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Abstract:

Symmetries provide a powerful concept for the development of mechanistic
models by describing structures corresponding to the underlying dynamics
of biological systems. In this paper, we consider symmetries of the non-
linear Hill model describing enzymatic reaction kinetics, and derive a class
of symmetry transformations for each order n of the model. We consider a
minimal example consisting in the application of symmetry based methods
to a model selection problem, where we are able to demonstrate superior
performance compared to ordinary residual-based model selection. Finally,
we discuss the role of symmetries in systematic model building in systems
biology.
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1 Introduction

The development of mathematical models is crucial in data-driven fields
where the mechanism of the underlying system is of interest. In systems
biology, mechanistic models of ordinary differential equations (ODEs) are
often constructed to describe the change in abundance of an intracellular
component such as mRNA or proteins over time. A proposed biological
mechanism is typically combined with the law of mass action [1], yielding
polynomial models. Under certain assumptions, e.g. regarding the relative
abundance of different components, the models can be simplified giving rise
to other types of non-linear rate equations which are common in enzyme ki-
netics [2]. A classic example is Michaelis–Menten kinetics or, more generally,
the Hill equation describing the dynamics of a reaction forming a product,
catalysed by an enzyme, in a situation where the concentration of the sub-
strate is substantially higher than that of the enzyme [1]. The rate equations
are the building blocks in the construction of mechanistic models in systems
biology where each model implicitly proposes an underlying mechanism for
the system at hand.

The prevailing strategies for constructing mechanistic models are based
on data using a top down-approach. Given an experimental time series de-
scribing the change in the quantity of an intracellular component over time,
numerous methods for model selection are based on residual analysis [3]
using the least squares [1] cost function measuring the Euclidean distance
between the measured data and the model predictions. Several proposed
models are then evaluated and the one that minimises the cost function is
selected. Other more sophisticated methods include the Akaike Information
Criteria [3, 4, 5], Bayesian model selection [3, 4, 5], cross validation [6, 7] and
bootstrapping methods [3, 8, 5] which for example take the model complex-
ity in terms of the number of parameters into account. All these statistical
methods rely on data (implying that experimental design is an integral part
of model selection [9, 10]) which limits their applicability in cases when data
is scarce or when several models describe the data equally well in terms of the
residual analysis e.g. due to experimental errors which are large compared
to the intrinsic variation across candidate models.

Model development can alternatively be conducted using mathematical
analysis without any experimental data in a bottom up-approach. This is
traditionally used e.g. in population dynamics [11], where the methodology
consists in comparing different mathematical models of the same system [12]
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in terms of their agreement with properties derived from prior knowledge
of the system rather than statistical measures. The most common tool for
analysing ODE models in biology is linear stability analysis [1, 13] where the
long term behaviour of the model is determined by linearising the system
around its steady states. However, this asymptotic behaviour is often insuffi-
cient for completely determining the structure of the underlying system. An
alternative technique for analysing a system of ODEs is to consider the set
of symmetries of its solutions [14, 15]. The mathematical framework for such
methods is that of group theory and representation theory, and more gen-
erally differential geometry. Symmetry methods have been used to classify
ODE models according to their symmetry groups [16] and, conversely, iden-
tifying symmetries realised in a system allows for a constructive approach
to modelling where the symmetries are made manifest in constructing the
mechanistic model.

The symmetry framework is well-established and enormously successful
for model construction in mathematical physics (e.g. as the foundational
principle of the standard model of elementary particle physics [17, 18]). In
fact, it has also found applications within mathematical biology such as an-
imal locomotion [19], but is virtually unused in reaction kinetics modelling.
Since the framework incorporates intrinsic properties of a system at all time
scales, a symmetry based methodology could arguably represent an untapped
potential for systems biology in the context of model development in partic-
ular and the analysis of dynamical models in general.

