
2006).  To assess feedforward vs feedback flow, we assumed the following cortical hierarchy (from lower 
to higher): V4, LIP, 7A, FEF, PFC (Felleman and Van Essen, 1991). We first focused on the sample 
window.  Figure 7A shows the proportion of significantly modulated connections (cluster-based 
randomization test, P<0.01) for both feedforward (solid lines) and feedback (dotted lines) directions 
(Modulation of Granger causality for all individual area pairs is shown in Supplemental Figure 6). The red 
line indicates more modulation to unpredictable than predictable samples whereas the blue line shows 
the opposite (cluster-based randomization test, P<0.01). Figure 7D shows the sums of modulated 
connections per area, as a function of whether connections into and out of the area were feedforward 
or feedback. 

 

The strength and sign of modulation of GC by predictability depended on frequency and directionality. 
In the feedforward direction, unpredictable > predictable GC modulation peaked in the theta and 

 

Figure 7 | Granger causal networks for predicted vs. unpredicted cue and pre-cue processing 

A. Percentage of inter-areal functional connections with significant (p<0.05) task modulation (red 
lines: unpredictable > predictable, blue lines: unpredictable < predictable), separately for 
feedforward (solid lines) and feedback (dotted lines). B. Granger causal z-score difference from V4 
to other areas during the sample period for superficial (red lines) vs. deep (blue lines). Red asterisks 
denote frequency ranges with significant laminar differences. Mean +/- SEM. C. Same as B, but for 
the pre-sample period. D. Number of feedforward functional connections (upper subpanel) and 
feedback functional connections (lower subpanel) modulated by frequency (yellow colors represent 
number of functional connections with more unpredictable > predictable, blue lines represent 
number of functional connections with more unpredictable < predictable). E and F, same as B and C, 
but for feedback connections from PFC to other areas. Mean +/- SEM. 
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gamma frequency ranges (Figure 7A, solid red lines). Although the feedback direction was also positively 
modulated (Figure 7A, dotted red lines), the proportion of modulated connections was lower than 
feedforward gamma (Chi-squared test for proportion of positive modulation across the gamma band, 
40-90 Hz, in the feedforward vs. feedback directions, 0.57 vs. 0.33, P< 1E-13).  In the theta band (2-6 Hz), 
an approximately equal proportion of both feedforward and feedback connections had positive task 
modulation (unpredicted > predicted GC).   

Notably, virtually all directed functional connections with greater GC during predicted than unpredicted 
GC) occurred in the alpha/beta band (blue lines in Figure 7A).  They were mostly feedback connections. 
The proportion of feedback direction GC that was greater for predictable than unpredictable samples 
was higher than those in feedforward direction for both alpha/beta (Chi-squared test for proportion of 
negative modulation across the alpha/beta band, 8-30 Hz, in the feedforward vs. feedback directions, 
0.07 vs. 0.30, P< 1E-9) and theta (Chi-squared test for proportion of negative modulation across the 
theta-band in the feedforward vs. feedback directions, 0.00 vs. 0.1, P< 0.05).  There was no predictable > 
unpredictable GC modulation in the gamma-band in either direction.   In short, feedforward functional 
connections are enhanced during unpredictable samples, especially in the gamma range whereas 
feedback functional connections were enhanced during predictable samples in the alpha/beta and theta 
frequencies. 

To determine the layer specificity of these effects, we focused on the two areas at the bottom and top 
of the hierarchy: V4 and PFC.  The rationale was that GC interactions from V4 to the other areas are all 
feedforward, and interactions from PFC to the other areas are all feedback.  The modulation of these 
feedforward and feedback interactions by layer is shown in Figure 7B (for V4) and 7E (for PFC) during the 
sample window, and for the same areas during the pre-sample window in Figure 7C and F. 

