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Abstract

Transcranial alternating current stimulation (tACS) enables the non-invasive,

focal stimulation of brain areas in desired frequencies, intensities and spatial

configurations. These attributes have raised tACS to a widely used tool in

cognitive neuroscience and a promising treatment in the field of motor reha-

bilitation. Nevertheless, considerable heterogeneity of its behavioral effects has

been reported across individuals. We present a machine learning pipeline for

predicting the behavioral response to 70 Hz contralateral motor cortex-tACS

from Electroencephalographic resting-state activity preceding the stimulation.

Specifically, we show in a cross-over study design that high-gamma (90–160

Hz) resting-state activity predicts arm-speed response to the stimulation in a

concurrent reaching task. Moreover, we show in a prospective study that the

behavioral effect size of stimulation significantly increases after the stratification

of subjects with our prediction method. Finally, we discuss a plausible neuro-

physiological mechanism that links high resting-state gamma power in motor

areas to stimulation response. As such, we provide a method that can reliably

distinguish responders from non-responders to tACS, prior to the stimulation

treatment. This contribution could eventually bring us a step closer towards

translating non-invasive brain stimulation from a research tool into a safe and

effective clinical treatment.
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Preprint submitted to bioRxiv

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.27.921668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921668
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Non-invasive brain stimulation (NIBS) modulates neural activity, behavior,

and brain plasticity through the non-invasive creation of forced electrical current

flows inside the brain (Wagner et al., 2007; Dayan et al., 2013). There are two

main categories of NIBS: Transcranial Magnetic Stimulation (TMS), which uses5

external magnetic fields to force the creation of electrical potentials in the cortex

that depolarize neurons and trigger action potentials (Lazzaro et al., 2004), and

Transcranial Electrical Stimulation (TES) (Bestmann and Walsh, 2017), which

applies weak electrical direct (tDCS) or alternating (tACS) currents on the

scalp (Nitsche and Paulus, 2000). In contrast to TMS, only a fraction of this10

current enters the brain and causes a membrane potential change of the affected

neurons, which is sufficiently strong to change their probability of generating

action potentials (Antal and Herrmann., 2016).

Although the neural mechanisms of NIBS are not yet fully understood (Vosskuhl

et al., 2018), NIBS applications spread in research and treatment. Applications15

of NIBS can be divided into three main categories: studies that probe neuro-

physiology (e.g., how neural oscillations are causally related) (Shafi et al., 2012;

Polania et al., 2012b; Filmer et al., 2014; Sehm et al., 2012; Keeser et al., 2011;

Hampson and Hoffman, 2010; Anand and Hotson, 2002), studies that inves-

tigate how brain activity gives rise to behavior and cognition (Polania et al.,20

2018; Vosskuhl et al., 2018; Pogosyan et al., 2009; Joundi et al., 2012; Neuling

et al., 2012; Cecere et al., 2015; Lustenberger et al., 2015; Vosskuhl et al., 2015;

Polania et al., 2012a; Santarnecchi et al., 2013; Sela et al., 2012), and studies

that employ NIBS for rehabilitation (Schulz et al., 2013; Tortella et al., 2014;

Fregni et al., 2005; Palm et al., 2014; Veniero et al., 2016).25

In all three categories, NIBS studies report substantial variations in stimula-

tion response across individual subjects, including up to 55% of non-responders

(Lopez-Alonso et al., 2014; Strube et al., 2015). While non-responders decrease

the statistical power of NIBS studies, this sub-group is unproblematic from an
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ethical point of view. Given the reported variances in effect sizes, however,30

it is not unreasonable to assume that there also exist subjects with negative

stimulation responses (Hashemirad et al., 2016; Moliadze et al., 2010; Triccas

et al., 2016; Lopez-Alonso et al., 2014; Strube et al., 2015). Subjects with neg-

ative stimulation responses would be highly problematic from an ethical point

of view, because their existence would imply that NIBS studies may violate the35

principle of doing no harm. This ethical concern is particularly relevant in clin-

ical settings, where NIBS is used to cause long-term (and possibly permanent)

changes (Di Pino et al., 2014; Cirillo et al., 2017). Accordingly, ethical use of

NIBS demands that, first, NIBS studies consider potential negative stimula-

tion effects in individual subjects, and, second, if such effects exist, implement40

a procedure that reliably identifies negative responders before the stimulation

treatment.