The aim of this paper is to elucidate the role of symmetries in systems
biology by demonstrating a minimal example of the application of symmetry
methods to model selection in enzyme kinetics. Specifically, provided a time
series of the concentration of a substrate of an enzyme over time, and a num-
ber of candidate kinetic models describing the data approximately equally
well in terms of the residuals, we apply a symmetry based method to select
the model that is best able to represent the time series data. As the method-
ology is not commonly used in systems biology, we begin by establishing the
framework and deriving a certain class of symmetries of the Hill models used
in enzyme kinetics. Subsequently, we evaluate the proposed method applied
to model selection among a set of three candidate Hill models. Finally, we
discuss the benefits, validity and limitations of the proposed methodology.
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2 Theoretical background

2.1 The Hill model

The Hill class of models, describing the enzymatically catalysed conversion
of a substrate to a product, are defined by the ODE

dS

dt
= Ωn(S, t) (1)

with

Ωn(S, t) = −vmax
Sn

Kn
m + Sn

, (2)

where n ∈ N+ is the order of the model, S is the substrate concentration
and t is the time. The parameters vmax and Km correspond respectively to
the maximum reaction rate and the substrate concentration at half of the
maximum reaction rate. In all cases, physical solutions to (1) satisfy S ≥ 0
ensuring that Ωn(S, t) is well defined.

Symmetry properties of the models are most easily analysed in terms of
dimensionless time and concentration

τ =
vmaxt

K
1/n
m

, y =
S

K
1/n
m

, (3)

in terms of which the model (1) becomes

dy

dτ
= ωn(τ, y) (4)

with

ωn(τ, y) = − yn

1 + yn
. (5)

2.2 Symmetry transformations

A point transformation with parameter ε ∈ R acting on the (τ, y)-plane,

Γε : (τ, y) 7→ (τ̂ , ŷ) , (6)

is a symmetry of the Hill model if it maps a solution of (4) to another solution.
In other words the set of solutions of (4) is closed under the action of a
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symmetry Γε. The family of such symmetry transformations parameterised
by ε forms a (representation of a) one-parameter Lie group.

There is no time dependence in the expression (5) for the derivative of
the concentration, implying that time translation is a manifest symmetry of
the theory. The corresponding point transformations are

Γε : (τ, y) 7→ (τ + ε, y) , (7)

under which ωn are invariant for all model orders n.
In the context of elucidating structural properties of a model ωn from

its symmetries, we will also consider point transformations Γε which form a
representation of a one-parameter Lie group but which are not symmetries
of the model in the sense that the set of solutions is not closed under Γε.

It can be shown that the point transformation

Γnε : (τ̂ , ŷ) 7→ (−yeε + (τ + y)e−(n−1)ε, yeε) (8)

is a symmetry of the Hill model ωm(τ, y) of orderm form = n but not form 6=
n. The symmetry transformation (8) is therefore unique to the Hill model
of order n, which means that it can be used to distinguish between different
Hill models. The action of the symmetry transformation on solutions to the
Hill models of order n = 1, 2, 3 is illustrated in Fig. 1.
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Figure 1. Action of symmetries. The action of the transformation Γnε in (8) on solutions
to the model ωn(τ, y) for (A) n = 1, (B) n = 2 and (C) n = 3. The action maps a solution
y(τ) (blue) to a different solution ŷ(τ̂) (red) for n = 1 and n = 3. For n = 2 the solution
is invariant under the action of Γ2

ε corresponding to symmetry which acts trivially on the
space of solutions.
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3 Symmetry based model selection

3.1 Method description

Given an experimentally acquired time series and a set of candidate models,
the model selection problem consists in determining which candidate model
is best able to describe the experimental data. In situations where several
models fit the data approximately equally well in the least-square sense, they
may still be differentiated by the extent to which they capture the global
structure of the time series.

One way to achieve a comparison of this structural agreement is by using
the fact that the space of solutions to a model is closed under the action of
a symmetry transformation of that model, but not under generic transfor-
mations in (τ, y)-space. Consequently, the true model generating the time
series should have the property that the least square-error is (approximately)
invariant if the following steps are conducted. Initially, we apply a symme-
try transformation Γε to the data, then a model is fitted to the transformed
data, the inverse transform is applied to the model and finally the least-
square residuals are computed for the original time series. (The invariance
is exact in the in the limit of vanishing errors.)

