitoes. (B)
Mosquitoes with drive in either a homozygous or heterozygous configuration have a 10%
higher mortality rate than wild-type mosquitoes.

population around 2 years after the initial release of GM mosquitoes carrying gene 260

drives. In the absence of fitness costs, vector migration, and seasonality, the ’a1’ allele 261

will always fixate but the rate at which it achieves fixation will be dependent on the 262

homing rate. Fitness costs, on the other hand, delay establishment of the drive. For 263

example, a 10% increase in mortality due to the drive could result in fixation occurring 264

almost 6 years after release instead of 2 years (Fig. 6B). 265

Insecticide resistance could lead to malaria transmission rapidly 266

becoming refractory to vector control that involves repeated 267

deployment of the same insecticide 268

Vector control tools such as ITNs and IRS have been deployed extensively across the 269

Sahel over the past two decades. In a high transmission setting with seasonality 270

modeled after the single peak wet season (Fig. 3A) the start of the peak season is the 271

most optimal time to deploy ITNs [45]. In the modeled scenario presented here, vectors 272

heterozygous with a resistant allele constitute around 3% of the total vector population 273

while vectors homozygous with a resistant allele constitute less than 0.1% of the total 274

population at the start of the simulation. The heterozygous vectors are modeled as 275

being partially resistant to insecticides with killing efficacy reduced to 10% when they 276

interact with nets while vectors homozygous with the resistant allele are fully resistant 277

with only 5% efficacy in killing. Please refer to the interventions subsection of the 278

methods section for intervention efficacy with respect to wild-type vectors. When nets 279

are deployed at the end of June, there is rapid selection of the resistant allele (Fig. 7B). 280

However, the effect of increasing the resistant population on malaria transmission is 281

only observed after the second deployment of ITNs treated with the same insecticide 282

three years later (Fig. 7). 283
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Fig 7. Tracking the effect of insecticide resistance on prevalence in a
Sahelian setting. RDT prevalence (top row) across a period of six years averaged
over 50 stochastic realizations for three scenarios - when no interventions are deployed,
when ITNs are deployed at 60% coverage absent any resistance, and with the presence
of resistance. Establishment rates of susceptible and resistant genomes in the scenario
with resistance (bottom row). The shaded area around the mean represents one
standard deviation calculated across the 50 stochastic realizations. ITNs are distributed
every three years at the beginning of the peak season.

When no interventions are deployed RDT prevalence oscillates between 15% in the 284

low season to a high of around 45% in the peak season. However, when ITN’s are 285

deployed with no resistance, peak RDT prevalence is around 10% in the middle of the 286

third year and drops to levels under 2% after the second deployment of nets. As usage 287

wanes towards the end of year 6, RDT prevalence peaks at 5%. The total number of 288

clinical cases, however, has dropped by 85% over the course of six years resulting in an 289

annual EIR of 9 infectious bites per person. In the case with resistance, RDT prevalence 290

mimics the scenario with no resistance until the fourth year. Selection of resistant 291

vectors increases the resistant proportion of the population (supplementary figure S3) 292

leading to higher sustained prevalence rates similar to rates seen after the first 293

deployment of nets with a peak of 10%. The total number of clinical cases averted over 294

the six years drops to 80%. The annual EIR climbs to a mean of 30 infectious bites per 295

person over the course of the final year. 296

Traditional vector control strategies increase the chance of 297

malaria elimination via genetically modified vectors refractory 298

to malaria in high transmission settings 299

In highly seasonal settings, releasing mosquitoes that carry gene drives at the start of 300

the peak season maximizes the chances of spreading introduced genes through the entire 301

population [54]. Here, vectors carrying a gene drive that renders them refractory to 302
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malaria are released at the end of June in a setting with seasonality characteristic of the 303

