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Abstract 

Ecosystem processes vary temporally due to variation in environmental variables, such as 

when diurnal variation in sunlight causes diurnal cycles in net primary production. This 

variability can be characterized by its frequency and amplitude, used to define “normal” 

functioning of an ecosystem. Relatively little research has addressed how normal modes of 

variability, such as diurnal cycles, are lost or recovered, following anthropogenic stress. We 

conducted an aquatic mesocosm experiment to test whether prior application of 

environmental stress, in the form of moderate acidification, affected the diurnal cycle of 

dissolved oxygen when exposed to severe acidification. High-frequency data from sensor 

loggers deployed in 12 mesocosms showed that severe acidification caused a temporary loss 

of diurnal variation in dissolved oxygen concentration. However, pre-exposure to an acidic 

environment resulted in the persistence of the diurnal cycle. We hypothesize that pre-

exposure shifted the community to acid tolerant genotypes and/or species of algae and other 

photosynthetic organisms. Our findings suggest that the stability of ecosystem cycles is 

intrinsically liked to the stress tolerance of the species assemblage. 
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INTRODUCTION 

Anthropogenic sources of environmental stress such as acidification affect the 

structure and function of ecosystems by impacting their geochemistry and species 

composition. Stressors can drive the loss of intolerant species and depending on the degree of 

compositional turnover, incur a suite of different destabilizing effects such as a loss of 

diversity (Geelen and Leuven 1986, Niyogi et al. 2003) and/or keystone species (Cuenca 

Cambronero et al. 2018) and a synchronization of its constituent populations (Thompson et al. 

2015). A community that has experienced a stressor may differ in structure, function, and 

stability (e.g. variability stability, or resistance) to those that have not experienced the stress 

(Ives and Cardinale 2004, Keitt 2008). 

Ecosystem processes are known to vary over a range of time scales. Some scales of 

variability arise from periodic responses to natural cycles in the environment, while others are 

scales reflect the aggregate response of the community to stochastic variation in the 

environment (Blasius et al. 1999, Gilg 2003, Keitt 2008). Because scale-specific responses to 

the environment occur at different periods and amplitudes, it is necessary to assess ecosystem 

stability at different time scales (Downing et al. 2008). Cyclical responses to natural 

environmental changes depend on the time scale in focus, from daily (night/day), seasonal 

(length of day) and annual (length of growing season) fluctuations. For example, freshwater 

ecosystems are characterized by strong daily fluctuations in oxygen production (Schindler et 

al. 2017). During the day, when light is present, algal production of oxygen via 

photosynthesis can be greater than all organismal consumption of oxygen via respiration, 

leading to increase in dissolved oxygen concentration. In contrast, at night, in the absence of 

photosynthesis, organismal respiration decreases dissolved oxygen. The higher the primary 

productivity, the stronger these diurnal cycles (Schindler et al. 2017). 

The growth of stress tolerant species can recover ecosystem processes from a certain 

degree of stress (Rapport et al. 1985). However, at doses initially lethal for all species only 

rapid evolution can allow the recovery of an exposed community (unless the system is open to 

immigration of resistant genotypes). Previous work has shown that exposure to nonlethal 

stress can pre-adapt populations to a subsequent exposure to otherwise lethal press 

perturbation allowing resident species and genotypes to adjust their physiology and 

demographic rates (Bell and Gonzalez 2009, 2011, Low-Décarie et al. 2015, Fugère et al. 

2020). Exposure to a stressor may thus reduce the effects of subsequent exposure to the same 

stressor (Bell and Gonzalez 2009, 2011, Low-Décarie et al. 2015, Fugère et al. 2020) due to 

selection for tolerant/resistant genotypes within the populations comprising the community. 
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The diurnal cycle of DO is a metric for ecosystem functioning (Venkiteswaran et al. 