While there is a large body of literature on adverse side-effects (Kadosh et al.,

2012; Davis and Koningsbruggen, 2013; Matsumoto and Ugawa, 2017), NIBS

studies typically only consider inter-subject variability in terms of positive- and45

non-responders, bypassing the potential ethical challenges posed by negative re-

sponders. This reservation is arguably a result of the limited understanding of

the causes of inter-subject variability in NIBS. Hypothesized explanations for

inter-subject variability include non-apparent variations in experimental setups

(Stecher et al., 2017; Vosskuhl et al., 2018; Buch et al., 2017), individual differ-50

ences in brain anatomy (Buch et al., 2017; Datta, 2012; Parazzini et al., 2015),

and brain-state dependent susceptibility to NIBS (Silvanto et al., 2008; Lopez-

Alonso et al., 2014; Strube et al., 2015; Wiethoff et al., 2014). Factors that

have been studied empirically include priming (Ragert et al., 2009; Todd et al.,

2009), prior activity (Rosenkranz et al., 2007; Iezzi et al., 2008), age (Moliadze55

et al., 2015; Fujiyama et al., 2014), attention (Kiers et al., 1993), sex (Pitcher

et al., 2004), pharmacological influences(Ziemann et al., 2008; Grundey et al.,

2012; Nitsche et al., 2004), genetic variations (Li Voti et al., 2011; Mori et al.,

2011), and the time of day (Lopez-Alonso et al., 2014). There is presently no

set of factors known, however, that enables a reliable identification of subjects,60
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who do not respond to or may even be harmed by NIBS, before the stimulation

treatment (Ridding and Ziemann, 2010).

In this article, we demonstrate that inter-subject variability, as measured

by the effect of γ-range (70 Hz) tACS over contralateral motor cortex on move-

ment speed during a three-dimensional reaching task, encompasses subjects with65

positive- as well with negative behavioral effects that are sufficiently strong to

reach statistical significance on the single-subject level. This result establishes

that negative stimulation response is a serious concern for the ethical use of

NIBS. We then proceed to show that electrophysiological signatures of resting-

state brain activity can be used to predict individual subjects’ stimulation re-70

sponse with high accuracy. Specifically, we present a machine learning pipeline

that takes Electroencephalographic (EEG) resting-state recordings of individual

subjects as input, and outputs their predicted stimulation response. We apply

this pipeline to learn a stimulation response predictor for the present motor per-

formance study, and demonstrate in a prospective study that the stimulation75

response predictor successfully stratifies subjects into a responder and a non-

responder group with statistically significant differences in stimulation effects.

In particular, our stimulation response predictor correctly identifies 16 out of 16

subjects who do not respond positively to the stimulation treatment. We then

show that successful stimulation response prediction is contingent on resting-80

state brain signatures recorded directly before NIBS. This finding supports the

interpretation that stimulation response is a state and not a trait, i.e., subjects’

susceptibility to brain stimulation may vary over time.

By providing a principled approach to identify subjects, who do not benefit

from or may even be harmed by NIBS, before the stimulation treatment, our85

work constitutes an essential step towards an effective and ethical application of

NIBS in clinical settings. Concurrently, our prediction pipeline can be employed

to increase the statistical power of NIBS studies by excluding non-responders

a priori. Because our results indicate that subjects’ susceptibility to NIBS is a

state and not a trait, administering stimulation treatments only when subjects90

are in a suitable state of mind may further enlarge the range of subjects who
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(a) (b) (c) (d)

Figure 1: Phases of a trial: a) Subjects wait for the next target. b) A yellow target appears

at a random location. Subjects wait for the go-cue, with their current hand position indicated

by a white ball. c) A change of target color to green instructs subjects to initiate the reaching

movement. d) Subjects have to move their hand back to the starting position, indicated by

the green ball.

benefit from NIBS.

Adhering to best practices in open science, all experimental data and code

will become publicly available upon publication. During the review process,

please request code and data through the editorial staff.95

The study conformed to the Declaration of Helsinki, and the experimental

procedures involving human subjects described in this paper were approved by

the Ethics Committee of the Medical Faculty of the Eberhard Karls University

of Tübingen. Informed consent was obtained by all participants, prior to their

participation to the study.100

2. Material and methods

2.1. Experimental paradigm and data

Each participant attended two sessions, subsequently termed days, separated

by a one day break. On each of the two days, participants were seated on a

chair in the middle of four infrared motion tracking cameras (Phase Space, San105

Leandro, California, USA), facing a visual feedback screen (35′′) at a distance

of 1.5 meters, while wearing a specially designed glove with three LEDs on its

top for real-time tracking of their arm location. The position of the arm was

depicted on the screen in real time as a 3D sphere (cf. Figure 1).