Sahel (Fig. 3A). The spread and effect of malaria refractory gene drives in inhibiting 304

malaria transmission is explored in three scenarios: one with no other forms of vector 305

control, and two scenarios with ITNs distributed at the start of the wet season every 306

three years at 60% and 80% coverage, respectively. This is a single location simulation 307

and for each scenario the probability of elimination six years after the start of the 308

simulation is calculated for a range of transmission blocking efficiencies and successful 309

drive copy rates (Fig. 8). 310

Fig 8. Likelihood of elimination in a Sahelian setting using gene drives that
reduce the probability of transmission of parasites from mosquitoes to
humans. Three scenarios are presented - one without ITNs, and ITNs distributed
every three years over a six year period at 60% and 80% coverage, respectively. The
fraction of simulations eliminating is evaluated over 50 stochastic realizations for a given
value pair of probability of transmission from mosquito to human and likelihood of
successful gene drive of the gene responsible for reduced transmission.

In the use case of a population replacement gene drive, the likelihood of the driver 311

successfully cleaving the target site and copying over the desired gene has minimal 312

impact in all three scenarios. However, it does have an impact on how quickly the drive 313

establishes (supplementary figure S4). This in turn has an effect on how quickly 314

transmission is reduced. However, the degree to which the desired gene blocks 315

transmission of the malaria parasite from mosquito to human is a stronger predictor of 316

elimination. When no ITNs are present, and when the likelihood of infected vectors 317

transmitting malaria to humans is greater than 20%, malaria persists in the region. 318

However, with the addition of ITNs at 60% coverage, a vector to human transmission 319

efficiency of 35% still results in 50% of the simulations eliminating. At 80% ITN 320

coverage and only 50% chance of a bite being infectious, there is a 60% chance of 321

elimination in the region. In the last two scenarios, the inclusion of ITNs increases the 322

chances of elimination despite ITNs killing off vectors carrying the drive as well. The 323

drive spreads through the population because male mosquitoes are unaffected by ITNs 324

and reseed the vector population with the drive until the drive establishes in the entire 325

population. 326

Spatial connectivity and interaction with traditional vector 327

control are critical factors in determining gene drive success 328

Vector migration plays an important role in the spread and establishment of a gene in a 329

regional vector population as migration determines the rate of gene flow between 330

subpopulations that are spatially segregated. To explore the effects of a region’s 331

connectedness and the migration of vectors between habitat and meals, the Sahelian 332

seasonality (Fig. 3A) is imposed on a representative region of settlements in the Sahel 333

(Fig. 3B). Release sites for mosquitoes carrying drive are marked in red, and 100 334
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genetically modified mosquitoes are released from each of the sites at the end of June as 335

the peak season begins to pick up. The effects of a vector control intervention such as 336

ITNs when combined with a gene drive release are explored (Fig. 9). 337

Fig 9. Evolution of true prevalence over time when different intervention
packages are deployed in a multi location Sahelian setting. Results are from a
spatial simulation with 150 one square kilometer nodes with varying population and
larval habitat sizes spread across 300 square kilometers. Four different scenarios are
explored - absent any vector control interventions, release of genetically modified
mosquitoes carrying a drive that reduces the probability of parasite transmission from
mosquitoes to humans, deploying ITNs every three years just as the peak season begins
to pick up, and a combination of gene drive and ITNs. The average of 50 stochastic
realizations of each scenario is represented by solid lines while the shaded area
represents one standard deviation.

For gene drive releases in the multi-location simulations, infectious vectors carrying 338

the drive are modeled to have a 70% drop in their efficiency to transmit malaria to a 339

human. The likelihood of drive copying over is maintained at 100% to simulate an 340

optimistic scenario for gene drive establishment in this setting. Vector migration is 341

modeled as described in section Simulation framework. When there are no interventions, 342

the true prevalence in the region oscillates between around 65% in the dry season to 343

over 95% at the peak of the wet season. With the introduction of ITNs at 80% coverage, 344

large drops in prevalence are observed immediately after deployment but waning usage 345

of the nets over time coupled with decreasing net integrity and insecticide effectiveness 346

over time leads to prevalence reverting to levels without vector control a year and a half 347

following deployment. This is seen after both ITN distribution events that are three 348

years apart. 349

In the scenario where there is a single release of mosquitoes carrying drives at the 350

end of June in the first year of the simulation, there is a large drop in prevalence 351

approximately 2 years after release. This is because vectors carrying the drive take time 352

to migrate away from the release sites and establish in other areas before driving down 353

transmission. However, after establishment, transmission persists with a maximum 354

prevalence of around 90% and a minimum prevalence of around 25% over a given year. 355