During the sample window, feedforward connections from V4 to the rest of the areas were greater for 
unpredictable samples and this modulation was greater in superficial layers compared to deep in theta, 
alpha/beta and gamma frequency bands (Figure 7B, Wilcoxon rank sum test comparing modulations for 
all feedforward electrode channel pairs in superficial vs. deep layers, P<1E-4 for theta, P<1E-8 for 
alpha/beta, and P<1E-4 for gamma).  By contrast, in PFC during the sample, feedback GC was greater for 
predictable samples, especially in the alpha/beta band (Figure 7E). This effect was stronger in superficial 
than deep layers (Figure 7E, Wilcoxon rank sum test comparing task modulations for all feedback 
channel pairs in superficial vs. deep, P<1E-12 for the alpha/beta band). In the theta-band, PFC feedback 
GC in deep layers was significantly stronger for predictable samples compared to superficial layers 
(Figure 7E, Wilcoxon rank sum test comparing task modulations for all feedback channel pairs in 
superficial vs. deep, P<1E-5 for the theta band). 

During the pre-sample window, PFC feedback interactions were different depending on whether they 
arose from superficial vs. deep layers. Superficial-layer theta and alpha/beta PFC feedback was greater 
during unpredicted blocks but deep-layer PFC feedback was greater during predicted blocks.  The 
differences between layers was significant for both theta and alpha/beta (Figure 7F, Wilcoxon rank sum 
test comparing modulations for all feedback channel pairs in superficial vs. deep layers, P<0.001 for the 
theta band, P<1E-10 for the alpha/beta band). In contrast, there were no laminar differences in the 
modulations of feedforward interactions between V4 and the other areas by Unpredictable vs 
Predictable cue blocks (Figure 7C).   
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Discussion 

 

Relation to predictive coding models  

Many predictive coding models share common elements (Figure 8A-C). Prediction (PD) units anticipate 
forthcoming sensory inputs.  They inhibit prediction error (PE) units when inputs match predictions. A 
mismatch due to an unpredictable input disinhibits the PE units. They feedforward the unpredicted 
input which update the internal models that generate the predictions. 

 

Figure 8 | Models of predictive coding and routing 

Architecture of current predictive coding models and predictive routing. A-C, current predictive 
coding implementations. Red circles/triangles denote prediction error (PE) units, black 
circles/triangles denote prediction (PD) units, and arrows their targets. Intrinsically projecting cells 
(within-area) are round, extrinsically projecting units (inter-areal projections that traverse 
hierarchical levels) are triangles. Further levels are implied, denoted by dashed arrows. Model A 
(Spratling et al., 2008) hypothesizes that PE signals stay local within an area, and the PD is signaled 
between areas in feedforward and feedback directions. Model B (Rao and Ballard, 1999) 
hypothesizes that PE is sent feedforward and PD is sent feedback. Model C (Friston et al., 2010, 
Bastos et al., 2012) hypothesizes that cells in superficial layers send feedforward PEs (at gamma) and 
cells in deep layers send feedback PDs (at alpha/beta). Models A-C all hypothesize al specialized 
circuit for error processing, wherein PD units inhibit PE units. D, Predictive Routing model. (left 
subpanel) Sensory cortex is dynamically prepared to process its preferred stimulus, stimulus A, by 
feedback alpha/beta. Enhanced alpha/beta functionally inhibits processing of stimulus A by reducing 
spiking and gamma, reducing feedforward outputs. (right subpanel) In the absence of a prediction 
for stimulus A, there is less feedback alpha/beta to the A column. The A column is more excitable, 
and responds to stimulus A with more gamma and spiking and enhanced feedforward output (a 
“prediction error”).  
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Models differ on the details of the implementation in the brain. Some models (Spratling, 2008, Figure 
8A) propose that prediction error signals act locally in each cortical area to update models. Predictions 
flow between areas in both feedforward and feedback directions. Other models (Rao and Ballard, 1999, 
Friston, 2010, Bastos et al., 2012) instead suggest that predictions come from higher cortical areas that 
act on lower cortical (sensory) areas to gate the feeding forward of prediction errors (Figure 8C/D).  
“Rhythm-based” models (Figure 8C) suggest that superficial cortical layers (layers 2 and 3) feedforward 
prediction errors using gamma. Deep-layer cortex (layers 5 and 6) feedback predictions using alpha/beta 
(Arnal and Giraud, 2012; Bastos et al., 2012). 

