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Stratification of behavioural Response to
Transcranial Current Stimulation by Resting-State

Electrophysiology
Atalanti A. Mastakouri

Abstract—Transcranial alternating current stimulation (tACS)
enables the non-invasive stimulation of brain areas in desired fre-
quencies, intensities and spatial configurations. These attributes
have raised tACS to a widely used tool in cognitive neuroscience
and a promising treatment in the field of motor rehabilitation.
Nevertheless, considerable heterogeneity of its behavioural effects
has been reported across individuals. We present a machine
learning pipeline for predicting the behavioural response to 70 Hz
contralateral motor cortex-tACS from Electroencephalographic
resting-state activity preceding the stimulation. Specifically, we
show in a cross-over study design that high-gamma (90–160
Hz) resting-state activity predicts arm-speed response to the
stimulation in a concurrent reaching task. Moreover, we show
in a prospective stimulation study that the behavioural effect
size of stimulation significantly increases after the stratification
of subjects with our prediction method. Finally, we discuss a
plausible neurophysiological mechanism that links high resting-
state gamma power in motor areas to stimulation response. As
such, we provide a method that can distinguish responders from
non-responders to tACS, prior to the stimulation treatment. This
contribution could eventually bring us a step closer towards
translating tACS into a safe and effective clinical treatment tool.

Index Terms—EEG, gamma stimulation, motor cortex, re-
sponse prediction, transcranial alternating current stimulation,
tACS

I. INTRODUCTION

Non-invasive brain stimulation (NIBS) modulates neural
activity, behavior, and brain plasticity through the non-invasive
creation of forced electrical current flows inside the brain
[1], [2]. There are two main categories of NIBS: Transcranial
Magnetic Stimulation (TMS), which uses external magnetic
fields to force the creation of electrical potentials in the cortex
that depolarize neurons and trigger action potentials [3], and
Transcranial Electrical Stimulation (TES) [4], which applies
weak electrical direct (tDCS) or alternating (tACS) currents on
the scalp [5]. In contrast to TMS, only a fraction of this current
enters the brain and causes a membrane potential change
of the affected neurons. It has been shown by [6] that this
membrane potential could be sufficiently strong to change their
probability of generating action potentials. Nevertheless, as the
physiological effects of tACS are not completely uncovered
yet, there is still a debate on this matter, particularly with low
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intensity currents. Recent publications [7], [8] demonstrated
entrainment of neural activity to tACS on primates. For
humans, there are some limited evidence for phase-specific
entrainment in EEG after-effects for alpha-frequencies. [9],
[10].

Although the neural mechanisms of NIBS are not yet
fully understood [11], NIBS applications are becoming more
widespread in research and treatment. Applications of NIBS
can be divided into three main categories: studies that probe
neurophysiology (e.g., how neural oscillations are causally
related) [12]–[18], studies that investigate how brain activity
gives rise to behavior and cognition [11], [19]–[28], and
studies that employ NIBS for rehabilitation [29]–[33].

In all three categories, NIBS studies report substantial
variations in stimulation response across individual subjects,
including up to 55% of non-responders [34], [35]. While non-
responders decrease the statistical power of NIBS studies, this
sub-group is unproblematic from an ethical point of view.
Given the reported variances in effect sizes, however, it is
not unreasonable to assume that there also exist subjects with
negative stimulation responses [34]–[38]. Here we use the term
“negative responders” to identify those subjects that exhibited
a response oposite to what was expected which may be harful
or not. We do not necessarily imply that this term refers to
harmful effects only, although it may include them. Subjects
with negative stimulation responses would be highly problem-
atic, because their existence would imply that NIBS studies
may violate the principle of not having detrimental effects.
This ethical concern is particularly relevant in clinical settings,
where NIBS is used to cause long-term changes [39], [40]. In
a related work, Yang et al. [41] and Kasten et al. [42] stress
the necessity of pre-stimulation screening and the importance
of individualizing stimulation protocols. Furthermore, Kong
et al. [43] report the existence of individual-specific cortical
networks and their importance in the prediction of human
cognition, giving evidence for individual cortical differences.
Taking all this into account, ethical use of NIBS would
first require consideration of potential negative stimulation
effects in individual subjects, and, second, if such effects
exist, implement a procedure that reliably identifies negative
responders before the stimulation treatment.

While there is a large body of literature on adverse side-
effects [41], [44]–[46], NIBS studies typically only con-
sider inter-subject variability in terms of positive- and non-
responders, bypassing the potential ethical challenges posed by
negative responders. This reservation is arguably a result of the
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limited understanding of the causes of inter-subject variability
in NIBS. Hypothesized explanations for inter-subject vari-
ability include non-apparent variations in experimental setups
[11], [47], [48], individual differences in brain anatomy [48]–
[50], and brain-state dependent susceptibility to NIBS [34],
[35], [51], [52]. Factors that have been studied empirically
include priming [53], [54], prior activity [55], [56], age [57],
[58], attention [59], sex [60], pharmacological influences [61]–
[63], genetic variations [64], [65], and the time of day [34].
There is presently no set of factors known, however, that en-
ables a reliable identification of subjects, who do not respond
to or may even be harmed by NIBS, before the stimulation
treatment [66].