This is in line with single location simulations of gene drive releases (Fig. 8). 356

Additionally, the release sites have been held constant at six for this scenario. In this 357

setting, the number of release sites only impacted the speed of establishment and not 358

the probability a gene drive would establish. Six sites with the largest human 359

population were chosen to keep release numbers under 1% of the total vector population 360

in the simulated region. 361

However, when gene drives and ITNs are combined the probability of elimination 362
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decreases in the multi-location simulation compared to the single location ones. In the 363

multi-location scenarios, gene drive mosquito release and the first round of net 364

distribution are conducted concurrently at the end of June of the first year of simulation 365

with an additional round of net distribution after three years. Again, gene drives take 366

two years to establish and have an impact on transmission but ITN usage in the 367

meantime drives the prevalence lower in year 3 of the simulation than in the case with 368

only ITNs. As the impact of gene drives begins to grow after year 3, the prevalence 369

drops to almost undetectable levels in combination with the second ITN distribution 370

event. However, as ITN usage wanes, the prevalence begins to pick up again towards 371

the end of year 5. Now only 80% of simulations eliminate as opposed to 100% 372

elimination seen in the single location. Partial suppression of transmission due to drives 373

and uneven migration leads to pockets of lower establishment (supplementary figure S5). 374

The decreases in establishment rates are especially distinct around the start of the wet 375

season when wild-type mosquitoes could have survived in greater numbers than GM 376

mosquitoes because of demographic stochasticity, which small populations are 377

vulnerable to, leading to a resurgence of wild-type mosquitoes in the node. This 378

combined with dropping ITN usage lead to regions of high prevalence in some 379

simulations (supplementary figure S5). This in turn leads to prevalence increasing if 380

transmission is not eliminated by the time net usage starts to decrease. 381

Computational resources and simulation times 382

All simulations were carried out using the Institute for Disease Modeling’s in-house high 383

performance computing job management platform with access to up to 768 logical cores 384

with a clock speed of 3.30GHz and 8GB of memory per core. In the single node 385

simulations, approximately 200,000 male and female mosquitoes were simulated for 6 386

years with an average run time of 4 seconds per simulation. In the single node insecticide 387

resistance and gene drive scenarios, 1.5 million male and female mosquitoes with a 388

human population of 1000 individuals complete with malaria control interventions and 389

individual immune dynamics were simulated for 6 years with an average simulation time 390

of 8 minutes per simulation. In the spatial simulations, we simulate approximately 5000 391

people and 6 million male and female mosquitoes spread over 150 nodes using 5 392

compute cores with an average simulation time of 14 minutes per simulation. The 393

spatial simulations include migration of humans and mosquitoes between nodes as well 394

as malaria control interventions such as ITNs and health-seeking by infected individuals. 395

Discussion 396

Insecticide resistance threatens to drastically undermine malaria control and elimination 397

efforts globally. New tools are required to understand the spread of insecticide 398

resistance, and how new technologies such as gene drives, which aim to overcome the 399

challenges posed by insecticide resistance, should be optimally deployed in the field. 400

Here, we present a mathematical model that captures gene flow, the impact of gene 401

drives, and the evolution of resistance in vector populations under insecticide pressure 402

in an agent-based spatiotemporal framework of malaria transmission. 403

The results from embedding this agent-based model of vector genetics within an 404

agent-based model of malaria transmission dynamics show that even a small number of 405

insecticide-resistant vectors can start to dominate a local population facing repeated 406

exposure to the same insecticides. This could lead to a rapid rise in the number of 407

clinical cases of malaria. Additionally, in regions with highly seasonal and 408

heterogeneous transmission, existing vector control methods such as ITNs can work in 409