Our results are more consistent with the rhythm-based models.  We showed differences between areas 
with higher areas contributing more to prediction, and rhythmic and laminar based differences between 
areas.  They also suggest an update: Predictive Routing.  

 Predictive Routing 

Alpha/beta and gamma have properties that suggest a general role in gating and control.  They are 
common and anticorrelated across cortex.  Gamma power is high during sensory inputs; alpha/beta 
power is high when they are ignored.  In visual cortex, gamma power is high and alpha low during 
sensory stimulation. When a stimulus needs to be filtered or ignored, gamma power is low and alpha is 
high (Bauer et al., 2006; Buffalo et al., 2011; Fries et al., 2001; Jokisch and Jensen, 2007).  Further, 
alpha/beta oscillations in deep cortical layers are  anticorrelated with superficial-layer gamma 
associated with spiking carrying sensory inputs (Bastos et al., 2018; Lundqvist et al., 2016). The balance 
between alpha/beta and gamma reflect the encoding, maintenance, and read-out of working memory 
(Lundqvist et al., 2018).  We have lumped together alpha and beta together in this paper because they 
are both functionally inhibitory (negatively correlated with spiking, see Supplemental Figure 2).  The 
general idea is that top-down signals are fed back through alpha/beta in deep cortical layers. They 
inhibit and thus gate the expression of gamma in superficial layers that help feed forward and maintain 
the spiking carrying sensory inputs.  

Extrapolating from the rhythm-based models of predictive coding (Arnal and Giraud, 2012; Bastos et al., 
2012), this suggests Predictive Routing (PR, Figure 8D). In PR, there are not specialized circuits that 
compute prediction errors and send them feedforward.  Rather, PR uses the same cortical circuitry used 
for other functions (sensory processing, attention, maintenance/control of working memory, etc.).  
Predictions act by alpha/beta preparation that actively inhibit the specific pathways in sensory cortex 
that would process the predicted input. As a result, there is less gamma and spiking to predicted inputs 
(and less feedforward output as a result). In other words, prediction errors do not result from a 
comparison between predictions and inputs via a specialized circuit.  They result from the feed forward 
passing of unexpected inputs because their pathways have not been prepared (functionally inhibited). 

This does not mean that alpha/beta (or gamma) have the exact same roles all over cortex.  For example, 
in prefrontal cortex, beta has been modeled as an inhibitory-excitatory network but with slower time 
constants than what would produce a gamma (Sherfey et al., 2018).  By contrast, modeling suggests that 
in parietal cortex, there is a distinction between beta-1 (14-20 Hz) and beta-2 (24-30 Hz) (Roopun et al., 
2008) and that parietal beta-1 may act as a memory buffer activated by strong cortical inputs that feeds 
forward violations to the PFC  (Gelastopoulos et al., 2019). Indeed, we found in this study, that in 
parietal cortex (area 7A) beta was unique, beta was functionally excitatory (positively correlated with 
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violations) unlike the other areas. Below, we elaborate on how our results support different models of 
predictive coding. 