In this article, we demonstrate that inter-subject variabil-
ity, as measured by the effect of γ-range (70 Hz) tACS
over contralateral motor cortex on movement speed during
a three-dimensional reaching task, encompasses subjects with
positive- as well with negative behavioural effects that are suf-
ficiently strong to reach statistical significance on the single-
subject level. This result establishes that negative stimulation
response is a serious concern for the ethical use of NIBS.
We then proceed to show that electrophysiological signatures
of resting-state brain activity can be used to predict individual
subjects’ stimulation response with high accuracy. Specifically,
we present a machine learning pipeline that takes Electroen-
cephalographic (EEG) resting-state recordings of individual
subjects as input, and outputs their predicted stimulation re-
sponse. We apply this pipeline to learn a stimulation response
predictor for the present motor performance study, and demon-
strate in a prospective study that the stimulation response
predictor successfully stratifies subjects into a responder and
a non-responder group with statistically significant differences
in stimulation effects. In particular, our stimulation response
predictor correctly identifies 16 out of 16 subjects who do
not respond positively to the stimulation treatment. We then
show that successful stimulation response prediction is contin-
gent on resting-state brain signatures recorded directly before
NIBS. This finding supports the interpretation that stimulation
response is a state and not a trait, i.e., subjects’ susceptibility
to brain stimulation may vary over time.

By providing a principled approach to identify subjects, who
do not benefit from or may even be harmed by NIBS, before
the stimulation treatment, our work constitutes an essential
step towards an effective and ethical application of NIBS in
clinical settings. Because our results indicate that subjects’
susceptibility to NIBS is a state and not a trait, administering
stimulation treatments only when subjects are in a suitable
state of mind may further enlarge the range of subjects who
benefit from NIBS.

II. MATERIAL AND METHODS

This study conformed to the Declaration of Helsinki, and the
experimental procedures involving human subjects described
in this paper were approved by the Ethics Committee of the
Medical Faculty of the Eberhard Karls University of Tübingen.
Informed consent was obtained by all participants, prior to
their participation to the study.

(a) (b) (c) (d)

Fig. 1: Phases of a trial: a) Subjects wait for the next target.
b) A yellow target appears at a random location. Subjects wait
for the go-cue, with their current hand position indicated by
a white ball. c) A change of target colour to green instructs
subjects to initiate the reaching movement. d) Subjects have
to move their hand back to the starting position, indicated by
the green ball.

A. Experimental paradigm and data

Each participant attended two sessions, subsequently termed
days, separated by a one-day break. On each of the two days,
participants were seated on a chair in the middle of four
infrared motion tracking cameras (Phase Space, San Leandro,
California, USA), facing a visual feedback screen (35′′) at a
distance of 1.5 meters, while wearing a specially designed
glove with three LEDs on its top for real-time tracking of
their arm location. The position of the arm was depicted on
the screen in real time as a 3D sphere (cf. Figure 1).

The experimental paradigm was a 3D-reaching task. In each
trial, a target sphere appeared in a simulated 3D space at a
random location. The subjects’ goal was to reach the target
with their right wrist by moving their arm. Each trial started
with a baseline of 5 s, followed by 2.5–4 s during which the
target appeared on the screen as a yellow sphere. During this
period, subjects had been told to plan but not yet initiate
their movement. After the target sphere changed to green,
subjects had 10 s to move their arm to reach the target. After
a successful reach, a score screen, indicating the movement’s
quality, appeared for 2 s. This score was computed as an
inverse mapping of their movement’s normalized averaged
rectified jerk score (NARJ) to a scale from 0 to 100 [67],
[68]. In the last phase of each trial, the sphere appeared at
the original starting position of the subjects’ wrist. The trial
completed when subjects returned their wrist to the original
starting position. If the reach was not completed within 10 s,
or if the subject moved before the sphere turned green, the
trial was excluded from further analysis.

Session 1: During the first day, only electroencephalo-
graphic (EEG) (124 active electrodes at 500 Hz sampling
rate, BrainAmp DC, Brain Products, Gilching, Germany) and
motion tracking (sampling rate of 960 Hz) data were recorded
in parallel to the reaching task. The recording session consisted
of three blocks of 50 trials each (cf. Figure 2a). Before and
after each block, 5 min of resting-state EEG were recorded,
during which subjects were asked to relax without moving,
focus their eyes on a cross on the screen, and keep their arm
in a comfortable position on top of their leg.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.01.27.921668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921668
http://creativecommons.org/licenses/by-nc-nd/4.0/


STRATIFICATION OF BEHAVIOURAL RESPONSE TO TRANSCRANIAL CURRENT STIMULATION BY RESTING-STATE ELECTROPHYSIOLOGY 3

Resting state 5min Resting state 5min

Block 1 
50 trials 

EEG

Block 2 
50 trials 

EEG

Block 3 
50 trials 

EEG

Resting state 5min Resting state 5min

Day 1

(a) Experimental setup for the first recording session (no stimulation.

Resting state 5 min

Resting state 5 min Resting state 5 min

Block 1 
15 min
EEG

Block 3
15 min

Stimulation/ Sham

Resting state 5 min Resting state 5 minResting state 5 min

Break 20 min

Day 2

Block 2
15 min

Stimulation/ Sham

(b) Experimental setup for the second recording session (with stimulation.

Fig. 2: Explanatory diagrams with the EEG and tACS blocks
during the recordings of the two experimental sessions, during
which each subject participated.

