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Abstract 
 

Objective 

Chinese hamster ovary (CHO) cells are the leading cell factories for producing recombinant 

proteins in the biopharmaceutical industry. In this regard, constraint-based metabolic models are 

useful platforms to perform computational analysis of cell metabolism. These models need to be 

regularly updated in order to include the latest biochemical data of the cells, and to increase 

their predictive power. Here, we provide an update to iCHO1766, the metabolic model of CHO 

cells. 

 

 

Results 

We expanded the existing model of Chinese hamster metabolism with the help of four gap-filling 

approaches, leading to the addition of 773 new reactions and 335 new genes. We incorporated 

these into an updated genome-scale metabolic network model of CHO cells, named iCHO2101. In 

this updated model, the number of reactions and pathways capable of carrying flux is substantially 

increased.  

 

Conclusions 

The present CHO model is an important step towards more complete metabolic models of CHO 

cells. 
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Introduction 
 

A genome-scale metabolic network model (GEMs) is a mathematical formulation that summarizes 

all data about genes, proteins, and reactions known to be involved in the metabolism of a specific 

cell. Using reliable metabolic models, one can perform virtual (in silico) experiments in a rapid and 

inexpensive manner (Fouladiha and Marashi 2017; Gu et al. 2019). Therefore, GEMs can be helpful 

tools in cell biology and metabolic engineering by predicting the metabolic state of cells under 

certain growth conditions (Zhang and Hua 2016).  

Chinese hamster ovary (CHO) cells are the main workhorse in the biopharmaceutical industry for 

producing recombinant proteins, such as humanized monoclonal antibodies. These cells were 

originally obtained from a Chinese hamster (Cricetulus griseus) in 1957. Several studies have 

focused on the optimization of the production of CHO cells using cellular and metabolic 

engineering methods (Wells and Robinson 2017). Experimental manipulation and maintenance of 

CHO cells, like many other mammalian cell lines, are costly and time-consuming. A reliable 

metabolic model of CHO cells can be used as a platform to perform computational analyses of cell 

metabolism to aid in experimental design. Such a model-driven analysis may predict the outcome 

of experimental tests and reduce the possibility of having false experimental results. Moreover, a 

CHO metabolic model can be helpful in suggesting genetic engineering and media-design 

strategies for improving recombinant protein production (Calmels et al. 2019; Fouladiha et al. 

2020; Traustason et al. 2019). Another appreciated application of metabolic models is their role in 

interpreting “omics” data (Hyduke et al. 2013; Kildegaard et al. 2013; Lakshmanan et al. 2019; 

Richelle et al. 2019a). For example, transcriptomic and proteomic data can be mapped onto the 

models to infer new knowledge about the physiological characteristics of cells (Richelle et al. 

2019b; Schaub et al. 2011).  

One major challenge in the development of genome-scale metabolic network models is our 

limited knowledge of a cell’s metabolism. Specifically, genome-scale metabolic network 

reconstructions must be iteratively expanded as novel data emerges on enzymes and reactions 

that occur in the cell of interest. For example, several updates of the GEMs of Saccharomyces 

cerevisia have been published (Castillo et al. 2019), from iND750 (Duarte et al. 2004) and iIN800 

(Nookaew et al. 2008), to Yeast 5 (Heavner et al. 2012), and ecYeast7 (Sánchez et al. 2017). A 

variety of algorithms have also been developed to predict additional reactions and potential genes 

that could catalyze such reactions (Karlsen et al. 2018), where using machine-learning methods 

have been helpful (Medlock et al. 2020; Medlock and Papin 2020). These algorithms are 

particularly useful for expanding the metabolic networks of non-model organisms (Biggs and Papin 

2017). 

The previous version of the CHO model, iCHO1766, has been used in several studies. For example, 

iCHO1766 was used to predict the lethality of CHO genes (Ley et al. 2019), to improve the 
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predictive power of the model by modifying flux analysis (Chen et al. 2019; Lularevic et al. 2019), 

to assess heterogeneity in cell culture (Fernandez-de-Cossio-Diaz and Mulet 2019), and to improve 

bio-production capability of CHO cell by designing cell feeds (Fouladiha et al. 2020; Schinn et al. 

2020). iCHO1766 has also been a helpful tool in studying metabolism of the cells, together with 

fluxomics (Hong et al. 2020), transcriptomics (Zhuangrong and Seongkyu 2020), and proteomics 

(Zhuangrong and Seongkyu 2020). In order to have more reliable and accurate results, especially in 

“omics” data integration, the metabolic model needs to be regularly updated to cover the latest 

molecular and biochemical knowledge (Schinn et al. 2020; Yeo et al. 2020). 