Theta-band coherence and Granger causal interactions were stronger during unpredictable stimuli in the 
sample window. These interactions were strongest between superficial layers of V4 and the other 
members of the network. Theta-band interactions were not previously proposed as candidates for 
processing unpredictable stimuli. However, theta is well known to be a slow rhythm in which faster 
rhythms such as gamma, can nest (Canolty et al., 2006; Herman et al., 2013; Lakatos et al., 2008) and aid 
long-range communication (Tort et al., 2007). In addition, a previous study identified theta as a carrier 
for feedforward interactions in the visual system (Bastos et al., 2015).  In predictive routing, whatever 
mechanisms are already in place for feedforward processing are enhanced during unpredictable 
processing. Therefore, it makes sense that theta (and gamma) from V4 to higher-order cortex is 
enhanced during unpredicted stimuli, because this reflects an upregulation of the feedforward channel.  

Unpredicted stimuli enhance spiking in superficial layers   

At each level of the cortical hierarchy tested, neurons spiked more to, and carried more information 
about, unpredictable compared to predicted stimuli and even more to violations (an unexpected 
stimulus when there was a strong prediction). Neurons in superficial cortical layers (L2/3) of V4 showed 
stronger effects than deep layers. In addition, only superficial layers had unpredicted spiking selective to 
the predicted stimulus. Superficial layers 2/3 contain the majority of feedforward projecting cells. This 
laminar specificity suggests that unpredicted inputs are preferentially processed in superficial layers and 
fed-forward.  

This effect could be explained, at least in part, by stimulus-specific adaption (SSA) (Miller et al., 1991).  
According to SSA, synapses “habituate” when repeatedly activated. Thus, there is greater spiking to non-
repeated inputs.  However, this does not explain the laminar specificity (in superficial layers, as 
hypothesized in Bastos et al., 2012, Figure 8C), the enhanced selectivity of superficial layers, or the 
observed changed in oscillatory dynamics seen at the LFP level.  

Spiking reflects a predictable stimulus 

We found that during trial blocks in which the monkeys could predict the upcoming stimulus, all cortical 
areas we recorded carried information about it before it appeared.  PFC contained the most pre-
stimulus information.   This is more consistent with hierarchical models that propose that generating 
predictions is primarily a function of higher than sensory cortex.  

Modulation of rhythms by prediction are layer-dependent 

In all areas studied, unpredictable stimuli evoked more gamma (40-90 Hz) power and less alpha/beta (8-
30 Hz) power compared to predictable stimuli (Area 7A was an exception). These effects were strongest 
when there was a strong prediction, as opposed to when stimuli were highly unpredictable. This effect 
and the positive correlation between gamma and spiking (Supplemental Figure 2) were stronger in 
superficial cortical layers than deep cortical layers in all areas tested.  There was generally more 
alpha/beta power to predictable than unpredictable stimuli but layer differences varied by area This 
generally supports rhythm-based models positing that gamma helps transmit prediction errors and 
alpha/beta helps transmit predictions.   
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The increases in gamma power (and spiking) with unpredicted stimuli and the increased alpha/beta with 
predicted stimuli were stimulus-specific.  Effects were larger at recoding sites where spiking “preferred” 
(was greater to) the specific stimulus that was predicted.  For LFP gamma and spiking, this selectivity 
occurred only in superficial layers. The specificity is a central feature of Predictive Routing, where 
alpha/beta inhibits the pathways that process the specific predicted stimulus and the increased 
gamma/spiking occurs because the pathways processing other stimuli were not inhibited. 

