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Abstract

Ecological networks are increasingly studied at large spatial scales, expanding their focus from a concep-
tual tool for community ecology into one that also adresses questions in biogeography and macroecology.
This effort is supported by increased access to standardized information on ecological networks, in the form
of openly accessible databases. Yet, there has been no systematic evaluation of the fitness for purpose of
these data to explore synthesis questions at very large spatial scales. In particular, because the sampling
of ecological networks is a difficult task, they are likely to not have a good representation of the diversity
of Earth’s bioclimatic conditions, likely to be spatially aggregated, and therefore unlikely to achieve broad
representativeness. In this paper, we analyze over 1300 ecological networks in the mangal.io database, and
discuss their coverage of biomes, and the geographic areas in which there is a deficit of data on ecological
networks. Taken together, our results suggest that while some information about the global structure of
ecological networks is available, it remains fragmented over space, with further differences by types of eco-
logical interactions. This causes great concerns both for our ability to transfer knowledge from one region
to the next, but also to forecast the structural change in networks under climate change.
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1 Introduction

Ecological networks are a useful representation of ecological systems in which species or organisms interact2

(Heleno et al. 2014, Poisot & Stouffer et al. 2016, Delmas et al. 2018), and there has been a recent explosion

of interest in their dynamics across large temporal scales (Tylianakis & Morris 2017, Baiser et al. 2019), and4

along environmental gradients (Trøjelsgaard & Olesen 2016, Pellissier et al. 2017). As ecosystems are changing

rapidly, networks are at risk of undergoing rapid and catastrophic changes to their structure: for example by6

invasion leading to a collapse (Strong & Leroux 2014, Magrach et al. 2017), or by a “rewiring” of interactions

among existing species (Bartley et al. 2019, Guiden et al. 2019, Hui & Richardson 2019). Simulation studies8

suggest that knowing the structure of the extant network, i.e. being able to map all interactions between

species, is not sufficient (Thompson & Gonzalez 2017) to predict the effects of external changes, and that data10

on the species, the local climate and its future projection, are also required.

This change in scope, from describing ecological networks as local, static objects, to dynamical ones that vary12

across space and time, has prompted several methodological efforts. First, tools to study spatial, temporal,

and spatio-temporal variation of ecological networks in space and in relationship to environmental gradients14

have been developed and continuously expanded (Poisot et al. 2012, 2015, 2017). Second, there has been

an improvement in large-scale data-collection, through increased adoption of molecular biology tools (Evans16

et al. 2016, Eitzinger et al. 2019, Makiola et al. 2019) and crowd-sourcing of data collection (Pocock et

al. 2015, Bahlai & Landis 2016, Roy et al. 2016). Finally, there has been a surge in the development of18

tools that allow us to infer species interactions (Morales-Castilla et al. 2015, Dallas et al. 2017) based on

limited but complementary data on existing network properties (Stock et al. 2017), species traits (Gravel et20

al. 2013, Bartomeus et al. 2016, Brousseau et al. 2017, Desjardins-Proulx et al. 2017), and environmental

conditions (Gravel et al. 2018). These latter approaches tend to perform well in data-poor environments22

(Beauchesne et al. 2016), and can be combined through ensemble modelling or model averaging to generate

more robust predictions (Pomeranz et al. 2018). The task of inferring interactions is particularly important24

because ecological networks are difficult to adequately sample in nature (Banašek-Richter et al. 2004, Gibson

et al. 2011, Chacoff et al. 2012, Jordano 2016). The common goal to these efforts is to facilitate the prediction26

of network structure, particularly over space (Poisot & Gravel et al. 2016, Gravel et al. 2018, Albouy et al.