The experimental paradigm was a 3D-reaching task. In each trial, a target110

sphere appeared in a simulated 3D space at a random location. The subjects’
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goal was to reach the target with their right wrist by moving their arm. Each

trial started with a baseline of 5 s, followed by 2.5–4 s during which the target

appeared on the screen as a yellow sphere. During this period, subjects had

been told to plan but not yet initiate their movement. After the target sphere115

changed to green, subjects had 10 s to move their arm to reach the target. After

a successful reach, a score screen, indicating the movement’s quality, appeared

for 2 s. This score was computed as an inverse mapping of their movement’s

normalized averaged rectified jerk score (NARJ) to a scale from 0 to 100 (Cozens

and Bhakta, 2003; Meyer et al., 2014). In the last phase of each trial, the120

sphere appeared at the original starting position of the subjects’ wrist. The trial

completed when subjects returned their wrist to the original starting position.

If the reach was not completed within 10 s, or if the subject moved before the

sphere turned green, the trial was excluded from further analysis.

Session 1125

During the first day, only electroencephalographic (EEG) (124 active elec-

trodes at 500 Hz sampling rate, BrainAmp DC, Brain Products, Gilching, Ger-

many) and motion tracking (sampling rate of 960 Hz) data were recorded in

parallel to the reaching task. The recording session consisted of three blocks of

50 trials each (cf. Figure 2). Before and after each block, 5 min of resting-state130

EEG were recorded, during which subjects were asked to relax without moving,

focus their eyes on a cross on the screen, and keep their arm in a comfortable

position on top of their leg.

Resting state 5min Resting state 5min

Block 1 
50 trials 

EEG

Block 2 
50 trials 

EEG

Block 3 
50 trials 

EEG

Resting state 5min Resting state 5min

Day 1

Figure 2: Experimental setup for the first recording session (no stimulation).
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Session 2

The second recording day was a cross-over randomized stimulation session.135

This session consisted of three blocks of reaching trials of 15 min each (cf. Figure

3). During the first block, EEG and motion tracking data were recorded but

subjects were not yet stimulated. During the second and third block real- and

sham high-definition (HD) transcranial alternating current stimulation (tACS)

was applied, respectively, in a randomized order that was not revealed to the140

subject. A break of 20 min was introduced between the second and the third

block, during which the subject was asked to stay seated and relaxed, to avoid

carry-over effects. At the end of the session, the participant completed a ques-

tionnaire to evaluate the sensation of the stimulation and potential side effects.

Before and after each block, a 5 min resting-state EEG was recorded, during145

which subjects were asked to relax without moving, focus their eyes on a cross

on the screen, and keep their arm in a comfortable position on top of their leg.

Resting state 5 min

Resting state 5 min Resting state 5 min

Block 1 
15 min
EEG

Block 3
15 min

Stimulation/ Sham

Resting state 5 min Resting state 5 minResting state 5 min

Break 20 min

Day 2

Block 2
15 min

Stimulation/ Sham

Figure 3: Experimental setup for the second recording session (with stimulation).

Stimulation setup

We employed a 4×1 HD-tACS setup (DC Stimulator Plus, neuroConn GmbH,

Ilmenau, Germany) to increase spatial focality relative to the more commonly150

used two-electrode setup (Dmochowski et al., 2011). The equalizer extension

box of the DC Stimulator Plus was used to extend the two ordinary square

sponge electrodes into a 4×1 set of round rubber electrodes of 20 mm diameter

(3 cm2), with one anode in the center and four cathodes in a square at a dis-

tance of 7.5 cm from the central anode. The anode was placed over channel C3155

(left primary motor cortex - M1) and the four cathodes over Cz, F3, T7, and
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P3 (Villamar et al., 2013). Real stimulation was delivered at 70 Hz and 1 mA

peak-to-peak amplitude, while sham stimulation was delivered at 85 Hz and 1

uA peak-to-peak amplitude.

Subjects160

Twenty healthy, right-handed subjects participated in the first part of this

study. One subject did not attend the second day of recordings and was excluded

from further analyses. The remaining 19 subjects (nine female) had an average

age of 28.37 years with a standard deviation of 8.57 years.