Here, we have conducted an in-depth gap-filling of the genome-scale metabolic network 

reconstruction of the Chinese hamster, iCHO1766 (Hefzi et al. 2016), and introduce iCHO2101, an 

updated version for enhanced genome-scale modeling of CHO cell metabolism. Compared to the 

previous version of the CHO model, the number of genes and reactions has been increased, and 

the numbers of blocked reactions and dead-end metabolites have been reduced by about 10% and 

15%, respectively. In other words, more parts of the metabolic model can be active, and more 

reactions are able to carry fluxes in this new version. These improvements increase the accuracy 

and precision of the predictions made by the analysis of the metabolic model.  
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Methods 
 

Analysis of iCHO1766 

The COBRA toolbox (Becker et al. 2007) was used for the constraint-based analysis of the 

metabolic model of CHO cells (iCHO1766). Flux Variability Analysis (FVA) (Burgard et al. 2001) was 

used to find the possible bounds of every flux in steady-state conditions, with no constraints on 

the flux bounds. If the lower and upper bounds of a specific flux were both equal to zero, that 

reaction was assumed to be blocked. In the same way, if the upper and lower bound of the 

exchange flux of a metabolite was zero, that metabolite was considered as a “non-producible and 

non-consumable” or a “dead-end” metabolite.  

 

Filling the gaps and validation of the results 

In the present study, four independent approaches were used for the gap-filling of iCHO1766. 

The first two approaches were based on automatic gap-filling tools, namely, GapFind/GapFill 

(Kumar et al. 2007) and GAUGE (Hosseini and Marashi 2017). The GapFind algorithm uses mixed 

integer linear programming (MILP) to find all metabolites that cannot be produced in steady-state. 

The “root” gaps are those non-producible metabolites whose filling will unblock the other non-

producible (or, “downstream”) gaps. Then, the GapFill algorithm selects a minimal subset of 

reactions from a universal reaction database that must be added to the model in order to convert 

a non-producible metabolite to a producible one. 

In the second approach, we used GAUGE as our computational tool. GAUGE uses transcriptomics 

data to determine the inconsistencies between genes co-expression and flux coupling in a 

metabolic model. Then, GAUGE finds a minimal subset of reactions in the KEGG database whose 

addition can resolve the inconsistencies.  

Reactions suggested by GapFind/GapFill and GAUGE (and their associated genes/proteins) were 

validated before being added to iCHO1766 as follows. If the gene ID of the new reaction or the 

gene ID that is attributed to the enzyme of the new reaction is found in Chinese hamster according 

to the KEGG database, that new reaction is confirmed. Otherwise, the validation is performed 

based on the results of BLASTp against the Cricetulus griseus (Chinese hamster) transcriptome, 

using the enzyme of the new reactions and CHO cell transcribed genomic sequences. For each 

enzyme, in the KEGG database, the amino acid sequences from different species were examined, 

and the best BLASTp hit was reported. A gene/protein was assumed to be present in Chinese 

hamster metabolism if a BLAST search hit is found with e-value < 1x10
-10

. To have a stricter 

standard, we only considered hits with query coverage >70%, or, those hits which were of >30% 

sequence similarity.  
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Our third gap-filling approach was based on manual assessment of the blocked reactions in 

iCHO1766. In several cases, the absence of an exchange or transport reaction was the cause of 

reaction blockage in the model. In such cases, we checked if each non-producible or non-

consumable metabolite is reported in the Human Metabolome Database (HMDB) (Wishart et al. 

2017). If the blocked metabolite was reported to be present in any of the human biofluids 

(including blood, saliva, and urine), it was assumed that the transport of the metabolite across 

extracellular membrane of a typical mammalian cell is possible, and therefore, an exchange 

reaction of that metabolite was added to the model with a high confidence score. If a metabolite 

was “expected” to be present in biofluids by HMDB, the exchange reaction of that metabolite was 

added to the model with a low confidence score. 

In the fourth approach, the BiGG database (King et al. 2015) was used to retrieve all known 

biochemical reactions and their corresponding enzymes. Then, the KEGG database was queried 

to extract the full list of Chinese hamster genes and their association with biochemical 

enzymes. The intersection of these two lists was considered as the list of potential reactions. 

Then, the 1766 genes that were present in iCHO1766 were subtracted from the list of potential 

reactions to find those CHO reactions that have counterparts in BiGG, but are not present in 

iCHO1766.  