2019) and into the future (Albouy et al. 2014), in order to appraise the response of that structure to possible28

environmental changes.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921429doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921429
http://creativecommons.org/licenses/by/4.0/


These disparate methodological efforts share another important trait: their continued success depends on state-

of-the art data management, but also on the availability of data that are representative to the area we pretend2

to model. Novel quantitative tools demand a higher volume of network data; novel collection techniques

demand powerful data repositories; novel inference tools demand easier integration between different types4

of data, including but not limited to: interactions, species traits, taxonomy, occurrences, and local bioclimatic

conditions. In short, advancing the science of ecological networks requires us not only to increase the volume6

of available data, but to pair these data with ecologically relevant metadata. Such data should also be made

available in a way that facilitates programmatic interaction so that they can be used by reproducible data8

analysis pipelines. Poisot & Baiser et al. (2016) introduced mangal.io as a first step in this direction. In the

years since the tool was originally published, we continued development of the data representation, amount10

and richness of metadata, and digitized and standardized as much ecological data as we could find. The second

major release of this database contains over 1300 networks, 120000 interactions across close to 7000 taxa,12

and represents what is to our best knowledge the most complete collection of species interactions available.

Here we ask if the current mangal database is fit for the purpose of global-scale synthesis research into eco-14

logical networks. We conclude that interactions over most of the planet’s surface are poorly described, despite

an increasing amount of available data, due to temporal and spatial biases in data collection and digitization.16

In particular, Africa, South America, and most of Asia have very sparse coverage. This suggests that synthe-

sis efforts on the worldwide structure or properties of ecological networks will be weaker within these areas.18

To improve this situation, we should digitize available network information and prioritize sampling towards

data-poor locations.20

2 Global trends in ecological networks description

2.1 Network coverage is accelerating but spatially biased22

The earliest recorded ecological networks date back to the late nineteenth century, with a strong increase in the

rate of collection around the 1980s (fig. 1). Although the volume of available networks has increased over time,24

the sampling of these networks in space has been uneven. In fig. 2, we show that globally, network collection

is biased towards the Northern hemisphere, and than different types of interactions have been sampled in26

different places. As such, it is very difficult to find a spatial area of sufficiently large size in which we have
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Figure 1: Cumulative number of ecological networks available in mangal.io as a function of the date of
collection. About 1000 unique networks have been collected between 1987 and 2017, a rate of just over
30 networks a year. This temporal increase proceeds at different rates for diferent types of networks; while
the description of food webs is more or less constant, the global acceleration in the dataset is due to increased
interest in host-parasite interactions starting in the late 1970s, while mutualistic networks mostly started being
recorded in the early 2000s.

4
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Figure 2: Each point on the map corresponds to a network with parasitic, mutualistic, and predatory interac-
tions. It is noteworthy that the spatial coverage of these types of interactions is uneven; the Americas have
almost no parasitic network, for example. Some places have barely been studied at all, including Africa and
Eastern Asia. This concentration of networks around rich countries speaks to an inadequate coverage of the
diversity of landscapes on Earth.

networks of predation, parasitism, and mutualism. The inter-tropical zone is particularly data-poor, either

because data producers from the global South correctly perceive massive re-use of their data by Western world2

scientists as a form of scientific neo-colonialism (as advanced by Mauthner & Parry 2013), thereby providing

a powerful incentive against their publication, or because ecological networks are subject to the same data4

deficit that is affecting all fields on ecology in the tropics (Collen et al. 2008). As Bruna (2010) identified

almost ten years ago, improved data deposition requires an infrastructure to ensure they can be repurposed6

for future research, which we argue is provided by mangal.io for ecological interactions.

2.2 Different interaction types have been studied in different biomes8

Whittaker (1962) suggested that natural communities can be partitioned across biomes, largely defined as a

function of their relative precipitation and temperature. For all networks for which the latitude and longitude10

was known, we extracted the value temperature (BioClim1, yearly average) and precipitation (BioClim12,

5
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Figure 3: List of networks across in the space of biomes as originally presented by Whittaker (1962). Predation
networks, i.e. food webs, seem to have the most global coverage; parasitism networks are restricted to low
temperature and low precipitation biomes, congruent with the majority of them being in Western Europe.

total annual) from the WorldClim 2 data (Fick & Hijmans 2017). Using these we can plot every network on

the map of biomes drawn by Whittaker (1962) (note that because the frontiers between biomes are not based2

on any empirical or systematic process, they have been omitted from this analysis). In fig. 3, we show that even

though networks capture the overall diversity of precipitation and temperature, types of networks have been4

studied in sub-spaces only. Specifically, parasitism networks have been studied in colder and drier climates;

mutualism networks in wetter climates; predation networks display less of a bias.6