2.2. Analysis of behavioral data165

We quantified the behavioral effect size of γ-tACS over contralateral M1

by the difference between the average reaching speed during the real- and the

sham-stimulation block, because γ-tACS over motor cortex has been reported

to influence movement velocity (Joundi et al., 2012; Lopez-Alonso et al., 2014;

Muthukumaraswamy, 2010).. To compute the effect sizes on the level of individ-170

ual subjects, we first computed, for every trial and subject, the trial-averaged

reaching speed. This was done by, first, identifying the part of each trial which

corresponded to the the subject’s movement, i.e., from the "Go" phase until

the reaching of the target. We then extracted the x, y and z coordinates from

the frames of the camera and calculated the mean velocity as the amplitude175

of the discrete positional derivative (Meyer et al., 2014). For each subject, we

computed the block-averaged reaching velocities by averaging the trial-averaged

velocities within the real- and the sham-stimulation block. If a trial-averaged

velocity deviated from the block-averaged velocity by more than three standard

deviations the trial was rejected as an outlier. Finally, we computed the differ-180

ence between the block-averaged velocities of the real- and the sham-stimulation

blocks and normalized the difference by the standard deviation of each subject’s

sham-stimulation block to obtain the subject-level behavioral effect sizes. To

compute the group-level behavioral effect size, we averaged the subject-level

effect sizes and normalized by their standard deviation.185
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To test for a statistically significant behavioral stimulation effect on the level

of individual subjects, we performed, for each subject, a two-sided, t-test on the

trial-averaged arm velocities of the real- and the sham-stimulation block. We

built the null-distribution by randomly permuting the assignment of trials to the

real- and sham-stimulation block 10.000 times. After every permutation, we re-190

computed the subject’s average speed difference between the real- and the sham-

block. We calculated the p-value as the frequency at which samples from the

null-distribution exceeded the original absolute average speed difference between

the real- and the sham-block. Subjects with p < 0.05 and larger average speed

during the real- compared to sham-block were subsequently termed responders.195

The remaining subjects were termed non-responders.

To test for a statistically significant behavioral stimulation effect on the

group-level, we performed a two-sided, paired t-test on the single-subject effect

sizes. We built the null-distribution by randomly flipping every subjectâĂŹs

block-average velocities between the real- and sham-blocks 10.000 times. After200

random permutation, we re-computed the group-level behavioral effect size as

described above. We calculated the p-value as the frequency at which samples

from the null-distribution exceeded the original absolute group-level effect size.

2.3. Analysis of EEG data

We first cleaned each subject’s EEG data from non-cortical artifacts by In-205

dependent Component Analysis (ICA), and then computed resting-state band-

power in canonical EEG frequency bands.

For each subject and session, we concatenated the raw data of all resting-

state recordings, high-pass filtered the data with a Butterworth filter at 3 Hz,

and re-referenced the data to common-average reference. We then used the210

SOBI algorithm (Belouchrani et al., 1993) to extract 64 independent components

(ICs). We manually inspected the topography of every IC, and discarded those

ICs that did not show a cortical topography (McMenamin et al., 2010). The

remaining cortical ICs (ranging between four and 12 across subjects) were re-

projected to the scalp level, and the individual resting-state recordings were215
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reconstructed. For each subject, resting-state, and electrode, we normalized the

data by z-scoring.

For every subject, resting-state, and electrode, we then computed log-bandpower

in eight canonical EEG frequency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz),

β (12–25 Hz), γ1 (25 –45 Hz), γ2 (45 –65 Hz), γ3 (65 –90 Hz), and γ4 (90–160220

Hz). This was done by windowing the data with a Hamming window, comput-

ing the Discrete Fourier Transform, taking the average of the absolute values of

all frequency components within each of the eight frequency bands, and finally

taking the natural logarithm.

2.4. Training of the stimulation response predictor225

We trained a linear discriminant analysis (LDA) classifier to predict subjects’

category (responder vs. non-responders) from their resting-state EEG. Due to

the small sample size, we selected two EEG channels over left- (CCP3h) and

right motor cortex (CCP4h) and one channel over parietal cortex (Pz) as input

to the classifier (channel C3 directly over left motor cortex was blocked by the230

stimulation electrodes, hence for symmetry we did not use C4 as well). For each

of the eight frequency bands (cf. Section 2.3) and the three resting-state record-

ings on the stimulation day, we evaluated the prediction accuracy of the classifier

by leave-one-subject-out cross-validation. We tested the statistical significance

of each of the 24 settings (eight frequency bands times three resting-states) by235

a permutation test with 1000 permutations. To build the null-distribution, we

randomly permuted the labels on the training set of each cross-validation fold,

retrained the classifier, and classified the subject in the test set. We calculated

the p-value as the frequency at which samples from the null-distribution ex-

ceeded the original prediction accuracy. We then selected the best-performing240

combination of frequency-band and resting-state to train the final stimulation

response predictor (SRP) on all 19 subjects.