Conversely, if a symmetry transformation Γε of an incorrect candidate
model is applied in the same way the transformation will distort the time
series and the quality-of-fit is expected to decrease. In particular, for a one-
parameter group of symmetries we expect that the residuals will increase as
a function of the parameter ε (at least locally in a neighbourhood of ε = 0).
The effect on the quality-of-fit resulting from the procedure described above
is illustrated in Fig. 2.

The information about the dependence of the quality-of-fit on the trans-
formation parameter ε can be used to complement the information obtained
from the ordinary model fitting procedure. Thus, the purpose of the method
for model selection described here is not to replace the common approach in
systems biology, but rather to augment it using structural information about
the candidate models (in the form of their symmetries) to provide additional
information regarding their ability to represent a data set.
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Figure 2. Quality-of-fit to transformed data. Hill models of order n = 2, 3 are fitted
to data, simulated using a second order model, after application of the transformation Γnε .
The inverse transform of the resulting fit (solid lines) is shown for increasing values of
the transformation parameter ε for (A) n = 2 and (B) n = 3. The deterioration of the
quality-of-fit for the model n = 3 results from Γ3

ε not being a symmetry of the underlying
model generating the data.

3.2 Evaluation setup

To evaluate the symmetry based model selection methodology, we consider
a setup where a time series of substrate concentrations is simulated using a
Hill model of order nSim. Subsequently, a number of candidate Hill models, of
different orders nFit are fitted to the simulated data using the ”classic” least
squares approach and the symmetry based methodology described above.

The classic approach is based on the root mean square (RMS), ρ0 (41),
where the selection criteria is that the model with the best fit, i.e. smallest
value of ρ0, is selected. To calculate the statistical significance of the fitting
of the candidate models to a single generated time series, the evaluation
procedure is repeated N times and confidence intervals (CI) of the fits at the
one standard error (SE) level are calculated. In this setting, models can be
distinguished when their confidence intervals are not overlapping.

The symmetry based methodology is based on the RMS ρ(ε) (40) as a
function of the transformation parameter ε. As in the the classic case, confi-
dence intervals of the RMS-values are calculated as the evaluation is repeated
N times. The selection criteria for the symmetry based methodology is that
the model with the lowest RMS-value as ε increases is selected, significance
requiring that the confidence intervals of the candidates do not overlap.

It should be noted that it is not obvious what range of the transformation
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parameter ε is required in order to differentiate between the candidate models
using the symmetry based approach, or indeed if it is at all possible. In the
examples considered in this paper, the range of ε is extended until the RMS
curve ρ(ε) of each model reaches steady state. If no such state is obtained,
the range is extended until convergence becomes prohibitively slow for the
nonlinear optimiser or separation of candidate models is considered apparent.

4 The symmetry based methodology out-

performs residual based fitting

The evaluation procedure described in the previous section is implemented for
three cases nSim = 1, 2, 3. For each case, the candidate models nFit = 1, 2, 3
are fitted to a simulated time series using both the classic and symmetry
based methods. The procedure is repeated N = 5 times and the correspond-
ing confidence intervals are calculated. For the implemented noise levels and
values of the kinetic parameters, i.e. vmax and Km, used in the simulations,
the classic quality-of-fit is similar for all candidate models (Fig. 3).

4.1 Data generated by the model with nSim = 1

In the nSim = 1 case it is possible to reject the nFit = 3 model but not
to distinguish between the nFit = 1, 2 models using the classic approach,
while the symmetry-based methodology selects the true model (Fig 4A-4B).
The classic approach cannot distinguish between the nFit = 1, 2 models as the
confidence intervals of the RMS ρ0 overlap (Fig 4A). However, the symmetry-
based methodology clearly rejects the models with nFit = 2, 3 and selects the
true model with nFit = 1 on the interval ε ∈ [0, 5] (Fig 4B).