concert with gene drives that seek to replace the wild population with mosquitoes that 410
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have a reduced ability to transmit the disease to bring even high transmission settings 411

close to elimination in a few years. 412

The scope of this study is limited to presenting a modeling framework. To this end, 413

we use parameter values that are within physiologically plausible limits and the 414

examples presented here reflect the dynamics of vector genetics and malaria in a high 415

transmission setting. Careful calibration to field data from a specific location is 416

necessary to answer questions relevant to that setting. However, irrespective of 417

differences between transmission settings, there are a number of unanswered questions 418

with respect to mosquito gene flow, insecticide resistance and gene drives that 419

mathematical modeling and this model in particular could aid in answering across a 420

range of transmission intensities. For example, the model presented here could be 421

leveraged to understand the rise of insecticide resistance given different vector control 422

strategies in a region. For an assortment of insecticides that can be delivered via 423

different modalities such as IRS and ITNs, mathematical models of resistance such as 424

the one presented here could be used to calculate optimal timing and spatial 425

deployment of these interventions as well as develop insecticide cycling strategies [55] 426

that could mitigate the spread of resistant vectors. Furthermore, the impact of vector 427

control strategies that employ two or more insecticides [56] deployed concurrently 428

amidst resistance in a given region can also be assessed. 429

Another topic of future research involves behavioral resistance. Here, we have 430

focused on a loss of killing efficacy for insecticides when resistance is present but changes 431

in vector behavior due to resistance could lead to a further increase in transmission. For 432

example, resistant vectors that are averse to insecticides may avoid landing on nets or 433

entering houses treated with IRS [57] and shift transmission modes by preferentially 434

seeking more outdoor feeds. While we have not explored these questions in detail in this 435

work, the scenarios presented here serve as an example of how the model can be 436

adapted to address scenarios arising from more complex resistant vector behavior. 437

The model is limited to 8 alleles and 10 loci to make the model computationally 438

efficient by limiting the amount of memory allotted to each genome to 64 bits, which is 439

a common width for registers in a CPU. Additionally, a 10 loci genome is sufficient to 440

model a number of complicated scenarios ranging from single gene mutations in kdr 441

resistant mosquitoes [58] to complicated multi driver effector gene drives that could be 442

developed using emerging constructs [43]. There are, of course, limitations to this model 443

such as the absence of a framework to account for genetic linkage of resistant alleles 444

with alleles coding for other phenotypic characteristics, which could impact how 445

genomes are selected for under insecticide pressure especially in the case of polygenic 446

resistance. However, the modular framework of this model is extensible to include these 447

characteristics should the need arise. 448

As the debate continues on if and how gene drives should be released, mathematical 449

models could prove invaluable in narrowing down questions and concerns of regulators 450

and stakeholders to aid in making informed decisions. The optimal size and timing of 451

release that result in drive fixation given a deliberate or accidental release in a region, 452

whether replacement, suppression or a combination of the two strategies is best suited 453

to a region, and the effects of ongoing vector control on gene drives and their combined 454

effect on malaria transmission are just a few examples of more specific questions this 455

model can be leveraged to simulate within the framework of malaria transmission in a 456

region. 457

In the past, we have used EMOD to answer complex question about the impacts of 458

seasonality, transmission heterogeneity, and various intervention measures on malaria 459

transmission [45, 49, 59], but we now have the ability to do so through the lens of vector 460

genetics, and specifically, the outcomes of deploying complex intervention strategies 461

such as gene drives. The power of this model thus lies in its ability to provide specific 462
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answers in detailed but limited geographies of the order of several hundred to a few 463

thousand square kilometers encompassing populations of hundreds of thousands of 464

people and several million mosquitoes. This limit is imposed to optimize computational 465

efficiency while also providing actionable results to key stakeholders ranging from 466

malaria research groups to national malaria control programs. 467

While we aim to use this model to investigate important questions related to vector 468

genetics, we also aim to continually improve the model to accurately capture how 469

resistance spreads or gene drives establish themselves in a region. For example, we 470

simulate mosquito migration at shorter scales compared to phenomena such as long 471