2.5. Validation of the stimulation response predictor

To validate the SRP, we recruited 22 new subjects (eleven female, average

age of 26.81 years with a standard deviation of 6.32 years). We employed the245
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same EEG processing pipeline as for the first group of subjects (cf. Section 2.3),

except that we used the EEG data of the first session (recorded on day one) to

compute the ICA. To clean the EEG of the stimulation session (recorded on day

two) from non-cortical artifacts, we applied the spatial filters derived on day one

to the EEG data of day two, and reprojected only those ICs that corresponded250

to cortical sources on day one. In this way, we minimized the probability that

any manual selection of ICs on day two could have confounded the predictions

of the SRP. We then applied the trained SRP, as described in Section 2.4, to the

first resting-state recording of every subject in the validation group, and com-

pared the predicted categories with those derived from the behavioral analysis255

described in Section 2.2 (the categorization of subjects in the validation group

into responders and non-responders is shown in Table .2 in the supplementary

material).

To test for a statistically significant difference in the behavioral stimulation

effect between the predicted responder and non-responder group, we employed260

a one-sided permutation-based t-test: We randomly permuted the predicted

assignments of subjects to the responders- and non-responders group 10.000

times. After every permutation, we recomputed the group-level effect size within

each group (responders vs. non-responders) as described in Section 2.2, and

calculated the p-value as the frequency at which the permuted difference in265

effect sizes exceeded the original one.

2.6. Statistical power analysis

Assuming normally distributed measurements and an effect size ρ, the num-

ber of subjects required in a two-sided t-test to achieve a type I and type II

error of α and β, respectively, is given by (Hickey et al., 2018)270

N =

(
Z1−α/2 + Z1−β

ρ

)2

, (1)

where Z(.) refers to the cumulative standard normal distribution. Solving for β,

we obtain

β =
1

2π

∫ ρ
√
N−Z1−α/2

−∞
e−t

2/2dt (2)
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for the type II error. Plugging in the estimates of the group-level effect sizes on

the validation group of ρpre = 0.23 and ρpost = 2.46 before and after strati-

fication, respectively, and assuming that these effect-size values as well as the275

stratification ratio of 82% (of subjects being rejected by the prediction pipeline

as non-responders) observed in the validation group are accurate estimates of

the population-level values, we obtain the statistical power as a function of the

number of subjects shown in Figure .9 in the supplementary material. The

statistical power after stratification exceeds the power before stratification for280

all N , with a maximal gain in power of 0.84 (582% increase of the power) for

N = 16 subjects.

2.7. Association of stimulation response with external factors

We tested the stimulation response of individual subjects (responders vs. non-

responders, cf. Section 2.2) for associations with four external factors: gender,285

order of the sham- and real-stimulation block, block of the strongest reported

sensation of stimulation, and baseline motor performance during the first ses-

sion. For all analyses, we pooled all 41 subjects from the training- and the

validation group.

To test for an association of the stimulation response with gender (female,290

male) and order of the stimulation block, respectively, we used Fisher’s exact

test. To test for an association of the stimulation response with the block of the

strongest sensory sensation, we employed a chi-squared test. Finally, to test for

an association between the average reaching speed during the first session (on

day one) with subsequent stimulation response in the second session (on day295

two), we performed an ANOVA for the average movement speed across all three

blocks on day one. For all tests, we chose a significance level of α = 0.05.

3. Results

3.1. Positive- and negative stimulation effects in tACS

We assessed inter-subject variability of the behavioral response to tACS in300

a motor performance study with a cross-over design. Twenty healthy subjects
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performed 15-minute blocks of 3D reaching movements with their right hand to

targets appearing at random locations in a 2D visual feedback setup (Figure 1).