 

Analysis of iCHO2101 

The COBRA toolbox (Becker et al. 2007) was used for performing flux balance analysis (FBA) and 

flux variability analysis (FVA) of the updated CHO model when uptake fluxes were 

unconstrained/constrained. In the unconstrained state, no restrictions were applied to the flux 

bounds. In the constrained state, on the other hand, only the metabolites of the cell culture 

medium were allowed to be imported to the model, with a limited flux as defined in iCHO1766 

(Hefzi et al. 2016). Here, FBA was used to predict the maximum growth rate, and FVA was used to 

calculate possible flux bounds of each reaction while maintaining the maximum growth rate. The 

reactions with non-zero flux bounds in FVA were considered as “active” reactions.  

 

Gene expression analysis 

In order to evaluate the new version of the model and compare it with iCHO1766, the 

transcriptomic data of CHO cells were used. These normalized data include expression levels of 

more than 23000 genes of CHO-S and CHO-K1 cells across 191 different samples, including 

published data (Hefzi et al. 2016; Van Wijk et al. 2017) and unpublished data sets. Data were 

processed as follows: FastQC v11.1 (Andrews 2010) was used to assess read quality. 

Trimmomatic v0.33 (Bolger et al. 2014) was used to trim reads with adapters or low-quality 
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scores. STAR2.4.2a (Dobin et al. 2013) was used to align trimmed reads to the CHO-K1 genome 

(Xu et al. 2011), followed by calculating fpkm using cufflinks (v2.2.1).  

To represent the expression of each gene, the average expression was computed across all 191 

samples. The expression of a single-gene reaction was assumed to be proportional to its gene 

expression. In case of reactions associated with multiple genes, we restricted our analysis to 

those reactions whose genes were linked either with “OR” or “AND”. If all genes of a reaction 

were linked by “OR”/”AND”, the maximum/minimum amounts of gene expressions were 

attributed to that reaction. Then, we assessed expressions of the reactions in a pathway and 

compared it with the percentage of blocked reactions in that pathway.  
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Results  
 

A quarter of reactions in iCHO1766 are blocked 

The community-consensus genome-scale metabolic models of CHO cells, iCHO1766, includes 

1766 genes, 6663 reactions, and 4455 metabolites. Using constraint-based modeling (see 

Methods), one can observe that about 23% of the reactions (1503 reactions out of the total 

6663 reactions) of iCHO1766 are blocked. These blocked reactions cannot carry a non-zero flux 

in steady-state conditions. The reactions of iCHO1766 are categorized in 125 metabolic 

pathways, of which 83 pathways include ten or more reactions. Among these, there are 16 

pathways in which at least 50% of the reactions are blocked (Table 1). The distribution of 

blocked reactions in all metabolic pathways has been shown in Supplementary Table 1. In 

addition, about 21% of the metabolites (955 metabolites out of total 4455 metabolites) in 

iCHO1766 are “dead-end” metabolites, i.e., they cannot be produced nor consumed in steady-

state. These metabolites belong to different subcellular parts of the model (Table 2).  

These blocked reactions and dead-end metabolites suggest that iCHO1766 includes metabolic 

gaps (Orth and Palsson 2010), which is common in genome-scale metabolic models. Other gaps 

may also exist in the model, all of which may result in the inconsistencies between model 

predictions and experimental results. In other words, gaps may decrease the reliability of 

phenotypic predictions of a metabolic model. Several gap-filling methods have been designed 

to find the gaps and predict the ways of removing them from the model (Pan and Reed 2018). 

The majority of these methods use a comprehensive dataset of all known biochemical 

reactions, which is often obtained from the KEGG database (Kanehisa et al. 2016). These 

methods try to find a subset of reactions to be added to the model to fill the gaps and improve 

model predictions. Gap-filling methods can be classified into three groups. The first group 

consists of solely-computational methods, which use different computational algorithms and 

linear or mixed integer linear programming (MILP) to fill the gaps of a model. GapFind/GapFill 

(Kumar et al. 2007), BNICE (Hatzimanikatis et al. 2005), FBA-Gap (Brooks et al. 2012), MetaFlux 

(Latendresse et al. 2012), FastGapFill (Thiele et al. 2014), and FastGapFilling (Thiele et al. 2014) 

are some examples of the first group of methods. The second group of gap-filling methods is 

phenotype-based methods. These methods take advantage of phenotypic data of the cells, 

such as viability on different carbon or nitrogen sources, to acquire new data regarding the 

biochemical reactions of the cell and fill the gaps of the metabolic model of the cell. Smiley 

(Reed et al. 2006), GrowMatch (Kumar and Maranas 2009), OMNI (Herrgård et al. 2006), and 

MinimalExtension (Christian et al. 2009) belong to the second group. All methods that use 

various kinds of “omics” data to fill the gaps of a metabolic model are in the third group, e.g., 

Sequence-based (Krumholz and Libourel 2015) and Likelihood-based (Benedict et al. 2014) 

methods, Mirage (Vitkin and Shlomi 2012), and GAUGE (Hosseini and Marashi 2017). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.01.27.921296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921296
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

In the present study, we decided to use GapFind/GapFill and GAUGE methods to fill the gaps of 

iCHO1766. The results of these two methods were manually validated and added to the model. 