range migration aided by wind [46]. Additionally, we have limited migration to within 472

the simulated region while there could be mosquitoes entering or escaping the region 473

with dire consequences. Gene drive mosquitoes escaping the simulated or control region 474

and establishing elsewhere is a genuine cause for concern [19]. These migration events 475

could also impact transmission. For example, importation of wild-type mosquitoes into 476

the study area could reseed transmission year after year. Or preferential migration to 477

some nodes during certain times of the year could lead to other regions being primed for 478

colonization by non-gene drive mosquitoes. Some of these questions have been tackled 479

by other research. For example, the spread of gene drives and vector genetics over larger 480

spatial scales has been modeled by North et al. [60]. However, we believe the full 481

potential of the model presented here is realized when it is deployed to answer questions 482

about malaria transmission and vector genetics at the sub-national scale; to the best of 483

our knowledge, this is the first model to do so holistically. Additionally, while we have 484

eschewed migration of vectors into and out of the simulated area to keep the examples 485

simple, these scenarios may still be investigated within the current framework. For 486

example, migration of vectors into the modeled area can be achieved in two ways: 1) as 487

a release of mosquitoes as shown in the spatial example or 2) as migration from a high 488

vector density node that is separate from the simulated area and reseeds mosquito 489

populations in the simulated area seasonally or perennially. Similarly, migration of 490

vectors out of the simulated area can be modeled by having mosquitoes migrate to an 491

external node. 492

Finally, we have largely avoided including fitness costs associated with resistance or 493

mosquitoes carrying drives that could have large effects on the outcomes of gene drive 494

or vector control based intervention strategies in the field. There are likely fitness costs 495

in insecticide-resistant vectors [61] or genetically modified mosquitoes [62]. Additionally, 496

suppression through gene drives can be achieved in a number of ways including 497

fecundity reduction or reduced egg batch size. Sex distortion is another modality of 498

suppression. However, while the framework of the model lends itself to including 499

inheritance logic when a sex distorter drive is used, we currently have not implemented 500

it within the model, and fitness costs will have to be carefully characterized by field or 501

lab data before the model can predict outcomes for different characteristics associated 502

with vector genetics in a particular region. 503

Conclusion 504

An agent-based model of vector genetics that can account for insecticide resistance and 505

gene drives is presented here. When embedded into an agent-based model of malaria 506

immunity and transmission dynamics, it can be used to simulate the evolution of 507

insecticide resistance in a range of transmission settings with ongoing vector control 508

interventions. The impact of insecticide resistance in a high transmission setting with 509

repeated deployments of insecticide-treated nets was simulated as an example. The 510

results suggest periodic exposure over a number of years to the same insecticides can 511

lead to selection of resistant vectors despite low prevalence of resistance in a highly 512
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seasonal setting. While the effects of resistance are minor after the first round of 513

exposure to insecticides, subsequent rounds can accelerate resistance, which could lead 514

to rapid resurgences in malaria prevalence and burden. 515

The model also provides a flexible framework to evaluate expected impact of new 516

tools in programmatic settings. For example, gene drives could be a powerful tool in the 517

fight against malaria. However, gene drives alone may not be able to eliminate malaria. 518

As an example, the vector genetics model presented here was leveraged to simulate a 519

scenario when gene drives are combined with traditional vector control tools such as 520

ITNs in a highly seasonal and high transmission setting. Preliminary results from these 521

simulations suggest a combination of gene drives and traditional vector control methods 522

offer a more robust strategy to achieving malaria elimination than deploying each of 523

these interventions independently. 524
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Supporting information 525

The code, input files, and model executable for all simualations can be found on GitHub 526

(https://github.com/InstituteforDiseaseModeling/selvaraj vector genetics 2020). 527

Software dependencies such as dtk-tools, dtk-tools-malaria, and the malaria-toolbox 528

packages are publicly available or available upon request from support@idmod.org 529