Figure 4 shows the histogram and estimated probability density function

(Gaussian kernel density estimate with a kernel width of 0.5 (Turlach, 1999;305

Scott, 1992)) of effect sizes across subjects. While the group-level effect size of

0.33 is not statistically significant (p = 0.1018, subject-level permutation-based

paired t-test, cf. Section 2.2), we found a substantial variation in the effect

sizes of individual subjects, ranging from −1.12 to 1.51 with a standard devia-

tion of 0.72. Statistical tests for significant effect sizes at the individual subject310

level revealed seven subjects with a statistically significant positive and four

subjects with a statistically significant negative effect size (at significance level

α = 0.05, two-sided trial-level permutation-based t-test). The remaining eight

subjects did not show a statistically significant effect at the individual subject

level (individual p-values are shown in Table .1 in the supplementary material).315

These results establish that γ-tACS can have positive- as well as negative be-

havioral effects on motor performance, which poses an ethical challenge to tACS

studies. In the following section, we demonstrate how to address this challenge

by predicting individual subjects’ stimulation response from their resting-state

configuration of brain rhythms.320

3.2. Resting-state EEG predicts tACS stimulation response

Before and after each block, we recorded a high-density resting-state elec-

troencephalogram (EEG), manually cleaned the data from non-cortical arti-

facts, and computed subject-specific log-bandpower estimates for all channels

in canonical EEG frequency bands ranging from 1–160 Hz (the EEG analysis is325

described in detail in Section 2.3). We then separated subjects into those with a

statistically significant positive stimulation response, subsequently called the re-

sponders, and the remaining subjects, subsequently termed the non-responders

(cf. Section 2.2). The group-average topography of power in the γ-range (90–

160 Hz), recorded prior to the first (real- or sham-) stimulation block, revealed330

strong resting-state γ-power over contralateral motor cortex in the responders
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Figure 4: Histogram and estimated probability density function of stimulation response.

but not in the non-responders (Figure 5). This result suggests that only those

subjects, who already had strong γ-power over contralateral motor cortex be-

fore the start of the stimulation, showed a subsequent positive behavioral re-

sponse to contralateral γ-tACS. To systematically evaluate the predictive value335

of resting-state brain rhythms for stimulation response, we trained a machine

learning algorithm to predict individual subjects’ responses to γ-tACS from their

resting-state brain rhythms. Specifically, we selected three EEG channels over

left motor, right motor and central parietal cortex, computed log-bandpower

during the resting-state recorded prior to the first stimulation block in canoni-340

cal frequency bands, and then employed a leave-one-subject-out cross-validation

procedure to assess the ability of a linear discriminant classifier (LDA) to pre-

dict each subject’s group (responder vs. non-responder). The details of the

prediction pipeline are described in Section 2.4. We found the prediction accu-

racy to increase with frequency, peaking at 89.47% in the band from 90–160 Hz345

(p < 0.001, permutation test, cf. Section 2.4 for details). Prediction accuracies

and p-values for all frequency bands are shown in Figure .7 in the supplemen-

tary material. To test the robustness of the prediction pipeline, we repeated the
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Figure 5: Group-averages for responders (a) and non-responders (b) of high γ (90–160 Hz)

log-bandpower during the resting state recorded at the end of the first block of the second

session (prior to stimulation blocks).

machine learning procedure for all three resting-state recordings preceding the

first stimulation block. We found that all resting state recordings enabled above350

chance level prediction in the 90–160 Hz band. Prediction accuracies of the re-

maining bands varied across the different resting states. These results establish

that distribution of γ-power across motor areas, as shown in Figure 5, is an

accurate predictor of subjects’ behavioral response to γ-tACS over contralateral

motor cortex.355

3.3. Subject stratification by resting-state EEG enhances effect sizes

To evaluate the practical utility of the response stratification pipeline de-

scribed in the previous section, we performed an additional validation study

with 22 new participants. Based on the results described in the previous sec-

tion, we chose the classifier trained on the resting-state recorded after the first360

block in the 90–160 Hz frequency band for the validation study. This classifier

was trained on the first group of subjects and then used out-of-the-box to pre-

dict the stimulation response for each subject in the validation group from a

resting-state EEG recorded prior to the first block of trials (see Section 2.5 for

details).365
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In the validation group, we observed a group-level behavioral effect size of

