Abstract
Ecosystem processes vary temporally due to variation in environmental variables, such as when diurnal variation in sunlight causes diurnal cycles in net primary production. This variability can be characterized by its frequency and amplitude, used to define “normal” functioning of an ecosystem. Relatively little research has addressed how normal modes of variability, such as diurnal cycles, are lost or recovered, following anthropogenic stress. We conducted an aquatic mesocosm experiment to test whether prior application of environmental stress, in the form of moderate acidification, affected the diurnal cycle of dissolved oxygen when exposed to severe acidification. High-frequency data from sensor loggers deployed in 12 mesocosms showed that severe acidification caused a temporary loss of diurnal variation in dissolved oxygen concentration. However, pre-exposure to an acidic environment resulted in the persistence of the diurnal cycle. We hypothesize that pre-exposure shifted the community to acid tolerant genotypes and/or species of algae and other photosynthetic organisms. Our findings suggest that the stability of ecosystem cycles is intrinsically liked to the stress tolerance of the species assemblage.