Networks and directionality 

Both coherence and Granger Causality analysis showed that rhythmic interactions were modulated by 
stimulus predictability at several frequencies. Gamma-band coherence within and between areas was 
higher with unpredictable than predictable stimuli.  This effect was largest for coherence between 
superficial layers of areas V4 and PFC.  Granger Causality analysis further showed that the increase in 
gamma band coherence with unpredictable stimuli was stronger in the feedforward than feedback 
direction. In V4, this was more prominent in superficial layers.  There was overall greater alpha/beta 
coherence with predictable stimuli. The strongest effects involved PFC and were stronger in the 
feedback compared to feedforward direction.  In the pre-sample period, the enhanced Granger 
Causality during predictable stimuli was strongest between deep layers of PFC to the rest of the 
network. These results are in line with hierarchical and rhythms models where (gamma-based) 
prediction errors primarily feed forward flow up the cortical hierarchy and (alpha/beta-based) 
predictions flow down the cortical hierarchy. They suggest that modulation of inter-areal 
synchronization at distinct frequencies is a central mechanism in communicating specific (predicted vs. 
unpredicted) information (Fries, 2015; Womelsdorf et al., 2007, 2014a, 2014b). In addition, prefrontal 
control over behavior is thought to be mediated by dynamic patterns of neuronal functional connectivity 
(Crowe et al., 2013). In future work, we will mechanistically explore how the inter-areal theta, 
alpha/beta, and gamma synchronization task-related changes we have observed compare to the 
neuronal code expressed by each area.  

Summary 

Our results suggest a hierarchical, layer, and frequency-specific model for predictive coding that we 
term “Predictive Routing” (Figure 8D).  Unpredictable stimuli evoked stronger feedforward- superficial-
layer gamma (and theta), especially when they violated a previous prediction; the hallmark of a 
prediction error signal. Superficial-layer parietal area 7A high beta also signaled violations in both 
feedforward and feedback directions, which could engage working memory update mechanisms to 
process and hold unpredicted information online. Coherence and feedback connectivity were enhanced 
in the alpha/beta band when a stimulus was predictable. In the pre-sample period this enhanced 
feedback connectivity during predictable stimuli originated in deep layers of PFC. The modulatory 
effects of stimulus predictability on alpha/beta and on gamma/spiking modulation was strongest at the 
sensory cortical sites that preferred the predicted stimulus. Gamma and spiking in sensory cortex were 
only selective to the predictive stimulus in superficial layers. Together, these results suggest that 
predictive coding may stem from rhythmic interactions between lower frequency rhythms in deep 
cortical layers that signal predictions and inhibit the superficial-layer gamma and spiking in the sensory 
pathways that match those predictions.  
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STAR Methods 

Lead Contact and Materials Availability 

The Lead Contact for this study is Earl Miller (ekmiller@mit.edu). Requests for materials should be 
directed to the Lead Contact. This study did not generate novel reagents. 

Experimental Model and Subject Details 

Two adult rhesus macaques (macaca mulatta) were used in this study (Monkey S: 6 years old, 5.0 kg and 
monkey L: 17 years old, 10.5 kg). Both animals were pair-housed on 12-hr day/night cycles and 
maintained in a temperature-controlled environment (80°F). All procedures were approved by the MIT 
IACUC and followed the guidelines of the MIT Animal Care and Use Committee and the US National 
Institutes of Health. 

Methods Details 

Behavioral Training and Task 

Monkeys were trained to sit comfortably in a primate chair inside a sound attenuating behavioral testing 
booth. They were seated 50 cm away from a LCD monitor with 144Hz refresh rate (ASUS, Taiwan). Using 
positive reinforcement, we trained monkeys to perform a visual search task (Figure 1A). Monkeys 
fixated a point at the center of the screen (fixation window radius: 2-3 visual degrees) for a duration of 
1s, were presented with one of three cue objects for a duration of 1s, and were required to maintain 
fixation over a delay (between 0.5-1.2s). A search array then appeared that consisted of the cued item 
together with either one or two distractors presented at the same eccentricity (3-8 degrees), but 
different visual quadrants as the cued object. The position of the cued object and the distractors were 
always randomly chosen. Monkeys were rewarded with a few drops of diluted juice if they performed a 
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saccade toward the cued item. Behavioral performance was high for each of the monkeys (monkey S: 
77% over 41 sessions, monkey L: 75% over 30 sessions). Monkeys were trained on this task using a 
library of 22 sample images. For recordings, we used a subset of these images (12), choosing a total of 3 
per session. Most sessions (65 out of 71) used the three objects depicted in Figure 1: an orange, a green 
block, and a blue car. 