Scaling up this analysis to the 19 BioClim variables in Fick & Hijmans (2017), we extracted the position of

every network in the bioclimatic space, conducted a principal component analysis on the scaled bioclimatic8

variables, and measured their distance to the centre of this space (0). This is a measurement of the “rarity”

of the bioclimatic conditions in which any networks were sampled, with larger values indicating more unique10

combinations (the distance was ranged to ]0;1] for the sake of interpretation). As shown in fig. 4, mutualistic

interactions tend to have values that are higher than both parasitism and predation, suggesting that they have12

been sampled in more unique environments.
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Figure 4: Distance to the centroid (in the scaled climatic space) for each network, as a function of the type of
interaction. Larger values indicate that the network is far from its centroid, and therefore represents sampling
in a more “unique” location. Mutualistic interactions have been, on average, studied in more diverse locations
that parasitism or predatory networks.
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2.3 Some locations on Earth have no climate analogue

In figures 5, we represent the environmental distance between every pixel covered by BioClim data, and the2

three networks that were sampled in the closest environmental conditions (this amounts to a k nearest neigh-

bors with k = 3). In short, higher distances correspond to pixels on Earth for which no climate analogue4

network exists, whereas the darker areas are well described. It should be noted that the three types of inter-

actions studied here (mutualism, parasitism, predation) have regions with no analogues in different locations.6

In short, it is not that we are systematically excluding some areas, but rather than some type of interactions

are more studied in specific environments. This shows how the lack of global coverage identified in fig. 3,8

for example, can cascade up to the global scale. These maps serve as an interesting measure of the extent to

which spatial predictions can be trusted: any extrapolation of network structure in an area devoid of analogues10

should be taken with much greater caution than an extrapolation in an area with many similar networks.

3 Conclusions12

3.1 For what purpose are global ecological network data fit?

What can we achieve with our current knowledge of ecological networks? The overview presented here shows14

a large and detailed dataset, compiled from almost every major biome on earth. It also displays our failure

as a community to include some of the most threatened and valuable habitats in our work. Gaps in any16

dataset create uncertainty when making predictions or suggesting causal relationships. This uncertainty must

be measured by users of these data, especially when predicting over the “gaps” in space or climate that we have18

identified. In this paper we are not making any explicit recommendations for synthesis workflows. Rather we

argue that this needs to be a collective process, a collaboration between data collectors (who understand the20

deficiencies of these data) and data analysts (who understand the needs and assumptions of network methods).

One line of research that we feel can confidently be pursued lies in extrapolating the structure of ecological22

networks over gradients, not at the level of species and their interactions, but at that of the community. Mora

et al. (2018) revealed that all food webs are more or less built upon the same structural backbone, which is in24

part due to strong evolutionary constraints on the establishment of species interactions (Dalla Riva & Stouffer

2015); in other words, most networks are expected to be variations on a shared theme, and this facilitates26
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Figure 5: Environmental distance for every terrestrial pixel to its three closest networks. Areas of more yellow
coloration are further away from any sampled network, and can therefore not be well predicted based on
existing empirical data. Areas with a dark blue coloration have more analogues. The distance is expressed in
arbitrary units and is relative. 9
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the task of predicting the overarching structure greatly. Finally, this approach to prediction which neglects the

composition of networks is justified by the fact that even in the presence of strong compositional turnover,2

network structure tends to be maintained at very large spatial scales (Dallas & Poisot 2017).

3.2 Can we predict the future of ecological networks under climate change?4

Perhaps unsurprisingly, most of our knowledge on ecological networks is derived from data that were collected

after the 1990s (fig. 1). This means that we have worryingly little information on ecological networks before6

the acceleration of the climate crisis, and therefore lack a robust baseline. Dalsgaard et al. (2013) provide

strong evidence that the extant shape of ecological networks emerged in part in response to historical trends8

in climate change. The lack of reference data before the acceleration of the effects of climate change is of

particular concern, as we may be deriving intuitions on ecological network structure and assembly rules from10

networks that are in the midst of important ecological disturbances. Although there is some research on the

response of co-occurrence and indirect interactions to climate change (Araújo et al. 2011, Losapio & Schöb12