Besides, two manual gap-filling approaches have been used (see Methods). In the end, 

representing statistics of the new model and mapping gene expression data will indicate 

significant improvements in CHO metabolic model.  

 

Gap filling approaches 

Two automatic approaches, namely, GapFind/GapFill and GAUGE, and two manual approaches, 

were used to fill the gaps of iCHO1766. The GapFill method suggested the addition of 121 

reactions to the model in order to enable 123 metabolites to be producible (listed in 

Supplementary Table 2). Some of these 121 reactions can make more than one metabolite to 

be producible. We validated the predictions by manually searching the KEGG database and also 

using BLASTp. For example, 4-coumarate (C00811) was a ‘root’ gap in iCHO1766 (a non-

producible metabolite in steady-state). In addition, caffeate (C01197) can only be produced 

from 4-coumarate, and therefore, caffeate was a ‘downstream’ gap. A reaction (R00737), which 

is catalyzed by tyrosine ammonia-lyase, can fill both of the aforementioned gaps by 

transforming tyrosine to 4-coumarate and ammonia. The possibility of tyrosine ammonia-lyase 

expression in CHO cells was approved using the BLASTp method and therefore, R00737 was 

added to the model. In total, the addition of 56 reactions was validated, which enabled 87 

metabolites to be producible in iCHO1766 (Table 3). These new reactions were associated with 

30 new genes, which were added to the latest version of the model.  

Using the GAUGE method, the inconsistencies between gene co-expression and flux coupling 

relation of 146 gene pairs were found. GAUGE also suggested solutions for removing the 

inconsistencies of 64 pairs of them (listed in Supplementary Table 3). Only 37 out of 64 pairs 

had validated reactions as solutions. In total, 29 reactions were added to iCHO1766 using the 

GAUGE method (Table 4). These new reactions were associated with 3 new genes, which were 

added to the new version of the model. 

In the third gap-filling approach, all non-producible and non-consumable metabolites were 

searched in the HMDB database, and the equivalent IDs were retrieved. If any of the 

metabolites were detected in human biofluids, the exchange reaction of that metabolite was 

added to the model with a high level of confidence. This approach added 257 new reactions to 

the model (a full list of reactions and HMDB IDs are available in Supplementary Table 4). For 

example, nonanoate was a dead-end metabolite, which was detected in blood, feces, saliva, 

and sweat (HMDB0000847). The extracellular export of nonanoate enabled a blocked reaction 

to carry flux in the linoleate metabolic pathway. There was another group of metabolites that 

were labeled as “expected to be detected in human biofluids” by HMDB. The exchange 
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reactions of 196 metabolites of this group were added to the model with a low level of 

confidence (a full list of reactions and HMDB IDs are available in Supplementary Table 5). 

With a manual assessment of the blocked reactions in iCHO1766, we found that there was a lot 

of repetition of reactions in different subcellular compartments of the model. In other words, 

these reactions have the same reactants and products, with precisely the same stoichiometric 

coefficients, but in different subcellular compartments. In such cases, the absence of 

appropriate transport reactions caused a lot of blocked reactions. There were 178 blocked 

repetitive reactions in the iCHO1766, which have no genes, which we therefore suggest for 

deletion in future curation efforts (all such reactions are listed in Supplementary Table 6). 

Furthermore, if there was a transport reaction for a metabolite in a subcellular part with no 

genes in iCHO1766, the addition of another transport reaction for that metabolite between 

other subcellular parts of the new version of the model had a high confidence score. These 139 

reactions were added to the new model (Supplementary Table 7). 

We found 314 new genes in the fourth approach by searching the BiGG and KEGG databases 

(see Supplementary Table 8). Twelve of these 314 new genes were also predicted by 

GapFind/GapFill, and 1 out of 314 new genes was also predicted by GAUGE. The addition of 

these new genes updated the gene association data of 30 reactions of iCHO1766 and also 

caused 42 new reactions to be added to the new model.  