To manipulate prediction, the task was performed either with unpredictable or predictable cuing. During 
unpredictable cuing, samples were randomly drawn on each trial. In block cuing/sampling, the sample 
was held constant for the duration of the block. The trial-by-trial and blocked modes each lasted for 50 
trials before switching block modes.  The starting order was randomized over sessions. The task design is 
schematized in Figure 1A.  

Surgical Procedures 

All procedures were performed in a sterile surgical suite, with animals under full general anesthesia. 
Animals were first anesthetized with ketamine  and then intubated. They were maintained in a stable 
plane of anesthesia with sevofluorane.  After each procedure, animals received analgesic and antibiotic 
medications. Three surgical procedures were performed per monkey. First, a titanium head post was 
fixed to the posterior part of the cranium with titanium screws. The head post was allowed to integrate 
into the bone for at least 8 months prior to the next surgery. Second, a custom-machined Carbon PEEK 
chamber system with three recording wells (placed over prefrontal, parietal, and visual cortex) was 
affixed to the cranium, also with titanium screws. After a one-month period, a third procedure was 
performed, in which three craniotomies ranging in circular diameter between 10-16 mm^2 were opened 
inside each recording well.  

Neurophysiological Recordings 

All of the data were recorded through Blackrock headstages (Blackrock Cereplex M, Salt Lake City, UT), 
sampled at 30 kHz, band-passed between 0.3 Hz and 7.5 kHz (1st order Butterworth high-pass and 3rd 
order Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. All LFPs were recorded with a low-
pass 250 Hz Butterworth filter, sampled at 1 kHz, and AC-coupled.  

We implanted the monkeys with a custom-machined Carbon PEEK chamber system with three recording 
wells placed over visual/temporal, parietal, and frontal cortex. The process for making the chambers 
was based on design principles outlined previously (Mulliken et al., 2015). Briefly, we first took an 
anatomical MRI scan (0.5mm^3 voxel size) and/or CT scan to extract the bone and co-register the skull 
model with the brain tissue. We designed the center of each chamber to overlie the primary recording 
area of interest and to have an optimal angle for perpendicular recordings relative to the cortical 
folding. Post-operatively, after the recording chambers were implanted, MRIs were taken with the 
recording grid in place, filled with water, which created a marker to co-register each possible electrode 
trajectory with the animal’s anatomy, and to confirm trajectories that were as close to perpendicular as 
possible. 

The areas where we could achieve perpendicular recordings (for laminar sampling) on the overlying 
gyrus were V4 (Foveal and Parafoveal representations), parietal cortex (area 7A), and prefrontal cortex 
(area 8A, Ventro and Dorsal lateral prefrontal cortex – VLPFC/DLPFC). The areas where we recorded 
without laminar alignment (due to their location in sulci) were areas FEF and LIP. 
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We recorded a total of 71 sessions with laminar probes. In each session, we inserted between 1-3 
laminar probes (“U probes” and “V probes” from Plexon, Dallas, TX) into each recording chamber with 
either 100 or 200 um inter-site spacing and either 16 or 32 total electrodes per probe. This gave a total 
linear sampling of 3.0-3.1mm on each probe. Between 3-7 probes in total per session were used, with a 
total channel count ranging between 48-128 electrodes per session. The recording reference was the 
reinforcement tube, which made metallic contact with the entire length of the probe (total probe length 
from connector to tip was 70mm). Some U/V probes had noisy channels (average power greater than 2 
standard deviations above the mean of all channels, this occurred on less than 5% of all channels), which 
were interpolated based on nearest neighbors prior to analysis.   