Session 2: The second recording day was a crossover
randomized stimulation session. This session consisted of three
blocks of reaching trials of 15 min each (cf. Figure 2b). During
the first block, EEG and motion tracking data were recorded
but subjects were not yet stimulated. During the second and
third block real- and sham high-definition (HD) transcranial al-
ternating current stimulation (tACS) was applied, respectively,
in a randomized order that was not revealed to the subject.
A break of 20 min was introduced between the second and
the third block, during which the subject was asked to stay
seated and relaxed, to avoid carry-over effects. At the end
of the session, the participant completed a questionnaire to
evaluate the sensation of the stimulation and potential side
effects. Before and after each block, a 5 min resting-state
EEG was recorded, during which subjects were asked to relax
without moving, focus their eyes on a cross on the screen, and
keep their arm in a comfortable position on top of their leg.

Stimulation setup: We employed a 4×1 HD-tACS setup
(DC Stimulator Plus, neuroConn GmbH, Ilmenau, Germany)
to increase spatial focality relative to the more commonly used
two-electrode setup [69]. The equalizer extension box of the
DC Stimulator Plus was used to extend the two ordinary square
sponge electrodes into a 4×1 set of round rubber electrodes
of 20 mm diameter (3 cm2), with the one electrode in the
center, and the four electrodes in a square at a distance of
7.5 cm from the central electrode. The central electrode was
placed over channel C3 (left primary motor cortex - M1) and
the four surrounding ones over Cz, F3, T7, and P3 [70]. Real
stimulation was delivered at 70 Hz and 1 mA peak-to-peak
amplitude, while sham stimulation was delivered at 85 Hz and
1 uA peak-to-peak amplitude.

Subjects: In the first part of this study (experiments of
the first three months) twenty healthy, right-handed subjects
participated. One subject did not attend the second day of
recordings and was excluded from further analyses. The re-
maining 19 subjects (nine female) had an average age of 28.37
years with a standard deviation of 8.57 years. In the second
part of the study (experiments of the last three months) twenty-

two new subjects were recorded and stimulated following the
exact same protocol. This second group was only used as an
evaluation group, as described in detail in subsection II-E].

B. Analysis of behavioural data

We quantified the behavioural effect size of γ-tACS over
contralateral M1 by the difference between the average reach-
ing speed during the real- and the sham-stimulation block,
because γ-tACS over motor cortex has been reported to
influence movement velocity [21], [34], [71]. Furthermore,
arm velocity has been considered one of the most stable
variables related to the motor cortex activity [72], [73]. To
compute the effect sizes on the level of individual subjects, we
first computed, for every trial and subject, the trial-averaged
reaching speed. This was done by, first, identifying the part
of each trial which corresponded to the subject’s movement,
i.e., from the ”Go” phase until the reaching of the target. We
then extracted the x, y and z coordinates from the frames of
the camera and calculated the mean velocity as the amplitude
of the discrete positional derivative [68]. For each subject, we
computed the block-averaged reaching velocities by averaging
the trial-averaged velocities within the real- and the sham-
stimulation block. If a trial-averaged velocity deviated from the
block-averaged velocity by more than three standard deviations
the trial was rejected as an outlier. Finally, we computed the
difference between the block-averaged velocities of the real-
and the sham-stimulation blocks and normalized the difference
by the standard deviation of each subject’s sham-stimulation
block to obtain the subject-level behavioural effect sizes. To
compute the group-level behavioural effect size, we averaged
the subject-level effect sizes and normalized by their standard
deviation.

To test for a statistically significant behavioural stimulation
effect on the level of individual subjects, we performed, for
each subject, a two-sided, t-test on the trial-averaged arm
velocities of the real- and the sham-stimulation block. We built
the null-distribution by randomly permuting the assignment
of trials to the real- and sham-stimulation block 10.000 times.
After every permutation, we re-computed the subject’s average
speed difference between the real- and the sham-block. We cal-
culated the p-value as the frequency at which samples from the
null-distribution exceeded the original absolute average speed
difference between the real- and the sham-block. Subjects with
p < 0.05 and larger average speed during the real- compared
to sham-block were subsequently termed responders. The
remaining subjects, who consist of those with non significant
p-values, and those with significant reduction of arm speed
(to whom we may also refer as “negative responders”) were
termed combined non-responders.

To test for a statistically significant behavioural stimula-
tion effect on the group-level, we performed a two-sided,
paired t-test on the single-subject effect sizes. We built the
null-distribution by randomly flipping every subject’s block-
average velocities between the real- and sham-blocks 10.000
times. After random permutation, we re-computed the group-
level behavioural effect size as described above. We calculated
the p-value as the frequency at which samples from the null-
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distribution exceeded the original absolute group-level effect
size.

C. Analysis of EEG data
We first cleaned each subject’s EEG data from non-cortical

artifacts by Independent Component Analysis (ICA), and then
computed resting-state bandpower in canonical EEG frequency
bands.

For each subject and session, we concatenated the raw data
of all resting-state recordings, high-pass filtered the data with
a Butterworth filter at 3 Hz, and re-referenced the data to
common-average reference. We then used the SOBI algorithm
[74] to extract 64 independent components (ICs). We manually
inspected the topography of every IC, and discarded those ICs
that did not show a cortical topography [75]. The remaining
cortical ICs (ranging between four and 18 across subjects)
were re-projected to the scalp level, and the individual resting-
state recordings were reconstructed. For each subject, resting-
state, and electrode, we normalized the data by z-scoring.
The reason for the few kept ICs was that during the manual
artefact cleaning we were particularly cautious not to include
contaminated signals. Therefore, we were conservative by
keeping only IC components that looked cortical, rejecting
ambiguous ones.