 

Analysis of iCHO2101 

Using the four mentioned gap-filling approaches, a total number of 773 new reactions, 335 new 

genes, and 72 metabolites were added to iCHO1766. In addition, we reviewed the names of 

metabolites and reactions of the model and renamed the unknown IDs based on BiGG 

database. The new version of iCHO1766, which is named iCHO2101, has 2101 genes, 7436 

reactions, and 4527 metabolites (see Supplementary Table 10).  In iCHO2101, 58 pathways 

contain no blocked reactions, and only 5 pathways have more than 50% blocked reactions 

(Table 5). In addition, the distribution of dead-end metabolites of iCHO2101 in different 

subcellular compartments has been reduced to less than 10% (Table 6). Figure 1 summarizes 

the improvements made in the current study for the metabolic model of CHO cells by creating a 

visual comparison of model statistics, blocked reactions, and dead-end metabolites between 

iCHO1766 and iCHO2101. 

Using FBA after applying our published uptake and secretion constraints, we found the 

maximum growth rate in the constrained state was similar for iCHO1766 and iCHO2101 (0.03 h
-

1
). By performing FVA in the constrained state of iCHO1766 and iCHO2101, we found the 

number of “active” reactions in each metabolic pathway had been significantly improved in the 

gap-filled version of the model. Figure 2 shows the percent of activities of fluxes in 14 metabolic 
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pathways with more than 5 reactions, where the changes between iCHO1766 and iCHO2101 

are more than 30%. For example, all reactions of 'sphingolipid metabolism' are “active” in 

modeling the growth using iCHO2101, thus enabling the analysis of this process, which has 

been previously reported to be of importance for the growth of CHO cells (Hanada et al. 1992).  

 

Gene expression analysis 

We subsequently analyzed the expression of the genes in the metabolic models in 191 RNA-Seq 

samples. We computed the expression levels of reactions (see Methods). Then, considering the 

expressions of reactions in the metabolic pathways of the iCHO1766, it was revealed that some 

of the pathways with a high level of expression had a high percent of blockage. For example, 

‘androgen and estrogen synthesis and metabolism’ had the highest level of expression among 

blocked pathways, where 98% of the reactions were blocked. In the new model, only 56% of 

the reactions in the mentioned pathway are still blocked. In another example, ‘glyoxylate and 

dicarboxylate metabolism,’ ‘methionine and cysteine metabolism,’ and ‘galactose metabolism’ 

are among the top ten highly expressed pathways, while about 30% of the reactions are 

blocked in the pathways in iCHO1766. In iCHO2101, the blocked reactions of the three 

pathways have been reduced to 11%, 15%, and 7%, respectively. A full list of the pathways and 

expression levels is available in Supplementary Table 9. 
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Discussion 
 

In the present study, four approaches were used to fill the gaps of iCHO1766. At first, we used 

GapFill that successfully filled 12% (124 out of 1049) of no-production metabolites. Then, using 

GAUGE, 40% (28 out of 71) of the inconsistencies between genes co-expression and flux 

coupling relations of reaction pairs were fixed. Furthermore, exchange and transport reactions 

of the model were revised, using HMDB database. Finally, new genes were added to the model 

based on KEGG and BiGG databases. All newly predicted reactions and metabolites were 

subsequently added to the model to generate a new version of the CHO metabolic model, 

named iCHO2101. In total, the percentage of blocked reactions was 21.6% (1441 out of 6663) in 

iCHO1766, which has been reduced to 11.3% (837 out of 7336) in iCHO2101. In addition, the 

percentage of dead-end metabolites from 21.4% (955 out of 4456) in iCHO1766 has been 

reduced to 6.6% (298 out of 4527) in iCHO2101. The addition of these new reactions, 

metabolites, and genes can increase the scope of pathways that can be simulated in CHO cells, 

and increase the reliability of the model predictions in general for CHO cells with more 

comprehensive models of CHO cell metabolism.  

The importance of CHO cells in the pharmaceutical industry producing recombinant protein 

drugs is evident. In this regard, due to the notable drawbacks of the present kinetic models 

(Carinhas et al. 2012), a constraint-based metabolic model can be beneficial to have an in silico 

platform to mechanistically model the metabolism of CHO cells. For example, the limiting 

factors of cell culture can be easily modelled by constraining the exchange fluxes of the model. 

In addition, integration of “omics” data with a constraint-based metabolic model can shed light 

on the metabolism of CHO cells. 

 

Bioprocess optimization of CHO cells has been a major topic of research, including studies 

which focused on the design of compositions of cell culture media (Galbraith et al. 2018; 

Ritacco et al. 2018). Mammalian cell culture media are mostly composed of amino acids. Amino 

acid metabolism greatly influences the viability and production of CHO cells (Salazar et al. 