2008, Demars et al. 2015, Schindler et al. 2017) capturing the activity of aquatic species 

across trophic levels from decomposers to zooplankton (Cowan et al. 1996). We therefore 

tested the hypothesis that a pre-selective environment could enable communities to maintain 

their diurnal DO cycle when subsequently exposed to a lethal level of stress, i.e. maintain a 

‘normal’ (as measured in controls) frequency and magnitude of diurnal variability of the DO 

cycle during the press acidification treatment. We take a "black-box" approach with this 

whole-ecosystem approach, which comes at the expense of specific mechanisms. We used a 

high-resolution DO time series from a 5-month long experiment in mesocosms containing 

1000 liters of lake water and natural plankton communities. We carried out a multi-phase 

experiment using acidification as the stressor. In phase 1, we imposed selective environments 

by manipulating pre-exposure to sublethal stress (with weekly addition of sulfuric acid to the 

ponds). Then, in phase 2, all ponds were exposed to a one-time lethal dose of sulfuric acid 

resulting in pH 3 continuously for several weeks. 

 

METHODS 

Field site and design 

This mesocosm study was conducted within the Large Experimental Array of Ponds 

(LEAP) platform at the Gault Nature Reserve in Mont-St-Hilaire, QC, Canada (45°32' N, 

73°08' W, 122 m a.s.l.). The experiment was run between May and October 2018 for a total of 

147 days. On 24 May 2018, 105 mesocosms (1100L stock tanks, Rubbermaid, Huntersville, 

NC, USA), henceforth referred to as ponds, were filled with approximately 1000 liters of 

unfiltered lake water from nearby oligotrophic Lac Hertel, located 1 km upstream of the 

experimental facility. Lac Hertel is situated within a UNESCO biosphere reserve and has a 

fully forested and protected watershed, free of agricultural run-off and other pollution. The 

lake has no recorded history of acidification. One day after the ponds were filled, all ponds 

received 50 ml of a nutrient solution containing nitrogen and phosphorus (86.128 g/l KNO3, 

1.78 g/l KH2PO4, 2.24 g/l K2HPO4, which resulted in the total addition of 596.45 g of N and 

39.8 g of P) to increase nutrient levels and stimulate primary production. 

As a measure of ecosystem functioning, we used dissolved oxygen (DO). DO is both 

determined by biological factors (e.g. community biomass and composition) and by 

environmental factors such as water temperature (Belley et al. 2016), as the solubility of 

oxygen decreases as temperature increases (Wetzel 2001). We tracked DO dynamics in 

twelve ponds using sensor loggers (MiniDOTs, PME, Vista, California, USA) attached to the 
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side of the ponds with rope and positioned into the water column at a depth of approximately 

20 cm. We focus our analysis on this subset of 12 mesocosms that generated high frequency 

time series of DO. Water temperature (°C) and dissolved oxygen (in mg/l) was measured 

every 20 minutes. Ponds were covered with 1 mm netting (vegetable garden netting) to 

prevent insects, foliage, and debris from entry. Periphyton growth on the side of the ponds or 

on the loggers was minimal. Four loggers were in mesocosms at pH 5.5, four at pH 6.5 and 

four at pH 8.5 (see Fig. 1). We present dissolved oxygen corrected for temperature as % 

saturation in Fig 1 and all subsequent analyses (described below) focused on temperature-

corrected values (% saturation). Outlier values > 4 standard deviations away from the mean 

DO across all data points (98 %) were attributed to temporary probe disturbance or 

malfunction and were thus excluded from analyses of DO across time and mean DO per 

phase. These values (DO saturation < 40 % or > 150%) represented 0.4 % of all data points. 

Due to the robustness of the wavelet analysis, no data points were excluded from those 

analyses. We assumed that all ponds had a similar wind exposure and gas exchange 

coefficient, and thus did not correct oxygen data for gas exchange with the atmosphere. 

 

Acidification treatment 

During the four weeks of phase 0 from 24 May to 26 June ecosystems were at their 

natural pH (phase 0, mean pH = 9.03± 0.17 on June 7, 8.27± 0.15 on June 12 and 8.81± 0.26 

on June 26, Fig. S2). We acidified the pond to induce selection on community composition. 