Lowering procedure and laminar placement of electrodes 

Traditionally, studies with laminar probes have used Current Source Density (CSD) mapping to identify 
the position of layer 4. However, for parietal area 7A, to our knowledge there is no published study 
using this technique. Therefore, we chose to align our data to the pial surface of the cortex, a technique 
that has been previously used to separate recording channels into superficial vs. deep layers in monkeys 
for recordings in parietal and prefrontal cortex (Johnston et al., 2019). This was the most robust laminar 
alignment metric that could be applied to visual, parietal, and prefrontal cortex with minimal 
assumptions. The average cortical thickness for the recorded regions was 2.4mm, measured using MRI, 
and visually measuring the gray matter thickness using Osirix software (Geneva, Switzerland). Superficial 
layer channels were classified from the top of cortex to a depth of 1.2 mm, and deep layer channels 
from 1.2 to 2.4mm. This maps approximately onto layers 1-4 for superficial, and 5-6 for deep.  

We first punctured the dura using a guide tube. Then we lowered the laminar probes through the guide 
tube using custom-built drives that advanced with a turn screw system. In order to place the contacts of 
the laminar probe uniformly through the cortex, spanning from cerebrospinal fluid through the gray 
matter to the white matter, we used a number of physiologic indicators to guide our electrode 
placement, as previously described (Bastos et al., 2018). First, the presence of a slow 1-2 Hz signal, a 
heartbeat artifact, was often found as we pierced the pia mater and just as we entered the gray matter. 
Second, as the first contacts of the electrode entered the gray matter, the magnitude of the local field 
potential increased, and single units and/or neural hash became apparent, both audibly and visually 
with spikes appearing in the online spike threshold crossing. Once the tip of the electrode transitioned 
into the gray matter, electrodes were lowered slowly an additional ~2.5mm. At this point, we retracted 
the probe by 200-400 um, and allowed the probe to settle for between one to two hours before 
beginning the task. We left between 1-3 contacts out of gray matter in the overlying Cerebral Spinal 
Fluid (CSF). 

Multi-Unit Activity Extraction and Spike-Sorting 

For the analysis of the analog multi-unit activity (MUA) we band-pass filtered the raw, unfiltered, 30kHz 
sampled data into a wide band between 500-5,000Hz, the power range dominated by spikes. The signal 
was then low-pass filtered at 250Hz and re-sampled to 1,000 kHz. The advantage of this signal is that it 
captures all nearby units, including those with low signal to noise ratio that would not be captured with 
a strict threshold. 

For the analysis of thresholded spikes, we first placed an online threshold manually on each recording 
session to ensure each recording channel captured waveforms with sufficient signal to noise ratio to 
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qualify as neuronal spiking. These were typically placed at between 2-4 standard deviations away from 
the noise floor. Offline, spike sorting was performed manually using Plexon offline sorter. We projected 
the waveform shapes into the top 2 or 3 principle components, and sorted each electrode’s threshold 
crossings into isolatable waveforms. We included these single units into analysis if their average firing 
rate per trial (between 1.5 seconds pre-sample to 1.5 seconds post-sample) was stable for at least 120 
trials. We defined stability with the Matlab function findchangepts(). 

Local Field Potential power, coherence and Granger causality analysis 

All analyses were performed with customized MATLAB scripts and with Fieldtrip software (Oostenveld et 
al., 2011). Bipolar derivation is a recommended pre-step prior to Granger causality and coherence 
analysis, as the presence of a common reference can lead to spurious results (Trongnetrpunya et al., 
2015; Vinck et al., 2015). In addition, bipolar derivation enhances the spatial localization of LFP signals 
and removes the common reference and any common noise or volume conduction in the signal (Bastos 
and Schoffelen, 2015). Here, we computed the sample-by-sample bipolar differences by subtracting 
contacts that at a distance of 400um: next-nearest neighbors for the laminar probe data spaced at 
200um between contacts, and next-next-nearest neighbors for the probe data spaced at 100um 
between contacts. 