2016). The average percentage of blocked reactions in the metabolic pathways of different 

amino acids was reduced from 34.10% in iCHO1766 to 13.56% in iCHO2101. Therefore, the 

applicability of CHO model in bioprocess studies can be increased by refining the metabolic 

models. Recently, an extended version of the GEM of CHO cells was released, in which new 

constraints were added to the model based on enzyme capacity of the reactions (Yeo et al. 

2020). Yet, the focus of our study is to fill the gaps and manually curate the previous model 

(Hefzi et al. 2016). In conclusion, with more active metabolic pathways and more precise gene-

protein-reaction associations in a GEM of CHO cells, one is able to infer more accurate cell line-
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specific models. Such models can address the cell-specific metabolic signatures of different cell 

lines for better predicting biopharmaceutical production capabilities (Carinhas et al. 2013). 
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Tables: 
 

Table 1. A list of metabolic pathways of iCHO1766 that more than 50 percent of the metabolic reactions 

in that pathway is blocked. 

Biochemical Pathway Number of 

Blocked 

Reactions 

Total Number 

of Reactions 

Percent Blocked 

Reactions (%) 

Chondroitin synthesis 45 45 100 

Linoleate metabolism 14 14 100 

Selenoamino acid metabolism 16 16 100 

Vitamin E metabolism 23 23 100 

Xenobiotics metabolism 25 25 100 

Arachidonic acid metabolism 72 73 98.63 

Androgen and estrogen synthesis and 

metabolism 

49 50 98 

Eicosanoid metabolism 212 244 86.89 

N-glycan biosynthesis 64 77 83.12 

Vitamin D metabolism 22 29 75.86 

Miscellaneous 45 69 65.22 

Vitamin C metabolism 8 14 57.14 

Tyrosine metabolism 59 106 55.66 

Tryptophan metabolism 36 66 54.55 

Glycosphingolipid metabolism 7 13 53.85 

Urea cycle 33 63 52.38 

 

Table 2. The distribution of dead-end metabolites of iCHO1766 in each subcellular part. 

Percent of the 

dead-end 

metabolites (%) 

Number of the blocked 

metabolites 
Total number of 

metabolites 
Subcellular part 

9.24 56 606 Extracellular [e] 

19.55 323 1652 Cytoplasm [c] 
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31.94 153 479 Endoplasmic reticulum [r] 

27.58 171 620 Mitochondrion [m] 

41.82 133 318 Peroxisome [x] 

41.77 66 158 Nucleus [n] 

12.69 33 260 Lysosome [l] 

5.54 20 361 Golgi apparatus [g] 

 

Table 3. New validated reactions predicted by using the GapFill method to be added to the model. The 

numbers in parenthesis are query coverage, e-value, and sequence similarity, respectively.   

Blocked Metabolite ID Predicted 

Reaction’

s KEGG ID 

KEGG Gene ID (for the Predicted Reaction) Blast result (If needed, in case of 

no gene or enzyme KEGG ID) 

Comments 

3deccrn[c], C05264[c], 

C05264[m] 

R03778  100753943, 100754813, 100758239, 

100765829  

�  

R04743 100754698, 100757947, 100761491 �  

ak2gchol_cho[c], 

ak2gp_cho[c], and 

ak2gpe_cho[c], 

dak2gpe_cho[c], 

C03201[c], C03715[c] 

R04311  100756809  �  

R05190  - ERE79474.1 (acyl-CoA synthetase 

family member 3) with 

WP_012013866 = (95% 3e-36 28%) 

 

R10104 100758702 �  

C00243[l] R01100 100766856, 100767446 � 3.2.1.108 : 

100766856; 

3.2.1.23 : 

100767446 

C00247[c], C01507[c]  R02925 - EGW06281.1 (Carbonyl reductase 

[NADPH] 2) with WP_011337990 = 

(98% 5e-25 29%) 

 

C00257[c] R01738  - EGW06281.1 (Carbonyl reductase 

[NADPH] 2) with YP_002410598 = 

(98% 5e-34 32%) 

1.1.1.69 

R01740  EGW06281.1 (Carbonyl reductase 

[NADPH] 2) with WP_011565275 = 

(97% 7e-34 32%) 

1.1.69 

C00265[c] R03511  100755703, 100757934, 103162274  �  

R05830  ERE75446.1 (vitamin K epoxide 

reductase complex subunit 1-like 

protein 1) with Q8N0U8 = (72% 5e-

71 84%) 

 

C00309[c] R01895 - EGW01280.1 

(Dehydrogenase/reductase SDR 

family member 7B) with 

WP_015365771 = (93% 2e-26 33%) 

 