4.2 Data generated by the model with nSim = 2

In the nSim = 2 case, the classic approach cannot distinguish between the
models, as the confidence intervals of the RMS fitting overlap (Fig. 4C),
while the symmetry based methodology selects the true model. Over the
range ε ∈ [0, 4] the confidence intervals of the various models clearly separate
using the symmetry based methodology (Fig. 4D) and the correct model with
nFit = 2 is selected as it has the lowest RMS-value ρ(ε). In fact, this effect is
exaggerated when the range of the transformation parameter is increased to
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Figure 3. Individual fits of three Hill models. Three candidate models nFit = 1, 2, 3
(red) are fitted to the same simulated time series data with nSim = 1 (dashed blue) gener-
ated using a log-normal error-model with parameters σ = 0.1, vmax = 0.0102 mM min−1,
Km = 0.30 mM and S0 = 2 mM.

ε ∈ [0, 10] (Fig. 4E) and it is evident in this case that the true model would
be selected using the symmetry based approach.

4.3 Data generated by the model with nSim = 3

As in the previous cases, the symmetry based methodology outperforms the
classic approach for nSim = 3. The classic approach rejects the first model
with nFit = 1 while it cannot distinguish between the nFit = 2, 3 models as
their confidence intervals overlap (Fig. 4F). For a short range of the trans-
formation parameter ε ∈ [0, 1.5], the symmetry based methodology reaches
the same conclusion (Fig. 4G). Thus, for small values of the transformation
parameter ε the symmetry based methodology rejects the first model while
it cannot distinguish between the other models as their confidence intervals
of ρ(ε) overlap. However, by increasing the range of the transformation pa-
rameter to ε ∈ [0, 15] it is clear that the true model with nFit = 3 is selected
and that the incorrect model with nFit = 2 is rejected (Fig. 4H).
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Figure 4. Model selection with distinct symmetries compared to the classic
residual based approach. From the top to the bottom row, the data is generated
with nSim = 1, 2, 3 using a log-normal error-model with parameters σ = 0.1, vmax =
0.0102 mM min−1, Km = 0.30 mM and S0 = 2 mM. (A) The residual based RMS
measure ρ0 fails to significantly distinguish between the nFit = 1, 2 models, but rejects
the nFit = 3 model, for the data sets with nSim = 1. (B) Over the range ε ∈ [0, 5] the
symmetry based RMS measure ρ(ε) indicates that nFit = 1 is significantly better than
nFit = 2, 3 for the data sets with nSim = 1. (C) The residual based RMS measure ρ0
fails to significantly distinguish between the nFit = 1, 2, 3 models for the data sets with
nSim = 2. (D) Over the range ε ∈ [0, 4] the symmetry based RMS measure ρ(ε) indicates
that nFit = 2 is significantly better than nFit = 1, 3 for the data sets with nSim = 2. (E)
Over the range ε ∈ [0, 10] the symmetry based RMS measure ρ(ε) rejects the model with
nFit = 3 and selects the model with nFit = 2 for the data sets with nSim = 2. (F) The
residual based RMS measure ρ0 fails to significantly distinguish between the nFit = 2, 3
models but it can reject the first model with nFit = 1 for the data sets with nSim = 3.
(G) Over the range ε ∈ [0, 1.5] the symmetry based RMS measure ρ(ε) draws the same
conclusion as the classic approach based on ρ0 in (F). In other words, the model with
nFit = 1 is rejected while the methodology cannot distinguish between the nFit = 2, 3
models for the data sets with nSim = 3. (H) Over the range ε ∈ [0, 15] the symmetry
based RMS measure ρ(ε) rejects the model with nFit = 2 and selects the model with
nFit = 3 for the data sets with nSim = 3.
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5 Discussion

The main purpose of using symmetries in systems biology is the construction
of mechanistic models. Fundamental properties of a given system can be
described by their corresponding symmetries (e.g. energy conservation corre-
sponds to invariance under time translations), and it is therefore of interest
to be able to deduce the symmetries governing the system directly from the
available data. By studying which symmetries a system obeys, it is possible
to derive the corresponding dynamic models from those symmetries (e.g. in
the form of the Lagrangian in analytical mechanics) [15, 20, 21].