We then estimated power, coherence, and Granger causality on these bipolar derivations. We estimated 
power at all frequencies from 0-250 Hz using multitaper spectral estimation (smoothing window of 5Hz, 
leading to 9 tapers per spectral estimate, using window sizes of 1 second (0 to 1 seconds relative to 
sample onset is the period of visual stimulation, -1 to 0 seconds relative to sample onset is the pre-
stimulus fixation window) per trial. These Fourier coefficients were then used to calculate the Cross-
Spectral Density matrix, from which we derived coherence and non-parametric spectral Granger 
causality (see below).  

The computation of Granger causality in the frequency domain requires the estimation of two 
quantities: the spectral transfer matrix (H(ω)), which is frequency dependent, and the covariance of the 
model's residuals (Σ). The spectral transfer matrix defines how power in one channel is transferred to 
other channels, at each temporal lag. The model’s residuals is not a function of frequency, and defines 
the amount of variance that is left unexplained by the linear model, H(ω). Traditionally, H(ω) is 
computed in a parametric (model-based) fashion by first fitting an autoregressive model to the data, 
and then Fourier transforming the model (Ding et al., 2006).  However, it is also possible to compute, 
H(ω), and thus Granger causality, directly from the spectral transform of the data. In brief, the following 
fundamental identity holds: H(ω)ΣH(ω)* = S(ω), with S(ω) being the cross-spectral density matrix at 
frequency ω. Starting from the cross-spectral density matrix (S(ω)) it is possible to factorize the cross-
spectral density matrix into a noise covariance matrix (Σ) and spectral transfer matrix (H(ω)) by applying 
spectral matrix factorization (Dhamala et al., 2008) —which provides the necessary ingredients for 
calculating Granger causality. The nonparametric estimation of GC has certain advantages over 
parametric approaches in that it does not require the specification of a particular autoregressive model 
order. 

Statistical Testing 

We computed whether the MUA, power, coherence, and Granger causality was systematically different 
between conditions (Predictable vs. Unpredictable, and for a subset of analyses, Predictable vs. 
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Unpredictable vs. Violation trials). To do this, we calculated either the mean difference or percent 
change for each channel or inter-areal channel-pair of Predictable vs. Unpredictable sampling. We then 
quantified whether this raw difference or percent change was significant by performing a permutation 
test (Maris and Oostenveld, 2007). Per channel (for MUA and LFP power) or channel-pair (for coherence 
and Granger) we randomized the experimental label (Predictable vs. Unpredictable sampling). We 
performed this randomization 1,000 times. For each randomization, we took the number of consecutive 
time bins (in the case of MUA) or frequency bins (for power, coherence, and GC) that passed a first level 
criteria. This first level criteria was that two measures (for example, LFP power when comparing 
unpredictable vs. predictable cuing) had to differ from one another at significance value of p<0.01, 
uncorrected, based on a t-test statistic. The maximum positive or negative cluster was determined for 
each randomization. This step controls for multiple comparisons across neighboring (and possible 
correlated) time or frequency bins. Finally, these clusters from the randomization distribution were used 
to determine significance values for the empirically observed clusters, using a p-value of 0.05, corrected 
for multiple comparisons. 

For determining differences between superficial vs. deep layers, we first averaged the corresponding 
metric (power, coherence, Granger causality) across the particular frequency band (theta, alpha/beta, 
gamma) for all superficial and deep channels/channelpairs. Then we performed a Wilcoxon rank sum 
test to determine significant differences across the populations with an alpha at p<0.05.  

For determining the difference between feedforward vs. feedback Granger causality modulation, we 
determined the percentage of modulated inter-areal directed functional connections, integrating all 
frequencies in the theta, alpha/beta, and gamma frequency bands. We then applied a Chi-squared test 
for differences in proportion to test whether e.g., feedforward functional connections were more 
modulated (had a greater proportion) than feedback functional connections.   

Data and Code Availability 

The data and code will be made available by reasonable request by contacting the lead author, Earl 
Miller (ekmiller@mit.edu). 
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