For every subject, resting-state, and electrode, we then
computed log-bandpower in eight canonical EEG frequency
bands: high δ (3–4 Hz) (due to 3Hz high-pass filter), θ (4–
8 Hz), α (8–12 Hz), β (12–25 Hz), γ1 (25 –45 Hz), γ2 (45
–65 Hz) (although line power at 50 Hz is included), γ3 (65
–90 Hz), and γ4 (90–160 Hz). This was done by windowing
the data with a Hamming window, computing the Discrete
Fourier Transform, taking the average of the absolute values
of all frequency components within each of the eight frequency
bands, and finally taking the natural logarithm.

D. Training of the stimulation response predictor
We trained a linear discriminant analysis (LDA) classifier

to predict subjects’ category (responder vs. non-responders)
from their resting-state EEG. Due to the small sample size,
we selected two EEG channels over left- (CCP3h) and right
motor cortex (CCP4h) and one channel over parietal cortex
(Pz) as input to the classifier (channel C3 directly over left
motor cortex was blocked by the stimulation electrodes, hence
for symmetry we did not use C4 as well). For each of
the eight frequency bands (cf. Section II-C) and the three
resting-state recordings on the stimulation day, we evaluated
the prediction accuracy of the classifier by leave-one-subject-
out cross-validation. We tested the statistical significance of
each of the 24 settings (eight frequency bands times three
resting-states) by a permutation test with 1000 permutations.
To build the null-distribution, we randomly permuted the labels
on the training set of each cross-validation fold, retrained
the classifier, and classified the subject in the test set. We
calculated the p-value as the frequency at which samples
from the null-distribution exceeded the original prediction
accuracy. We then selected the best-performing combination of
frequency-band and resting-state to train the final stimulation
response predictor (SRP) on all 19 subjects.

E. Validation of the stimulation response predictor

To validate the SRP, we recruited 22 new subjects (eleven
female, average age of 26.81 years with a standard deviation of
6.32 years). We employed the same EEG processing pipeline
as for the first group of subjects (cf. Section II-C), except
that we used the EEG data of the first session (recorded
on day one) to compute the ICA. To clean the EEG of the
stimulation session (recorded on day two) from non-cortical
artifacts, we applied the spatial filters derived on day one to
the EEG data of day two, and reprojected only those ICs that
corresponded to cortical sources on day one. In this way, we
minimized the probability that any manual selection of ICs
on day two could have confounded the predictions of the
SRP. We then applied the trained SRP, as described in Section
II-D, to the first resting-state recording of every subject in
the validation group, and compared the predicted categories
with those derived from the behavioural analysis described in
Section II-B (the categorization of subjects in the validation
group into responders and non-responders is shown in Table
II in the Appendix).

To test for a statistically significant difference in the be-
havioural stimulation effect between the predicted respon-
der and non-responder group, we employed a one-sided
permutation-based t-test: We randomly permuted the predicted
assignments of subjects to the responders- and non-responders
group 10.000 times. After every permutation, we recomputed
the group-level effect size within each group (responders
vs. non-responders) as described in Section II-B, and cal-
culated the p-value as the frequency at which the permuted
difference in effect sizes exceeded the original one.

F. Association of stimulation response with external factors

We tested the stimulation response of individual subjects
(responders vs. non-responders, cf. Section II-B) for associ-
ations with four external factors: gender, order of the sham-
and real-stimulation block, block of the strongest perceived
sensation of stimulation as reported by the subjects, and
baseline motor performance during the first session. For all
analyses, we pooled all 41 subjects from the training- and the
validation group.

To test for an association of the stimulation response with
gender (female, male) and order of the stimulation block,
respectively, we used Fisher’s exact test. To test for an as-
sociation of the stimulation response with the block of the
strongest sensory sensation, we employed a chi-squared test.
Finally, to test for an association between the average reaching
speed during the first session (on day one) with subsequent
stimulation response in the second session (on day two),
we performed an ANOVA for the average movement speed
across all three blocks on day one. For all tests, we chose a
significance level of α = 0.05.

G. Signal to noise ratio of EEG in high gamma range

To examine and eliminate the possibility that our findings
in the high gamma range are coincidental or mostly noise, we
performed the following analysis. To make sure that we do not
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introduce any bias during the manual artefact correction pro-
cess, we tested the statistical association between the number
of kept ICs and the response group. Moreover, we examined
the association between the type of the kept ICs (i.e. exhibiting
a horizontal or vertical dipole) and the response group (all the
kept ICs can be found in the supplementary material). Finally,
we estimated the frequency-dependent signal-to-noise (SNR)
ratio of our EEG amplifier by comparing the EEG resting-
state recordings with the amplifier’s noise floor, measured by
submerging the EEG electrodes in a saline solution. Results
are presented in Figure 9 and discussed in subsection IV-C.