Acidification is harmful for freshwater systems causing population declines for higher trophic 

levels (e.g. fish and zooplankton ) and shifts towards a simplification of community 

composition for lower trophic levels, such as phytoplankton (Locke and Sprules 1994, 

Schindler et al. 1996, Weiss et al. 2018). On day 34 of the experiment (26 June 2018), we 

acidified the ponds to start our selection treatment (phase 1). Using sulfuric acid, four ponds 

were acidified to pH 5.5 and four ponds were acidified to pH 6.5. The remaining four ponds 

were left as they were at pH 8.5. Sulfuric acid was gradually added to the ponds using a 

pipette and stirred. pH was measured using a multiparameter sonde (YSI, Yellow Springs, 

OH, USA). Weekly acidification maintained the pH around the target pH-value. Initially 

strong buffering capacity resulted in weekly increases of the pH, but we succeeded in 

establishing three distinct pH levels during phase 1 (Figure S2). 

On day 83 of the experiment (14 August 2018), we started phase 2 of the experiment. 

All ponds were acidified using sulfuric acid to pH 3, except pond A4 which was accidentally 

acidified to pH 2.5 because the pH sensor malfunctioned (see Figure S2). On August 16, we 
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acidified again to ensure that all ponds were +/- 0.1 from pH 3; pH remained stable thereafter 

until the end of the experiment. The pH in Pond A4 never recovered and remained at pH 2.5 

so we conducted our analyses with and without this pond for comparison (Figure S2). 

 

  

Figure 1. (A) Photographs of the field site and spatial arrangement of the experimental 
ponds. Filled circles indicate the ponds in which the miniDOT sensor loggers were 
deployed. (B) Dissolved oxygen in % saturation over time according to pH treatment 
during phase 1. (C) Close up of phase 2 for DO in % saturation. The start of phase 1 and 
2 are indicated with a dashed vertical line. Black lines, pH 5.5, orange lines, pH 6.5 and 
blue lines, pH 8.5. 
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Wavelet analysis 

Under normal conditions the ponds exhibit a daily cycle in DO due to daily cycles in 

the amount of photosynthesis occurring, hence we were interested in identifying if this daily 

cycle persisted throughout the acidification treatments across the phases of the experiment. 

We were also interested in whether the degree of persistence and cycle amplitude depended 

on the acid pre-exposure treatment. To detect change in the daily period and its amplitude 

over time we used two continuous wavelet transform algorithms (Grinsted et al. 2004) in 

Matlab (v2018a) that allowed us to both detect oscillations at multiple frequencies as well as 

locate their occurrence in time. For our main results, we used the Morlet wavelet (Fig. 2; 

Grinsted et al. 2004) and the Morse wavelet (Fig. 3; Lilly and Olhede 2012), which lead to 

similar scalograms, but different normalization schemes, indicating robust results (see 

Supplementary Information for more details). To identify whether peaks in variability at 

particular frequencies were statistically significant we used autocorrelated noise as the null 

variation (Grinsted et al. 2004). With the Morse wavelet transform algorithm, we could 

extract the amplitude of the daily oscillations for each pond over each phase of the experiment 

by taking the modulus (or absolute value) of the complex coefficients of the wavelet 

transform. The period was 1.02 days (closest possible to 24 hours) because of the way the 

algorithm partitions the periods. 

 

Statistical analysis 

We tested the hypothesis that the daily DO cycle would change with pH pre-exposure 

treatment over the phases of the experiment. Our expectation was that the daily DO cycles 

would be stronger in ponds that had been pre-exposed to lower pH values 5.5>6.5>8.5 during 

phase 1. The time series was split into four phases and analyzed separately for each phase: 

phase 0 refers to the time period when no stressor was applied, phase 1 to the time period 

when the stressor was applied to a subset of the ponds at sub-lethal levels. The initial response 

of an ecosystem to a pulse perturbation can strongly differ from its long-term response 

(Arnoldi et al. 2018). Therefore, we separated phase 2 into two sub-phases: phase 2.1 refers to 

the first approximately three weeks immediately after acidification to pH 3 (August 14 to Sept 

3) and phase 2.2, which refers to the rest of the field season from Sept 4 to Oct 15. 

Effects of treatments on the extracted amplitudes (modulus) from the wavelet 

transform at a period of 1.02 days were analyzed using mixed-effects models with pH during 

phase 1 as a fixed-effect term (pH 5.5 vs. pH 6.5 vs. pH 8.5) and pond (n=12) as random-

effect term. Mixed models using residual maximum likelihood (REML) were fitted using the 
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package nlme for R (Pinheiro et al. 2019). All statistical analyses were conducted using the 

software R version 3.6.1 (R Development Core Team 2019). 