By deriving symmetries of the Hill equation, a minimal example of the
use of symmetries on the very building blocks of kinetic modelling in sys-
tems biology is presented. Moreover, we demonstrate that symmetries reveal
intrinsic properties of a system of interest by presenting an example of a
methodology for selecting Hill models based on a single time series. In fact,
with one time series of substrate concentration over time no single model of
the candidates corresponding to nFit = 1, 2, 3 can be identified using classic
model fitting while the symmetry based methodology identifies the correct
one in all cases (Fig. 4). We also validate the underlying assumption of the
methodology, namely that the symmetries of the candidate models must be
distinct by implementing the common translation symmetry (Fig. 7). Thus,
this provides a minimal example of the fact that symmetries can be used to
deduce intrinsic properties of a system where little data is available in a way
regular model fitting cannot.

Importantly, the symmetry based model selection is not based on the
assumption that any of the candidate models is in fact the correct model of
the underlying system. If all evaluated transformations Γε cause a significant
increase in ρ with the transformation parameter ε, the conclusion is to reject
all of the transformations at hand as symmetries of the system. Conversely,
if several symmetries are identified any mathematical model of the system
must respect all of them. The symmetry based evaluation described in the
present paper should therefore more accurately be considered as the first step
in a systematic model construction as oppose to a narrow methodology for
selecting candidate models.

In cases where multiple time series are available it is possible to estimate
the log-likelihood function and thereby use statistical methods such as the
AIC or BIC criteria for model selection. However, if the actual underlying
mechanisms of the studied system is of interest then symmetries can provide
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novel insights that classic model selection methodologies cannot. Therefore,
symmetries are not meant to replace the already existing statistical method-
ologies for model selection but rather to complement them in the construction
of mechanistic models.

A natural continuation of the work presented here is the automatisation of
the methodology for identifying model symmetries in an algorithmic fashion,
using numerical or computer algebra methods [15], to allow for systematic
model structure identification for larger models describing the dynamics of
e.g. large intracellular pathways. Such an automatisation requires the for-
mulation of a criteria for the range of the transformation parameter ε in
order to determine whether or not a certain transformation constitutes a
symmetry. In addition, the methodology relies on Taylor expansions locally
around ε ≈ 0 and it is not evident when the derived transformation ceases to
be accurate. Furthermore, as discussed above, the range of the transforma-
tion parameter is crucial when using the symmetry based methodology as a
means of selecting one model among multiple candidates. For example, over
the range ε ∈ [0, 1.5] in the case of the data set generated with the model
with nSim = 3, the methodology cannot distinguish between the models with
nFit = 2 and nFit = 3 (Fig. 4G) while over the range ε ∈ [0, 15] (Fig 4H) the
correct model corresponding to nFit = 3 is selected and the incorrect model
with nFit = 2 is rejected.

As the ultimate goal of systems biology is to gain mechanistic under-
standing of complex cellular processes, symmetries constitute a forceful con-
stituent in modelling where the underlying process is of interest. This study
serves as an example of how this very potent methodology can be introduced
into dynamic modelling in systems biology. As the symmetry framework is
well-established in physics, the prospects of constructing, understanding and
analysing models using symmetries in systems biology are exciting.
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A Supplementary material

A.1 The Hill model

The Hill model describes the conversion of a substrate S into a product
P . The reaction is catalysed by an enzyme E where the substrate binds to
an active site of the enzyme forming a substrate-enzyme complex C. The
complex then forms the product from the substrate in an irreversible reaction
before dissociating from the product. In the general setting, it is possible
to assume that an enzyme has n ∈ N+ active sites corresponding to the
assumption that n substrate units are required in order to form one unit of
the product. Furthermore, under certain conditions it is possible to assume
that it is the binding of the first substrate unit that is the rate-limiting step,
implying that as soon as one the first substrate unit binds to the enzyme the
other units bind immediately. These conditions are described from a kinetic
point of view by the following set of reactions.