530

S1. Memory allocation for vector genetics model embedded in EMOD. 531

Each vector or vector cohort carries with it 64 bits of memory dedicated to a diploid 532

carrying 10 different representative genes with up to 8 different alleles per gene. 4 bits 533

are reserved for microbial interventions such as Wolbachia, metrhizium or microsporidia. 534

While a mosquito has 3 chromosome, the representative genome here consists of only 535

one pair of representative chromosomes. 536
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537

S2. Mendelian inheritance of vector genes in EMOD. EMOD adopts a 4 part 538

lifecycle for the vector starting from eggs that progress to the larval stage before moving 539

onto the immature adult and adult stage. When adults mate, genomes from male and 540

female mosquitoes are used to calculate the likelihood of existence of a gamete carrying 541

a certains set of allele combinations. Random mutation are then applied and possible 542

genome probabilities calculated. Mutation and recombination rates used here are 543

illustrative and do not reflect a specific real world phenomenon. These probabilites are 544

multiplied by the egg batch size, which is modeled as a phenotypic property, for each 545

species to obtain the number of eggs bearing each genome. 546
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547

S3. Daily EIR across a period of six years averaged over 50 stochastic 548

realizations for three scenarios - when no interventions are deployed, when 549

ITNs are deployed at 60% coverage absent any resistance, and with the 550

presence of resistance. The shaded area around the mean represents one standard 551

deviation calculated across the 50 stochastic realizations. ITNs are distributed every 552

three years at the beginning of the peak season. 553

554

S4. Establishment rates for different probabilities of the drive being 555

copied over to the target location. There are no other vector control interventions. 556

And transmission to human is set to 0. 557
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558

S5. Single realization of the combined ITN and gene drive scenario where 559

elimination was not attained at end of a six year simulation. Upper panel 560

describes spatial distribution of prevalence at the end of six years. Blue line in lower 561

panel describes total prevalence in simulated area. Black line describes overall 562

establishment of GM mosquitoes over time while the red envelope describes the range of 563

establishment rates across all spatial nodes. 564
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4. Sougoufara S, Doucouré S, Backé Sembéne PM, Harry M, Sokhna C. Challenges
for malaria vector control in sub-Saharan Africa: Resistance and behavioral
adaptations in Anopheles populations. J Vector Borne Dis. 2017;54(1):4–15.

5. Hancock PA, Hendriks CJM, Tangena J-A, Gibson H, Hemingway J, Coleman M,
et al. Mapping trends in insecticide resistance phenotypes in African malaria
vectors. bioRxiv. 2019;doi:10.1101/2020.01.06.895656.

6. World Health Organization, Geneva. World malaria report 2019; 2019.

7. Implications of Insecticide Resistance Consortium. Implications of insecticide
resistance for malaria vector control with long-lasting insecticidal nets: trends in
pyrethroid resistance during a WHO-coordinated multi-country prospective study.
Parasit Vectors. 2018;11(1):550.

8. Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to
pyrethroid insecticides. Insect Biochem Mol Biol. 2003;33(6):563–577.

9. Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research
directions. Annu Rev Entomol. 2015;60:537–59.

10. Badyaev AV. Stress-induced variation in evolution: from behavioural plasticity to
genetic assimilation. Proc Biol Sci. 2005;272(1566):877–886.

11. Marshall JM, Taylor CE. The effect of gene drive on containment of transgenic
mosquitoes. J Theor Biol. 2009;258(2):250–65.

12. Hayirli TC, Martelli PF. Gene drives as a response to infection and resistance.
Infect Drug Resist. 2019;12:229–234.

13. Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HC, Burt A.
Requirements for Driving Antipathogen Effector Genes into Populations of
Disease Vectors by Homing. Genetics. 2017;205(4):1587–1596.

14. Gari T, Lindtjørn B. Reshaping the vector control strategy for malaria
elimination in Ethiopia in the context of current evidence and new tools:
opportunities and challenges. Malar J. 2018;17:54.

15. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, C NL, Moore SJ, et al.
Mosquito feeding behavior and how it influences residual malaria transmission
across Africa. Proc Natl Acad Sci USA. 2018;116(30):15086–15095.