0.12 (p = 0.2847, subject-level permutation paired t-test), with subject-level ef-

fect sizes ranging from −0.94 to 1.19 (see Figure .8 in the supplementary mate-

rial). The EEG-based stratification of subjects resulted in group-level effect sizes

of 2.46 and −0.17 for the predicted responders and non-responders, respectively,370

a statistically (p = 0.0048, one-sided permutation-based t-test) and practically

highly significant difference. In particular, all four subjects with a statistically

significant negative- and all 12 subjects with no statistically significant stimula-

tion response were correctly assigned to the group of non-responders. Further,

only two subjects with a statistically significant positive stimulation response375

were mis-classified as non-responders. These behavioral results are summarized

in Figure 6. The group-averaged topographies of log-bandpower in the γ-range

of the predicted responders and non-responders, which closely resemble those

observed in the training group shown in Figure 5, are displayed in Figure .10 in

the supplementary material.380

Based on our results, we estimate that our stratification pipeline can enhance

the statistical power of brain stimulation studies by up to 582% (see Figure .9 in

the supplementary material and Section 2.6). For instance, a statistical power

of 95% at a type II error of 5% would require 12 and 240 subjects with and

without our stratification pipeline, respectively.385

3.4. Stimulation response is contingent on brain state

In a next step, we employed the validated prediction pipeline to test whether

stimulation response is a state or a trait, i.e., whether subjects’ response to

γ-tACS changes or remains invariant over time. To do so, we pooled all 41

subjects, trained our prediction pipeline on the γ-power (90–160 Hz) of each390

of the four EEG resting states of their first session, i.e., two days before the

stimulation session, and predicted the stimulation response in the second session

with leave-one-subject-out cross-validation (all other settings were identical to

those described in Sections 2.3 and 2.4). A statistically significant prediction

accuracy in this setting would imply that the configuration of subjects’ brain395
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Figure 6: Individual effect-sizes and predicted stimulation responses in the validation group.

rhythms is also predictive for their stimulation response two days later. We did

not, however, find any evidence in favor of this conclusion. Instead, training on

brain activity of the first recording session resulted in statistically non-significant

prediction accuracies between 62.5% and 68.3% (p-values of 0.23, 0.24, 0.27

and 0.73 for the four resting states of day one). This observation implies that400

stimulation response is contingent on subjects’ brain-state directly prior to the

stimulation, i.e., subjects’ stimulation response is a state and not a trait.

Applying the original stimulus-response predictor, as described in Section

2.5, to the resting-state recordings of the first day, we estimate that out of

the 28 subjects, who did not respond positively to the stimulation on day two,405

five subjects would have responded positively on day one (prediction results for

individual subjects are shown in Table .3 in the supplementary material). As

such, the percentage of subjects, who can benefit from tACS, may increase if

they are stimulated at the right time.
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4. Discussion410

Our results demonstrate, first, that resting-state signatures of human brain

rhythms, recorded prior to NIBS, can distinguish responders from non-responders

with high accuracy, and, second, that such a stratification enhances behavioral

effect sizes in empirical studies. The former contribution is essential for a safe

and ethical application of NIBS in research and treatment. Because NIBS can415

have behavioral effects of opposite polarity relative to the intended stimula-

tion effect in individual subjects (cf. Section 3.1), a reliable exclusion criterion

for subjects with a negative stimulation response ensures that no subjects are

harmed. This issue is of particular relevance in clinical settings, where NIBS

is employed to cause long-term and, possibly, permanent changes. Our second420

finding, on the other hand, may be used to increase the statistical power of NIBS

studies in research as well as in clinical settings. By excluding non-responders

a-priori, we estimate that a gain of up to 582% in statistical power can be

obtained.

We found strong resting-state γ-power over contralateral motor cortex to425

be indicative of a positive stimulation response to tACS in the same area and

frequency range. As we outline in the following, this finding is in line with our

current understanding of the neurophysiological effects of γ-tACS and the role

of γ-power in fronto-parietal networks for motor performance (Gonzalez Andino

et al., 2005). Resting-state γ-power in primary motor cortex positively corre-430

lates with γ-aminobutyric acid (GABA) levels (Chen et al., 2014; Muthuku-

maraswamy et al., 2009; Bartos et al., 2007; Wang and Buzsáki, 1996; Brunel

and Wang, 2003). Because γ-tACS over motor cortex decreases GABA (Nowak

et al., 2017), and decreases in motor cortex GABA levels correlate with increased

motor performance (Stagg et al., 2011), high resting-state γ-power may signal a435

brain state in which motor performance can be improved through tACS-induced

reduction of GABA levels. Low resting-state γ-power, in contrast, would signal

a brain state in which GABA levels are already low, thus limiting the extent

of potential further reduction by γ-tACS. We note that this explanation is also
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in line with our finding that stimulation response is contingent on the current440

brain state (cf. Section 3.4).

To further probe the state vs. trait hypothesis, we tested a range of sub-

ject traits and experimental factors, including gender, order of real-/sham-

stimulation, block of strongest-reported stimulation sensation and behavioral

performance on the first day of the experiment, for associations with stimu-445

lation response. None of these factors reached a statistically significant asso-

ciation (Fisher’s exact test, Chi-squared test and ANOVA, see Section 2.7).