III. RESULTS

A. Positive- and negative stimulation effects in tACS

We assessed inter-subject variability of the behavioural
response to tACS in a motor performance study with a cross-
over design. Nineteen healthy subjects performed 15-minute
blocks of 3D reaching movements with their right hand to
targets appearing at random locations in a 2D visual feedback
setup (Figure 1).

Figure 3 shows the histogram and estimated probability den-
sity function (Gaussian kernel density estimate with a kernel
width of 0.5 [76], [77]) of effect sizes across subjects. While
the group-level effect size of 0.33 is not statistically significant
(p = 0.1018, subject-level permutation-based paired t-test, cf.
Section II-B), we found a substantial variation in the effect
sizes of individual subjects, ranging from −1.12 to 1.51 with a
standard deviation of 0.72. Statistical tests for significant effect
sizes at the individual subject level revealed seven subjects
with a statistically significant positive and four subjects with
a statistically significant negative effect size (at significance
level α = 0.05, two-sided trial-level permutation-based t-
test). The remaining eight subjects did not show a statistically
significant effect at the individual subject level (individual p-
values are shown in Table I in the Appendix). These results
demonstrate that γ-tACS can have positive- as well as negative
behavioural effects on motor performance, which poses an
ethical challenge to tACS studies 1. In the following section,
we demonstrate how to address this challenge by predicting
individual subjects’ stimulation response from their resting-
state configuration of brain rhythms.

B. Resting-state EEG predicts tACS stimulation response

Before and after each block, we recorded a high-density
resting-state electroencephalogram (EEG), manually cleaned
the data from non-cortical artifacts, and computed subject-
specific log-bandpower estimates for all channels in canonical
EEG frequency bands ranging from 1–160 Hz (the EEG
analysis is described in detail in Section II-C). We then sepa-
rated subjects into those with a statistically significant positive
stimulation response, subsequently called the responders, and

1Even after strict multiple test correction on the p-values there are both
positive and negative responders. After performing a Holm-Sidak multiple-
test correction at a significance level 0.05, on the 19 p-values reported in
Table I, there are still subjects with significant positive and significant negative
response. The p-values of these first group after the multiple-test correction
can be found below the Table I
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Fig. 3: Histogram and estimated probability density function
of stimulation response.

the remaining subjects (both negative responders and subjects
with no significant response), subsequently termed the non-
responders (cf. Section II-B). The reason why we did not use
three different groups in our prediction pipeline (“positive”,
“negative” and “non-responders”) was the limited number of
subjects for training such a classifier. 2 Therefore, we proceed
our analysis with the aforementioned two groups.

Fig. 4: Group-averages for responders (a) and non-responders
(b) of high γ (90–160 Hz) log-bandpower during the resting
state recorded at the end of the first block of the second session
(prior to stimulation blocks). Each subject’s data were z-scored
before the across-subjects averaging.

The group-average topography of power in the γ-range (90–
160 Hz), recorded prior to the first (real- or sham-) stimulation
block, revealed strong resting-state γ-power over contralateral
motor cortex in the responders but not in the non-responders
(Figure 4). This result suggests that only those subjects, who
already had strong γ-power over contralateral motor cortex
before the start of the stimulation, showed a subsequent
positive behavioural response to contralateral γ-tACS. To
systematically evaluate the predictive value of resting-state
brain rhythms for stimulation response, we trained a machine
learning algorithm to predict individual subjects’ responses to
γ-tACS from their resting-state brain rhythms. Specifically, we
selected three EEG channels over left motor, right motor and
central parietal cortex, computed the log-bandpower during
the resting-state recorded prior to the first stimulation block
in canonical frequency bands, and then employed a leave-one-
subject-out cross-validation procedure to assess the ability of

2In a preliminary analysis we did not manage to reach satisfactory classi-
fication accuracy for three groups, for none of the frequency bands.
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a linear discriminant classifier (LDA) to predict each subject’s
group (responder vs. non-responder).

The details of the prediction pipeline are described in
Section II-D. We found the prediction accuracy to increase
with frequency, peaking at 89.47% in the band from 90–160
Hz (p < 0.001, permutation test, cf. Section II-D for details).
Prediction accuracies and p-values for all frequency bands are
shown in Figure 6 in the Appendix. To test the robustness of
the prediction pipeline, we repeated the machine learning pro-
cedure for all three resting-state recordings preceding the first
stimulation block. We found that all resting state recordings
enabled above chance level prediction in the 90–160 Hz band.
Prediction accuracies of the remaining bands varied across the
different resting states.

These results are an indication that high-gamma power can
carry important information for the prediction of subjects’ be-
havioural response to γ-tACS over contralateral motor cortex.

C. Subject stratification by resting-state EEG enhances effect
sizes

To evaluate the practical utility of the response stratification
pipeline described in the previous section, we performed an
additional validation study with 22 new participants. Based on
the results described in the previous section, we chose the clas-
sifier trained on the resting-state recorded after the first block
in the 90–160 Hz frequency band for the validation study.
This classifier was trained on the first group of subjects and
then used out-of-the-box to predict the stimulation response
for each subject in the validation group from a resting-state
EEG recorded prior to the first block of trials (see Section II-E
for details).