2017), these are a far cry from actual direct interactions; similarly, the data on “paleo-foodwebs”, i.e. from deep

evolutionary time (Nenzén et al. 2014, Yeakel et al. 2014, Muscente et al. 2018) represent the effect of more14

progressive change, and may not adequately inform us about the future of ecological networks under severe

climate change. However, though we lack baselines against which to measure the present, as a community16

we are in a position to provide one for the future. Climate change will continue to have important impacts on

species distributions and interactions for at least the next century. The Mangal database provides a structure to18

organize and share network data, creating a baseline for future attempts to monitor and adapt to biodiversity

change.20

Possibly more concerning is the fact that the spatial distribution of sampled networks shows a clear bias towards

the Western world, specifically Western Europe and the Atlantic coasts of the USA and Canada (fig. 2). This22

problem can be somewhat circumvented by working on networks sampled in places that are close analogues of

those without direct information (almost all of Africa, most of South America, a large part of Asia). However,24

5 suggests that this approach will rapidly be limited: the diversity of bioclimatic combinations on Earth leaves

us with some areas lacking suitable analogues. These regions are expected to bear the worst of the socio-26

economical (e.g. Indonesia) or ecological (e.g. polar regions) consequences of climate change. Cameron

et al. (2019) reached a similar conclusion by focusing on food webs, and our analysis suggests that this28

10
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worrying trend is in fact one that is shared by almost all types of interactions. All things considered, our

current knowledge about the structure of ecological networks at the global scale leaves us under-prepared to2

predict their response to a warming world. From the limited available evidence, we can assume that ecosystem

services supported by species interactions will be disrupted (Giannini et al. 2017), in part because the mismatch4

between interacting species will increase (Damien & Tougeron 2019) alongside the climatic debt accumulated

within interactions (Devictor et al. 2012).6

3.3 Active development and data contribution

This is an open-source project: all data and all code supporting this manuscript are available on the Mangal8

project GitHub organization, and the figures presented in this manuscript are themselves packaged as a self-

contained analysis which can be run at any time. Our hope is that the success of this project will encourage10

similar efforts within other parts of the ecological community. In addition, we hope that this project will

encourage the recognition of the contribution that software creators make to ecological research.12

One possible avenue for synthesis work, including the contribution of new data to Mangal, is the use of these

published data to supplement and extend existing ecological network data. This “semi-private” ecological14

synthesis could begin with new data collected by authors – for example, a host-parasite network of lake fish

in Africa, or a pollination network of hummingbirds in Brazil. Authors could then extend their analyses by16

including a comparison to analogous data made public in Mangal. After publication of the research paper,

the original data could themselves be uploaded to Mangal. This enables the reproducibility of this particular18

published paper. Even more powerfully, it allows us to build a future of dynamic ecological analyses, wherein

analyses are automatically re-done as more data get added. This would allow a sort of continuous assessment20

of proposed ecological relationships in network structure. This cycle of data discovery and reuse is an example

of the Data Life Cycle (Michener 2015) and represents one way to practice ecological synthesis.22

Finally, it must be noted that as the amount of empirical evidence grows, so too should our understanding of

existing relationships between network properties, networks properties and space, and the interpretation to be24

drawn from them. In this perspective, the idea of continuously updated analyses is very promising. Following

the template laid out by White et al. (2019) and Yenni et al. (29-Jan-2019), it is feasible to update a series of26

canonical analyses any time the database grows, in order to produce living, automated synthesis of ecological

networks knowledge. To this end, the mangal database has been integrated with EcologicalNetworks.jl28
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(Poisot et al. 2019), which allows the development of flexible networks analysis pipelines. One immediate

target would be to borrow the methodology from Carlson et al. (2019), and provide estimate of the sampling2

effort required to accurately describe combinations of interaction types and bioclimatic conditions.

Data and code availability:4

All code is available openly at https://github.com/PoisotLab/MangalSamplingStatus, and the data

can be retrieved from mangal.io and the BioClim database using the specified files. In addition, weekly6

updated pages presenting the analyses reported in this manuscript, including the data files, are available at

https://poisotlab.github.io/MangalSamplingStatus/.8
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