 

 

Figure 2. Magnitude scalograms for all ponds with Morlet wavelet. Left row, ponds at pH 
5.5, middle row, ponds at pH 6.5 and right row, ponds at pH 8.5 during phase 1. Dashed lines 
indicate the start of phase 1 (day 34), the start of phase 2.2 (day 83) and the start of phase 2.2 
(day 103). Yellow colors show high energies (“high variation”) and blue colors show low 
energies (“low variation”). Significant variances are circled in black. The time scale increases 
vertically. The cone depicts the significant area, values outside are based on too little data. See 
Fig. S5 for visualization of the 1-day period. 
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RESULTS 

DO in % saturation was on average 105 % for the pH treatment 5.5 during phase 1, 

whereas the DO in pH treatment 6.5 was on average 117 % and thus comparable to the 

control treatment (pH 8.5) at 118 % saturation (Fig. 1, Table S2, Fig. S4). Upon acidification 

to pH 3, however, DO values were significantly higher for the two pH treatments that 

experienced a lower pH during phase 1 for both DO in % saturation and DO in mg/l (phase 

2.1, P = 0.032 and P = 0.025, respectively, Table S2, Fig. S4). 

Irrespective of the pH treatment during the pre-selective phase (phase 1), all ponds 

demonstrated significant daily cycles in DO (yellow band surrounded by black lines at period 

of 1 day, Fig. 2). Following acidification to pH 3, those ponds pre-exposed to pH 6.5 (a very 

mild acidic environment), or not pre-exposed to acid at all, lost their daily DO cycle for 

approximately two weeks (Fig. 2). In contrast, after exposure to pH 3, three out of the four 

ponds previously exposed to pH 5.5 during phase 1 maintained their daily DO cycle. The 

exception was pond “A4”, which was accidentally acidified to pH 2.5 and therefore lost its 

daily cycle, thus showing response more comparable with that of ponds either pre-exposed to 

pH 6 or not pre-exposed to an acidic environment at all. Ponds pre-exposed to pH 5.5 showed 

greater variation over the 24 hours after acidification to pH 3 (phase 2.1, Fig. 3B), however 

the effect was only significant when the outlier pond A4 was excluded (Fig. 3C, Table S1). 

At the end of the experiment (phase 2.2 in Fig. 1) we observed the recovery of the 

daily DO cycle in all twelve ponds. 

DISCUSSION 

DO is one of the most important indicators of the functioning of aquatic systems 

(Rajwa-Kuligiewicz et al. 2015). The amount of dissolved oxygen in the water, and in 

particular, the diurnal cycle of DO are measures of ecosystem metabolism and ecosystem 

health (Venkiteswaran et al. 2008, Demars et al. 2015, Schindler et al. 2017). We found that 

ponds which were pre-adapted to pH 5.5 maintained their natural DO cycle throughout the 

acidification, whereas ponds held at 6.5 and 8.5 did not. One might even say that the diurnal 

cycle of dissolved oxygen is the “heart-beat” of aquatic ecosystems. The observed crash of 

diurnal variability in the mesocosms held at pH 6.5 during phase 1 is thus indicative of the 

effect of the stress on the maintenance of ecosystem functioning. Acidification can have 

negative consequences for aquatic life, either via direct physiological impacts on organisms 
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(Schindler 1985), selection driven mortality, and via changes in species abundances, and 

community diversity and composition (Geelen and Leuven 1986, Locke and Sprules 1994). 