16. Benedict M, D’Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, et al.
Guidance for contained field trials of vector mosquitoes engineered to contain a
gene drive system: recommendations of a scientific working group. Vector Borne
Zoonotic Dis. 2008;8(2):127–66.

June 2, 2020 22/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Ribeiro JM, Kidwell MG. Transposable elements as population drive mechanisms:
specification of critical parameter values. J Med Entomol. 1994;31(1):10–6.

18. Burt A. Site-specific selfish genes as tools for the control and genetic engineering
of natural populations. Proc Biol Sci. 2003;270(1518):921–928.

19. James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, et al.
Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool
for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a
Scientific Working Group. Am J Trop Med Hyg. 2018;98(6 suppl):1–49.

20. Hammond AM, Galizi R. Gene drives to fight malaria: current state and future
directions. Pathog Glob Health. 2017;111(8):412–423.

21. Brossard D, Belluck P, Gould F, Wirz CD. Promises and perils of gene drives:
Navigating the communication of complex, post-normal science. Proc Natl Acad
Sci U S A. 2019;116(16):7692–7697.

22. Eckhoff PA, Wenger EA, Godfray HC, Burt A. Impact of mosquito gene drive on
malaria elimination in a computational model with explicit spatial and temporal
dynamics; 2017.

23. Godfray HCJ, North A, Burt A. How driving endonuclease genes can be used to
combat pests and disease vectors. BMC Biol. 2017;15:81.

24. Marshall JM, Buchman A, Sánchez CH, Akbari OS. Overcoming evolved
resistance to population-suppressing homing-based gene drives. Sci Rep.
2017;7(1):3776.

25. Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA. Evolutionary dynamics
of CRISPR gene drives. Sci Adv. 2017;3(4):e1601964.

26. Unckless RL, Messer PW, Connallon T, Clark AG. Modeling the Manipulation of
Natural Populations by the Mutagenic Chain Reaction. Genetics.
2015;201(2):425–31.

27. Tanaka H, Stone HA, Nelson DR. Spatial gene drives and pushed genetic waves.
Proc Natl Acad Sci U S A. 2017;114(32):8452–8457.

28. Sánchez HMC, Wu SL, Bennett JB, Marshall JM. MGDrivE: A modular
simulation framework for the spread of gene drives through spatially explicit
mosquito populations. Methods Ecol Evol. 2019;00:1–11.

29. Beaghton A, Beaghton PJ, A B. Gene drive through a landscape:
Reaction-diffusion models of population suppression and elimination by a sex
ratio distorter. Theor Popul Biol. 2016;108:51–69.

30. Barbosa S, Kay K, Chitnis N, Hastings IM. Modelling the impact of
insecticide-based control interventions on the evolution of insecticide resistance
and disease transmission. Parasit Vectors. 2018;11(1):482.

31. Gourley SA, Liu R, Wu J. Slowing the evolution of insecticide resistance in
mosquitoes: a mathematical model. Proc R Soc A. 2011;467(2132):2127–2148.

32. Wairimu J, Chirove F, Ronoh M, Malonza DM. Modeling the effects of
insecticides resistance on malaria vector control in endemic regions of Kenya.
Biosystems. 2018;174:49–59.

June 2, 2020 23/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Souris M, Marcombe S, Laforet J, Brey PT, Corbel V, Overgaard HJ. Modeling
spatial variation in risk of presence and insecticide resistance for malaria vectors
in Laos. PLoS One. 2017;12(5):e0177274.

34. Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E, Trett A, et al.
Associated patterns of insecticide resistance in field populations of malaria
vectors across Africa. Proc Natl Acad Sci USA. 2018;115(23):5938–5943.

35. Jindal A, Shrisha R. Agent-Based Modeling and Simulation of Mosquito-Borne
Disease Transmission. AAMAS ’17: Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems citation. 2017; p. 426–435.

36. Bershteyn A, Gerardin J, Bridenbecker D, Lorton CW, Bloedow J, Baker RS,
et al. Implementation and applications of EMOD, an individual-based
multi-disease modeling platform. Pathog Dis. 2018;76(5):fty059.