C00437[c] R10466  ERE85082.1 (arginase-1-like 

protein) with D2Z025 = (75% 5e-09 

27%) 

 

C00461[c] R01206 100750633, 100750757, 100760661, 

103161867, 103161868, 103163420 

�  

C00499[c], C01551[c], 

C11821[c], C12248[c] 

R02106 100768251 �  

C00811[c], C01197[c] R00737  - ERE91835.1 (histidine ammonia-

lyase-like protein) with NP_719898 

= (91% 8e-90 38%) 
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C00988[c] R04620 100750903, 100751196,100751774, 

100771587, 103159036, 103159088 

�  

C01083[c] R01557 - ERE74261.1 (neutral and basic 

amino acid transport protein rBAT-

like protein) with WP_002548616 

(83% 4e-66 32%) 

 

C01127[c] R04445 100764994 �  

C01176[c], C05138[c] R08516 100758683 � 4.1.2.30 : 

100758683 

C01189[c] R07215 100752960 �  

C01241[c], C04308[c] R02056 100767954 �  

C01528[c], C05172[c] R03595  100770125, 100775017 AND  �  

R04620 100750903 , 100751196 , 100751774 , 

100771587 , 103159036 , 103159088 

�  

C01601[c], C04717[c], 

C08261[c], CE2006[c], 

CE2576[c], CE2577[c], 

CE6504[c], CE6506[c] 

R03626 - ERE67202.1 (arachidonate 5-

lipoxygenase) with XP_002516771 = 

(70% 7e-46 27%  

 

C01802[c], C05107[c] R07507 100769920 �  

C02576[c], peracd[c] R03945 - ERE88510.1 (alcohol 

dehydrogenase 6-like protein) with 

A0A0K2YIV5 = (97% 9e-43 31%) 

AND 

EGW05976.1 (Quinone 

oxidoreductase) with A0A084FZJ5 = 

(93% 2e-38 34%) 

 

C03366[c] R04620  100750903, 100751196,100751774, 

100771587, 103159036, 103159088  

� 

 
 

C03681[c], C13712[c], 

CE5072[c] 

R02208 100761447, 100766917, 100770660 �  

C03845[c] R07215 100752960 �  

C04722[r] R04807 100751584 �  

C04805[c] R07034 100751356, 100756109, 100764638, 

100766519, 100766810, 100771188, 

100775000 

�  

C04853[c], CE2056[c], 

CE3554[c] 

R03866 100755384, 100761725, 100773031, 

100773326, 100774306, 100774594 

�  

 R08516 100758683 � 4.1.2.30 : 

100758683 

C05141[c], C05504[c] R03089 100751269 �  

C05141[r], C05504[r] R04681 100750866, 100751291, 100751897, 

100762147, 100766230, 100767580 

�  

C05638[c] 

C05639[c] 

C05651[c] 

R04911 100773211 �  

C05688[c] R03599   ERE85901.1 (selenocysteine lyase) 

with NP_057926 = (99% 0.0 90%) 

 

R07933 100757464 �  

C05691[c] R04620 100750903, 100751196, 100751774, 

100771587, 103159036, 103159088 

�  

C05698[c], C05699[c] R04941 - EGW06584.1 (Cystathionine 

gamma-lyase) with WP_002493862 

= (92% 2e-85 40%) 

 

C05768[c] 

C05769[c] 

R03166   � R03166 is a 

spontaneou
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s reaction 

R04972 100753284 �  

C05839[c], C06738[c] R04998 100757820 �  

R04999  � R04999 is a 

non-

enzymatic 

reaction 

C05947[c] R04444 100764994 �  

C06128[c] R04018 100689090, 100689301, 100689373, 

100774175 

�  

C06133[c] R03354  100689438  �  

R03488 100754838 �  

R04583 100768920 �  

C06178[c] R01153   EGW12892.1 (Spermidine synthase) 

with XP_002534321 = (64% 5e-76 

50%) 

 

R01920 100756588 �  

R04027 100762635, 100762926 �  

C06196[c] R04620 100750903, 100751196, 100751774, 

100771587, 103159036, 103159088 

�  

R10235 100768978, 100769259 �  

C14825[c], CE2047[c] R07055 100751762, 100752064, 100753681, 

100754177, 100754462, 100755851, 

100756757, 100764171, 100764471, 

100764768, 100765057, 100765891, 

100766524, 100767391, 100772776, 

100773059, 100773351 

�  

C14826[c], CE2049[c] R07056 100751762, 100752064, 100753681, 

100754177, 100754462, 100755851, 

100756757, 100764171, 100764471, 

100764768, 100765057, 100765891, 

100766524, 100767391, 100772776, 

100773059, 100773351 

�  

C15610[c] R08726  100751584  �  

R08727 100754734 �  

C16216[c], C16217[c] R07758 100763438 �  

CE1292[c], CE1298[c] R01463 

AND 

R08505 

100689275 AND 100751584 �  

CE2084[c] 

CE5815[c] 

CE7096[c] 

R07034 100751356, 100756109, 100764638, 

100766519, 100766810, 100771188, 

100775000 

�  

 

Table 4. New validated reactions predicted by using the GAUGE method to be added to the model. 