This observation is in line with previous work on explaining individual subjects’

stimulation response (cf. Section 1), and underlines the significance of subjects’

current brain state for their stimulation response.450

Our results further indicate that the percentage of subjects, who can ben-

efit from NIBS, may be increased when subjects are stimulated at the right

time. Concurrently, the neurophysiological interpretation of our results raises

the question whether the effects of stimulation lie within the range of normal

variations in behavioral performance, i.e., whether NIBS induces a beneficial455

state of mind that can also occur spontaneously, or whether NIBS can enhance

behavioral performance beyond subjects’ natural limits. Either way, a natural

extension of our stimulation response prediction pipeline would be to consider

multiple stimulation settings that vary in parameters such as spatial and spec-

tral focus, paving the way for personalized NIBS.460

5. Conclusions

The identification of responders and non-responders prior to the application

of stimulation treatment is an important first step towards personalized brain

stimulation. In our work, we show that resting-state high-gamma power prior

to stimulation enables this differentiation. Specifically, we demonstrate that465

subjectsâĂŹ resting-state EEG predicts their motor response (arm speed) to

gamma (70 Hz) transcranial alternating current stimulation (tACS) over the

contralateral motor cortex. We then ascertain in a prospective study with new
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subjects that our prediction pipeline achieves a reliable stratification of subjects

into a responder and a non-responder group.470
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Appendices705

Table .1: Categorization of subjects into responders and non-responders, first group of record-

ings. ∆Velocity > 0 refers to subjects with a higher movement speed in the real- vs. the

sham-stimulation block.

Subject p-value ∆Velocity > 0 Category

1 0.0005 1 responder

2 0.6217 1 non-responder

3 0.0902 1 non-responder

4 0.0121 0 non-responder

5 <0.0001 1 responder

6 0.9318 1 non-responder

7 0.3979 1 non-responder

8 0.1628 1 non-responder

9 0.9220 0 non-responder

11 0.0154 0 non-responder

12 0.0251 1 responder

13 0.0384 0 non-responder

14 0.0800 0 non-responder

15 0.8484 1 non-responder

16 <0.0001 1 responder

17 <0.0001 0 non-responder

18 0.0077 1 responder

19 0.0370 1 responder

20 0.0455 1 responder

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.27.921668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure .7: Leave-one-subject-out cross-validated prediction accuracy of stimulation response

in the first group of subjects across canonical frequency bands and resting-states, cf. Section

2.4 for details. Stimulation day (day 2).
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Figure .8: Histogram and estimated probability density function of stimulation response in

the validation group.
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Figure .9: Statistical power as a function of the number of subjects with and without strati-

fication by the SRP pipeline with type II error fixed at α = 0.05.

Table .2: Categorization of subjects into responders and non-responders, second (validation)

group of recordings. ∆Velocity > 0 refers to subjects with a higher movement speed in the

real- vs. the sham-stimulation block.
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Subject p-value ∆Velocity > 0 Category

21 0.0001 0 non-responder

22 0.0004 1 responder

23 0.0119 1 responder

24 0.0093 1 responder

25 0.0353 1 responder

26 0.5704 1 non-responder

27 0.0001 1 responder

28 <0.0001 0 non-responder

29 0.5334 0 non-responder

30 0.5449 0 non-responder

31 0.6537 1 non-responder

32 0.8046 0 non-responder

33 0.8770 1 non-responder

34 0.0055 0 non-responder

35 0.0678 0 non-responder

36 0.6119 1 non-responder

37 0.2996 0 non-responder

38 0.0048 1 responder

39 0.4444 1 non-responder

40 0.7515 1 non-responder

41 0.5464 0 non-responder

42 0.0075 0 non-responder
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Figure .10: Group-averages for predicted responders (a) and non-responders (b) in the vali-

dation group of high γ (90–160 Hz) log-bandpower during the resting state recorded at the

beginning of the stimulation day (prior to stimulation blocks).

Table .3: Subjects’ predicted behavioral response from resting-state EEG data recorded on

day one versus actual behavioral response measured on day two.

Subjects predicted as responders on day one 15, 18, 19, 22, 23, 24, 27, 33, 34, 36, 38, 42

Actual non-responders on day two 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15, 17, 21, 26,

28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41,

42

Intersection 15, 33, 34, 36, 42
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