In the validation group, we observed a group-level be-
havioural effect size of 0.12 (p = 0.2847, subject-level per-
mutation paired t-test), with subject-level effect sizes ranging
from −0.94 to 1.19 (see Figure 7 in the Appendix). The
true response groups of the validation subjects based on their
performance can be found in Table II in the Appendix. We
used the pre-trained SRP to classify the subjects on the two
response groups (responders and non-responders). The EEG-
based stratification of subjects resulted in group-level effect
sizes of 2.46 and −0.17 for the predicted responders and non-
responders, respectively, a statistically (p = 0.0048, one-sided
permutation-based t-test) and practically highly significant
difference. In particular, all four subjects with a statistically
significant negative- and all 12 subjects with no statistically
significant stimulation response were correctly classified by
SRP to the group of non-responders. Further, only two subjects
with a statistically significant positive stimulation response
were mis-classified as non-responders. These behavioural re-
sults are summarized in Figure 5. The group-averaged to-
pographies of log-bandpower in the γ-range of the predicted
responders and non-responders, which closely resemble those
observed in the training group shown in Figure 4, are displayed
in Figure 8 in the Appendix.

D. Stimulation response is contingent on brain state
In a next step, we employed the validated prediction pipeline

to test whether stimulation response is a state or a trait, i.e.,
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Fig. 5: Individual effect-sizes and predicted stimulation re-
sponses in the validation group. The height of the bars indicate
the effect size of the real stimulation for each subject. The
two colours indicate the two classes (“Reponderes” and “Non-
responders” as have been defined in Section II-B) that our
SRP predictor classifies the subjects from their resting state
EEG. As we can see, comparing our predictions with the true
behavioural response groups in Table II, our predictor correctly
identifies all the “Non-responders” and four “Responders”. It
only misses two true positive responders (subjects 22 and 25).

whether subjects’ response to γ-tACS changes or remains
invariant over time. To do so, we pooled all 41 subjects,
trained our prediction pipeline on the γ-power (90–160 Hz)
of each of the four EEG resting states of their first session,
i.e., two days before the stimulation session, and predicted
the stimulation response in the second session with leave-one-
subject-out cross-validation (all other settings were identical
to those described in Sections II-C and II-D). A statistically
significant prediction accuracy in this setting would imply that
the configuration of subjects’ brain rhythms is also predictive
for their stimulation response two days later. We did not,
however, find any evidence in favor of this conclusion. Instead,
training on brain activity of the first recording session resulted
in statistically non-significant prediction accuracies between
62.5% and 68.3% (p-values of 0.23, 0.24, 0.27 and 0.73 for
the four resting states of day one). This observation implies
that stimulation response is contingent on subjects’ brain-
state directly prior to the stimulation, i.e., subjects’ stimulation
response is a state and not a trait.

Applying the original stimulus-response predictor, as de-
scribed in Section II-E, to the resting-state recordings of the
first day, we estimate that out of the 28 subjects, who did not
respond positively to the stimulation on day two, five subjects
would have responded positively on day one (prediction results
for individual subjects are shown in Table III in the Appendix).
As such, the percentage of subjects, who can benefit from
tACS, may increase if they are stimulated at the right time.

IV. DISCUSSION

A. Contributions

Our results demonstrate that resting-state signatures of hu-
man brain rhythms, recorded prior to NIBS, can distinguish
responders from non-responders with high accuracy. This
contribution is essential for a safe and ethical application

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.01.27.921668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921668
http://creativecommons.org/licenses/by-nc-nd/4.0/


STRATIFICATION OF BEHAVIOURAL RESPONSE TO TRANSCRANIAL CURRENT STIMULATION BY RESTING-STATE ELECTROPHYSIOLOGY 7

of NIBS in research and treatment. As it has been reported
that NIBS can have behavioural effects of opposite polarity
relative to the intended stimulation effect in individual subjects
(cf. Section III-A), a reliable exclusion criterion for subjects
with either a negative stimulation response or no response at
all, ensures that no subjects are harmed and that redundant
stimulation sessions are avoided. This issue is of particular
relevance in clinical settings, where NIBS is employed to
cause long-term and, possibly, permanent changes, and where
the stimulation sessions are expensive for patients with no
potential of benefiting from it.

B. The task

Here we briefly discuss our rationale for the selection of
the specific task. The reason why we chose this task is
because it allows for a free 3D arm movement that mimics
natural reaching movements, which we would like eventually
to enhance and facilitate through stimulation. We are interested
in the arm speed as our behavioural metric, because this metric
has been found to be the most robust variable related to the
motor cortex [73], with Moran and Schwartz [72] having
even proposed a canonical model for it. In addition to the
aforementioned reason, we preferred as behavioural metric the
speed over the normalized average rectified jerk, which we
report as score to the subjects, because NARJ is the second
derivative of the speed, which already accumulates a lot of
error in the measurement, starting from the position recorded
from the infrared cameras. Therefore, we selected this task as
it could help us measure the arm speed in a 3d movement task
that seems natural. For the present study, we are not interested
in the performance of the subjects in terms of successfully
reached targets as a metric, as this would potentially include
a more complex cognitive procedure. This is the reason why
we focus in the relation between the motor cortex activity and
the arm speed.