37. Smith NR, Trauer JM, Gambhir M, Richards JS, Maude RJ, Keith JM, et al.
Agent-based models of malaria transmission: a systematic review. Malar J.
2018;17(1):299.

38. Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and
ecology; 2011.

39. Institute for Disease Modeling. Epidemiological Modeling Software; 2019.
Available from: http://idmod.org/software.

40. Gomes FM, Barillas-Mury C. Infection of anopheline mosquitoes with Wolbachia:
Implications for malaria control. PLoS Pathog. 2018;14(11):e1007333.

41. Lovett B, Bilgo E, Millogo SA, Ouattarra AK, Sare I, Gnambani EJ, et al.
Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of
Burkina Faso. Science. 2019;364(6443):894–897.

42. Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided
gene drives for the alteration of wild populations. Elife. 2014;3.pii:e03401.

43. Nash A, Urdaneta GM, Beaghton AK, Hoermann A, Papathanos PA,
Christophides GK, et al. Integral gene drives for population replacement. Biol
Open. 2019;8(1):pii:bio037762.

44. Noble C, Min J, Olejarz J, Buchthal J, Chavez A, Smidler AL, et al. Daisy-chain
gene drives for the alteration of local populations. Proc Natl Acad Sci USA.
2019;116(17):8275–8282.

45. Selvaraj P, Wenger EA, Gerardin J. Seasonality and heterogeneity of malaria
transmission determine success of interventions in high-endemic settings: a
modeling study. BMC Infect Dis. 2018;18(1):413.

46. Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al. Windborne
long-distance migration of malaria mosquitoes in the Sahel. Nature.
2019;574(7778):404–408.

47. Molineaux L, Gramiccia G, World Health Organization. The Garki project:
research on the epidemiology and control of malaria in the Sudan savanna of
West Africa. 1980;.

June 2, 2020 24/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

http://idmod.org/software
https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


48. Facebook Connectivity Lab and Center for International Earth Science
Information Network - CIESIN - Columbia University. 2016. High Resolution
Settlement Layer (HRSL). Source imagery for HRSL ©2016 DigitalGlobe.
Accessed 1 July 2019.;.

49. Selvaraj P, Suresh J, Wenger EA, Bever CA, Gerardin J. Reducing malaria
burden and accelerating elimination with long-lasting systemic insecticides: a
modelling study of three potential use cases. Malar J. 2019;18(1):307.

50. Eisele TP, Bennett A, Silumbe K, Finn TP, Chalwe V, Kamuliwo M, et al..
Short-term Impact of Mass Drug Administration With Dihydroartemisinin Plus
Piperaquine on Malaria in Southern Province Zambia: A Cluster-Randomized
Controlled Trial; 2016.

51. Nikolov M, Bever CA, Upfill-Brown A, Hamainza B, Miller JM, Eckhoff PA, et al.
Malaria Elimination Campaigns in the Lake Kariba Region of Zambia: A Spatial
Dynamical Model. PLoS Comput Biol. 2016;12(11):e1005192.

52. World Health Organization, Geneva. Achieving and maintaining universal
coverage with long-lasting insecticidal nets for malaria control; 2017.

53. Bhatt S, Weiss DJ, Mappin B, Dalrymple U, Cameron E, Bisanzio D, et al.
Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to
2017. eLife. 2015;4:e09672.

54. Lambert B, North A, Burt A, Godfray HCJ. The use of driving endonuclease
genes to suppress mosquito vectors of malaria in temporally variable
environments. Malar J. 2018;17:54.

55. Sudo M, Takahashi D, Andow DA, Suzuki Y, Yamanaka T. Optimal management
strategy of insecticide resistance under various insect life histories: Heterogeneous
timing of selection and interpatch dispersal. Evol Appl. 2017;11(2):271–283.

56. Camara S, Ahoua Alou LP, Koffi AA, Clegban YCM, Kabran JP, Koffi FM, et al.
Efficacy of Interceptor G2, a new long-lasting insecticidal net against wild
pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: a semi-field trial.
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