nS + E
k1−−⇀↽−−
k−1

C
k2−⇀ P + E

In the above reactions, k1 is the rate constant for the binding of the
substrate units to the enzyme, k−1 is the rate constant for the dissociation of
the substrate units from the enzyme and k2 is the rate constant describing
the conversion of the substrate units to the product. Assuming that the law
of mass action holds, the dynamics of these reactions is governed by

dS
dt

= −k1SnE + k−1C

dE
dt

= −k1SnE + (k−1 + k2)C

dC
dt

= k1S
nE − (k−1 + k2)C

dP
dt

= k2C

(9)

with initial conditions

S(0) = S0 , E(0) = Etot , C(0) = 0 , P (0) = 0 . (10)

Note that the total number of enzymes Etot = E + C appears as the initial
condition for the unbound form of the enzyme E since there is no complex
initially and it is clear that Etot is conserved

dEtot

dt
=

dE

dt
+

dC

dt
= 0 . (11)
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Assuming that the amount of enzyme is much smaller than the amount
of substrate, i.e. S0 � Etot, implying that the enzymes are always saturated,
then it is possible to motivate the assumption

dE

dt
=

dC

dt
= 0 . (12)

Substituting this equation into the system of equations above yields

dS

dt
= −vmax

(
Sn

Km + Sn

)
, S(0) = S0 , (13)

which is referred to as the Hill equation, in which we have introduced the
constants

Km =
k−1 + k2

k1
, vmax = k2Etot (14)

and the number of active sites n ∈ N+ is called the Hill coefficient, or the
order of the Hill model.

The non-dimensionalisation of the Hill equation is obtained by introduc-
ing

τ =
vmaxt

K
1/n
m

, y =
S

K
1/n
m

(15)

and substituting these two dimensionless components into the original model
(13) yields the following dimensionless version of the equation describing the
consumption of the substrate

dy

dτ
= − yn

1 + yn
, y(0) = y0 =

(
1

K
1/n
m

)
S0 . (16)

It is worth emphasising that the only parameter in the dimensionless model
(16) is the initial condition y0.

A.2 Simulation methodology for generating the data

In simulating data for the Hill model, we have used kinetic parameters
for the enzyme β-lactamase I from the organism Bacillus cereus [22, 23].
The reported parameters corresponding to the full enzymatic system (9) are
k1 = 0.068 mM−1min−1, k−1 = 0.0136 min−1 and k2 = 0.0068 min−1. In the
simplified Hill model (13) this corresponds to a value of Km = 0.30 mM and
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we have implemented a value of Etot = 1.5 mM for the total enzyme con-
centration resulting in the maximal reaction rate vmax = 0.0102 mM min−1.
All simulations use an initial substrate concentration of S0 = 2 mM and a
log-normal error-model

S(t) = SH(t)eη, η ∼ N (0, σ) . (17)

In the above equation, S(t) corresponds to the simulated data at time t,
SH(t) corresponds to the underlying process at time t, given by the solution
the ODE-model (13), and η is the error drawn from a normal distribution
with standard deviation σ. In all simulations, we have implemented a noise
level of 10%, i.e. σ = 0.1. An example of simulated data is shown in Fig. 5.

Figure 5. Simulated data. Five time series with substrate concentration over time are
presented. The data is simulated with a log-normal error-model with parameters σ = 0.1,
vmax = 0.0102 mM min−1, Km = 0.30 mM and S0 = 2 mM.

The choice to implement a log-normal error-model (17), as opposed to
a simpler additive error-model, requires some motivation. Firstly, for con-
centrations close to zero it is possible to obtain negative data-points with
an additive model which is avoided with the log-normal model. Secondly, in
applications it is often the case that errors associated with measurements for
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high concentrations are often higher than the corresponding measurement-
errors for low concentrations [24]. This effect is captured in the log-normal
error-model but not in the additive model, in which the absolute errors are
of equal size across the entirety of the time series.