Despite being exposed to severe stress, we observed a recovery of the DO cycle, at the 

end of the experiment (phase 2.2 in Fig. 1), although the amplitudes and pattern of 

fluctuations differed among ponds. Because the DO cycle is mainly driven by phytoplankton 

(Smith and Piedrahita 1988), we also measured total algal community biomass over time, 

albeit at a much lower temporal resolution than DO. Acidification generally has a strong 

effect on algal community composition and can reduce species diversity, but at the same time 

Figure 3. (A) The modulus (absolute value) of the complex coefficients for the Morse 
wavelet at the 1.02-period scale for each pond over time. The modulus acts like an 
‘amplitude envelope’ capturing the real part of the wavelet coefficient (see Fig. S7) and 
describes the magnitude of the daily variation across a one-day window. (B) and (C) show 
means and the associated standard error for the moduli for each phase separately. In (B), the 
outlier pond A4 is included, in (C) it is excluded. Black lines and points, pH 5.5; orange 
lines and points, pH 6.5; blue lines and point, pH 8.5. 
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it was shown that community biomass is usually little effect (Geelen and Leuven 1986). We 

found that the loss of the DO cycle was accompanied by a temporary and strong reduction in 

algal biomass (Fig. S5) and that the recovery of the DO cycle was paralleled by a recovery of 

algal biomass during phase 2.1. It is possible that a pure ecological process via sorting could 

have led to a loss of diversity, but rapid growth of the remaining tolerant algal species quickly 

compensated the loss of species (Klug et al. 2000). Alternatively, species may have rapidly 

adapted through phenotypic plasticity (Chevin et al. 2013) or evolution, either via selection on 

standing genetic variation (Barrett and Schluter 2008) or de novo mutations. Thus, 

preselection to stress may allow a degree of community tolerance, through a combination of 

ecological sorting and evolutionary selection which can also maintain ecosystem function 

(Bell et al. 2019, Fugère et al. 2020). Phytoplankton typically double population sizes within 

one to a few days, depending on the environmental conditions (Reynolds 1984). It is thus 

conceivable that selection pressures had an immediate evolutionary impact on the community 

which resulted in the DO cycle being restored.  

We showed very weak effects of pre-exposure to pH 6. In part this might be because 

the buffering capacity of the ponds resulted in an actual pH close to 6.5. A pH of 6.5 is 

circumneutral and commonly experienced in Lac Hertel, the source for our ponds (Kalff 

1972). Therefore, a pH of 6.5 was likely insufficient to induce a community wide tolerance to 

acidification. In contrast, acidification to pH 5.5 is known to reduce phytoplankton diversity 

and change phytoplankton community composition (Geelen and Leuven 1986) and likely 

constituted a stronger selective condition.  

Explicit consideration of time scale is critical to modeling associations between 

variables measured because patterns can change both qualitatively and quantitatively with the 

scale of analysis (Keitt and Urban 2005, Keitt and Fischer 2006). The loss of diurnal 

variability represents a loss of function for these aquatic ecosystems, but over longer time 

scales the maintenance of cycle stability is an indication of community resistance. The 

wavelet analysis revealed the temporal scales at which acidification had the strongest impact. 

As per our hypothesis, pH strongly influenced daily fluctuations in dissolved oxygen. A 

coarser dataset (e.g. daily or weekly averages of DO) would have obscured our key finding. 

An important general conclusion is that the analysis of community and ecosystem stability 

requires the measurement of dynamics at multiple temporal scales, and at frequencies that can 

detect changes expected at the shortest scales. 
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Conclusions 

The rapid and severe ecological impacts associated with the human-caused 

contamination of aquatic ecosystems make it ever more important to study the conditions 

allowing communities persist and recover (Bell and Gonzalez 2011, Vander Wal et al. 2012, 

Geerts et al. 2015). We found that the temporal stability of the DO cycle could be maintained 

when exposed to extreme stress if the ponds were pre-exposed to intermediate stress 

(MacGillivray et al. 1995, Flöder and Hillebrand 2012, Wright et al. 2015). Prior exposure to 

acid stress can attenuated the impact of strong acidification on the DO cycle’s persistence and 

amplitude. Given the strength of the responses we hypothesize that the persistence of the DO 

cycle involved a joint ecological and evolutionary sorting of the phytoplankton community 

resulting in an acid tolerant community capable of maintaining a normal ecosystem cycle 

even at pH 3. More work is required to uncover the contribution of ecological and 

evolutionary processes to rapid adaptation and to quantify their ability to restore ecosystem 

stability in a stressful environment. 

 

Data availability 

All data presented, and all code used will be archived on an online repository upon 

manuscript acceptance. 
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