Predicted 

Reaction ID 

KEGG Gene ID (for the Predicted 

Reaction) 

Blast results (If needed, in case of no gene or enzyme 

KEGG ID) 

Comments 

R00270 - � non-enzymatic 

hydrolysis 

R00524 - ERE88882.1 (bis(5'-adenosyl)-triphosphatase-like protein) 

with XP_002410848 = (20% 6e-23 52%) 

3.5.1.49 

R00310 100764152 �  

R00557, 

R00558 

100758127, 100760062, 100769961 �  

R00648 100753207, 100755812, 100773063 �  
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R01658,  

R02003 

100754883, 100767405 �  

R02061 100767405 �  

R02285 - EGV96886.1: (Agmatinase, mitochondrial) with 

WP_057563128 = (95% 4e-10 23%,) 

3.5.3.8 

R03189 100754097 �  

R03222 100767777 �  

R03326 100767691 �  

R04283 - � multi-step reaction, 

non-enzymatic, 

incomplete reaction 

R04666 100762944 �  

R06127,  

R06128 

100765573, 100771009 �  

R06238 100768412 �  

R06895 - XP_003501431.1 (radical S-adenosyl methionine domain-

containing protein 1, mitochondrial isoform X1) with 

WP_057908418 = (85% 4e-58 35%) 

1.3.99.22 

R07267, 

R09250, 

R09251 

- EGV97845.1 (Decaprenyl-diphosphate synthase subunit 

1) with V5V4V5 = (97% 1e-71 41%) 

2.5.1.84 

EGV97845.1 (Decaprenyl-diphosphate synthase subunit 

1) with XP_010697478 = (97% 4e-59 35%) 

2.5.1.85 

R07364 100754671, 100765075 �  

R07396 100754678 �  

R08892, 

R10130 

- ERE70900.1 (sorbitol dehydrogenase) with Q2MF72 = 

(94% 2e-22 26%) 

1.1.1.329 

R09248 - EGV97845.1 (Decaprenyl-diphosphate synthase subunit 

1) with = WP_001513338 (97% 4e-41 30%) 

2.5.1.90 

R10107 - EGV91790.1 (Nitric oxide synthase, endothelial) with 

O34453 = (98% 2e-98 43%) 

1.14.13.165 

R10221 100765199 �  

 

Table 5. A list of metabolic pathways of iCHO2101 that more than 50 percent of the metabolic reactions 

in that pathway is blocked. 

Biochemical Pathway Number of 

Blocked 

Reactions 

Total Number 

of Reactions 

Percent Blocked 

Reactions (%) 

Xenobiotics metabolism 25 25 100 

Selenoamino acid metabolism 15 21 71.43 

Androgen and estrogen synthesis and 

metabolism 

29 51 56.86 

Arachidonic acid metabolism 42 74 56.76 

Eicosanoid metabolism 127 245 51.84 
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Table 6. The distribution of dead-end metabolites of iCHO2101 in each subcellular part. 

Percent of the dead-

end metabolites (%) 

Number of the dead-end 

metabolites 
Total number of 

metabolites 
Subcellular part 

0.33 2 609 Extracellular [e] 

9.10 156 1713 Cytoplasm [c] 

9.34 45 482 Endoplasmic reticulum [r] 

8.32 52 625 Mitochondrion [m] 

8.18 26 318 Peroxisome [x] 

7.55 12 159 Nucleus [n] 

1.15 3 260 Lysosome [l] 

0.55 2 361 Golgi apparatus [g] 
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Figures: 

 

Figure 1. 

 

 

Figure 2. 
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Figure Legends: 
Figure 1. A visual comparison between the statistics of iCHO1766 and iCHO2101. Part (A) shows the 

number of genes, reactions, and metabolites. Part (B) shows the distribution of dead-end metabolites in 

different subcellular parts. Part (C) shows the percent of blockage in the selected pathways reported in 

Table 1.  

Figure 2. A visual comparison of flux activities in 14 metabolic pathways of iCHO1766 and iCHO2101, 

where the changes are more than 30% in comparison.  
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