C. High frequency band carries information about the re-
sponse to gamma motor stimulation

Being aware of the fact that analysis of high-gamma EEG
power are controversial, at first, we were surprised to find
that such a high frequency (90–160 Hz) power was the
most predictive of tACS response. Here we discuss why,
based on our analysis, we can be optimistic that this is
not an artefact or noise-driven finding. First, all predictions
were made from resting-state EEG recordings without tACS
stimulation. As such, the high-gamma power features, that
we used for predicting the behavioural responses, could not
stem from stimulation artifacts. Moreover, we employed a
particularly conservative IC rejection procedure, following
the recommendations by [75], to minimize the probability
of retaining artifactual sources in the measurements. This
approach also explains why we kept a few components per
subject. To make sure that we did not introduce any bias during
this manual process, we also tested the statistical association
between the number of kept ICs and the response group
of each subject. Kruskal Wallis test yielded no significant
association (p = 0.23). Furthermore, no association was found

between the type of the kept ICs (i.e. exhibiting a horizontal
or vertical dipole) and the response group.

In our preliminary analysis, we have tested frequencies up
to 200 Hz to assure that they are not predictive. No frequencies
above 160Hz were found to be predictive. Moreover, the
grand-average topoplots (Figures 4 and 8) indicate that high
gamma power in our study was strongest over contralateral
motor cortex, which indicates that contamination by EMG
activity, which would be strongest over frontal- and occipital
areas [75], was also not an issue here.

Finally, to provide further evidence that EEG measurements
in the high gamma range are feasible, we estimated the
frequency-dependent signal-to-noise (SNR) ratio of our EEG
amplifier by comparing the EEG resting-state recordings of
the three channels used by the classifier with the amplifier’s
noise floor, measured by submerging the EEG electrodes in
a saline solution, as described in subsection II-G. Figure 9
in the Appendix indicates an average SNR between 6 and 7
dB in the 90 to 160 Hz range, i.e., the recorded signal in
the high gamma range is at least four times stronger than
the inherent measurement noise. This observation is in line
with recent work that indicates that the feasibility to measure
human gamma power in scalp EEG is not limited by recording
hardware but rather depends on subjects’ morphology [78].

Therefore, it seems plausible that high gamma range indeed
carries such significant information.

D. Plausible neurophysiological mechanism

In our experiments we found strong resting-state γ-power
over contralateral motor cortex to be indicative of a positive
stimulation response to tACS (in terms of arm speed). As
we outline in the following, this finding is in line with our
current understanding of the neurophysiological effects of γ-
tACS and the role of γ-power in fronto-parietal networks for
motor performance [79]. Resting-state γ-power in primary
motor cortex positively correlates with γ-aminobutyric acid
(GABA) levels [80]–[84]. Because γ-tACS over motor cortex
decreases GABA [85], and decreases in motor cortex GABA
levels correlate with increased motor performance [86], high
resting-state γ-power may signal a brain state in which motor
performance can be improved through tACS-induced reduction
of GABA levels. Low resting-state γ-power, in contrast, would
signal a brain state in which GABA levels are already low, thus
limiting the extent of potential further reduction by γ-tACS.
We note that this explanation is also in line with our finding
that stimulation response is contingent on the current brain
state (cf. Section III-D). While our argument is consistent with
the neurophysiological GABA activity, it is worth mentioning
that there are studies on macaques, that exhibit enhancing
of the ongoing gamma activity by gamma tACS [7], [8].
Nevertheless these studies protocols differ significantly from
ours in the positioning of electrodes. Krause et al. [7] do not
target the motor cortex, but the hippocampus and visual cortex
of anaesthetized animals; which could explain the discrepancy
with our findings. Finally, Johnshon et al. [8] place the bipolar
electrodes over left and right temples, which could also induce
different effects from our setup.
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E. Evaluation of external factors’ role in behavioural response
to stimulation

To further probe the state vs. trait hypothesis, and to
examine the possibility that behavioural response might be
affected by possible differences in sensation between sham
and real stimulation, we tested a range of subject traits and
experimental factors, including gender, order of real-/sham-
stimulation, block of strongest-reported stimulation sensation
and behavioural performance on the first day of the experi-
ment, for associations with stimulation response. None of these
factors reached a statistically significant association (Fisher’s
exact test, Chi-squared test and ANOVA, see Section II-F).
This observation is in line with previous work on explaining
individual subjects’ stimulation response (cf. Section I), and
underlines the significance of subjects’ current brain state for
their stimulation response. Of course, besides the gamma ac-
tivity there can be other factors that play a hidden confounding
role, or that we have not yet observed. Such an analysis
would require a causal inference approach that is robust against
hidden common causes, such as [87]–[91], or even a causal-
effect attribution approach [92] which is beyond the scope
of this paper. Nevertheless, we are confident in excluding
the possibility that the measured behavioural response is
caused by different sensation between the two conditions for
the following reason. Subjects evaluated a range of possible
sensations (i.e. tingling, burning, phosphates, itching etc.) for
both conditions, without knowing which condition was what,
and the statistical analysis showed no significant association of
the response group, neither with the block of strongest reported
sensation nor with any of the reported sensations.

F. Outlook

Our results further indicate that the percentage of subjects,
who can benefit from NIBS, may be increased when subjects
are stimulated at the right time. Concurrently, the neurophysio-
logical interpretation of our results raises the question whether
the effects of stimulation lie within the range of normal varia-
tions in behavioural performance, i.e., whether NIBS induces
a beneficial state of mind that can also occur spontaneously, or
whether NIBS can enhance behavioural performance beyond
subjects’ natural limits. Either way, a natural extension of our
stimulation response prediction pipeline would be to consider
multiple stimulation settings that vary in parameters such as
spatial and spectral focus, paving the way for personalized
NIBS. Being motivated by the exhibited difference in gamma
power between the two groups – as depicted in Figures 4 and
8– another future extension would be to combine this pipeline
with a pre-stimulation step of gamma-modulation, to study
whether a self-modulated rise of the gamma activity could
ensure positive response to the tACS.

V. CONCLUSION

We believe that identification of responders and non-
responders prior to the application of stimulation treatment is
an important first step towards personalized brain stimulation.
In our work, we show that resting-state high-gamma power
prior to stimulation enables this differentiation. Specifically,

we demonstrate in a first experimental group of 19 participants
that subjects’ resting-state EEG predicts their motor response
(arm speed) to gamma (70 Hz) transcranial alternating cur-
rent stimulation over the contralateral motor cortex. We then
ascertain in a prospective stimulation study with twenty-two
new subjects that our prediction pipeline achieves a reliable
stratification of subjects into a responder and a non-responder
group.
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VII. APPENDIX

Here we present additional figures from our analysis dur-
ing the two periods of recordings/stimulations, which further
support our findings.
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TABLE I: Categorization of subjects into responders and non-
responders, first group of recordings. ∆Velocity > 0 refers to
subjects with a higher movement speed in the real- vs. the
sham-stimulation block.

Subject p-value ∆Velocity > 0 Category
1 0.0005 1 responder
2 0.6217 1 non-responder
3 0.0902 1 non-responder
4 0.0121 0 non-responder
5 <0.0001 1 responder
6 0.9318 1 non-responder
7 0.3979 1 non-responder
8 0.1628 1 non-responder
9 0.9220 0 non-responder
11 0.0154 0 non-responder
12 0.0251 1 responder
13 0.0384 0 non-responder
14 0.0800 0 non-responder
15 0.8484 1 non-responder
16 <0.0001 1 responder
17 <0.0001 0 non-responder
18 0.0077 1 responder
19 0.0370 1 responder
20 0.0455 1 responder

After performing a Holm-Sidak multiple-test correction at a
significance level 0.05, the corrected p-values of the first group
are: 0.0079 0.9795, 0.4867, 0.1567, 0.0018, 0.9965, 0.9208,
0.6556, 0.9965, 0.1827, 0.2629, 0.3394, 0.4867, 0.9965,
0.0018, 0.0018, 0.1094, 0.3394, 0.3423. As we can see there
are still subjects with significant positive (subjects 1, 5, 16)
and significant negative response (subject 17).

TABLE II: Categorization of subjects into responders and
non-responders, second (validation) group of recordings.
∆Velocity > 0 refers to subjects with a higher movement
speed in the real- vs. the sham-stimulation block.

Subject p-value ∆Velocity > 0 Category
21 0.0001 0 non-responder
22 0.0004 1 responder
23 0.0119 1 responder
24 0.0093 1 responder
25 0.0353 1 responder
26 0.5704 1 non-responder
27 0.0001 1 responder
28 <0.0001 0 non-responder
29 0.5334 0 non-responder
30 0.5449 0 non-responder
31 0.6537 1 non-responder
32 0.8046 0 non-responder
33 0.8770 1 non-responder
34 0.0055 0 non-responder
35 0.0678 0 non-responder
36 0.6119 1 non-responder
37 0.2996 0 non-responder
38 0.0048 1 responder
39 0.4444 1 non-responder
40 0.7515 1 non-responder
41 0.5464 0 non-responder
42 0.0075 0 non-responder

The corrected p-values are: 0.0021, 0.0075, 0.1543, 0.1307,
0.3732, 0.998, 0.0021, 0.0021, 0.9989, 0.9989, 0.9989, 0.9989,
0.9989, 0.0894, 0.5693, 0.9989, 0.9801, 0.0829, 0.9971,
0.9989, 0.9989, 0.1134, which means that even after the strict
multiple testing correction there are still both significantly

positive (subjects 2, 7) and significantly negative responders
(subjects 1, 6).

Fig. 8: Group-averages for predicted responders (a) and non-
responders (b) in the validation group of high γ (90–160
Hz) log-bandpower during the resting state recorded at the
beginning of the stimulation day (prior to stimulation blocks).

Fig. 9: Mean SNR plus, minus one standard deviation across
subjects’ raw resting-state data (i.e., no common average and
no ICA cleaning) during the 5 min of resting state used by
our SRP classifier (beginning of 2nd block, Session 2), with
respect to the noise floor measured for the same time length,
by submerging the electrodes in a saline solution. The three
different colours/textures refer to the three channels used by
the SRP classifier (CCP3h, CCP4h and Pz). The bold lines
refer to the mean SNR accross subjects, while the faded lines
depict one standard deviation. As we can seethe actual EEG
has more power than the noise floor in the high gamma range,
which is another indication that our classifier is not based on
noise.
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TABLE III: Subjects’ predicted behavioural response from
resting-state EEG data recorded on day one versus actual
behavioural response measured on day two.

Subjects predicted as responders
on day one

15, 18, 19, 22, 23, 24, 27, 33, 34,
36, 38, 42

Actual non-responders on day two 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15,
17, 21, 26, 28, 29, 30, 32, 33, 34,
35, 36, 37, 39, 40, 41, 42

Intersection 15, 33, 34, 36, 42
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