A.3 Symmetries of first order ODE’s

In this section we summarise the general theory for Lie symmetries of a single
first order ODE

dy

dτ
= ω(τ, y) . (18)

A solution of (18) is a curve y(τ) in the (τ, y) plane and a point transformation
is a map Γ : R2 → R2 defined by its action on an arbitrary point

Γ : (τ, y) 7→ (τ̂(τ, y), ŷ(τ, y)) . (19)

A point transformation constitutes a symmetry of the ODE (18) if it maps
the set of solutions to itself, that is if

dŷ

dτ̂
= ω(τ̂ , ŷ) if

dy

dτ
= ω(τ, y) . (20)

We consider exclusively sets of symmetry transformations,

Γε : (τ, y) 7→ (τ̂ , ŷ) , (21)

parameterised by a number ε ∈ R, which are diffeomorphisms of R2 and form
a representation of a (local) one-parameter Lie group G. For such represen-
tations Γ0 is the trivial transformation, and there exists a neighbourhood U
of ε = 0 such that ΓδΓε = Γδ+ε for δ, ε ∈ U and τ̂ and ŷ can be represented
as Taylor series in ε in U . In particular, this implies that the inverse of a
transformation is obtained as

Γ−1
ε = Γ−ε . (22)

The set of points (τ̂ , ŷ) obtained by the action of the Lie group G on
(τ, y) is called the orbit of (τ, y). At the point (τ̂ , ŷ) the vector tangent to
the orbit is (ξ(τ̂ , ŷ), η(τ̂ , ŷ)) where

ξ(τ̂ , ŷ) =
dτ̂

dε
, η(τ̂ , ŷ) =

dŷ

dε
. (23)

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.922005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.922005
http://creativecommons.org/licenses/by-nc-nd/4.0/


In particular, the existence of a Taylor series expansion around ε = 0 implies
that

τ̂ = τ + εξ(τ, y) +O(ε2) , ŷ = y + εη(τ, y) +O(ε2) (24)

with

ξ(τ, y) =
dτ̂

dε

∣∣∣∣
ε=0

, η(τ, y) =
dŷ

dε

∣∣∣∣
ε=0

. (25)

Since the symmetry transformations Γε are diffeomorphisms of R2, the
assignment of (ξ, η) is smooth and defines a vector field on R2 by

X = ξ(τ, y)∂τ + η(τ, y)∂y . (26)

The vector field generates the symmetry transformation Γε through

τ̂ = eεXτ , ŷ = eεXy , (27)

where eεX is the equivariant exponential map satisfying

Φ(eεXτ, eεXy) = eεXΦ(τ, y) (28)

for an arbitrary function Φ : R2 → R. The vector field X, called the in-
finitesimal generator of Γε, contains all information required to reconstruct
the corresponding transformations.

Consequently, the equation (18) admits a one-parameter Lie group of
symmetries generated by (26) if ξ(t, y) and η(t, y) satisfy the linearised sym-
metry condition

∂τη + (∂yη − ∂τξ)ω − ∂yξω2 = ξ∂τω + η∂yω . (29)

A.4 Symmetries of the Hill model

The class of symmetries primarily considered in the present paper are ob-
tained by using an Ansatz linear in both τ and y for the components ξ(τ, y)
and η(τ, y) of the generating vector field X, according to

ξ(τ, y) = Aτ +By , η(τ, y) = Cτ +Dy (30)

for the Hill model ωn(τ, y) in (5). The linearised symmetry condition (29)
takes the form

nyn−1 (Cτ +Dy) + (1 + yn)2C − yn (1 + yn) (D − A)− y2nB = 0 (31)
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which for n ∈ N+ has the general solution

A = −(n− 1)λ , B = −nλ , C = 0 , D = λ , (32)

where λ ∈ R is an arbitrary constant. Up to simultaneous rescalings, the
components of the tangent vector are therefore

ξ(τ, y) = −(n− 1)τ − ny , η(τ, y) = y (33)

and the corresponding generating vector field is given by

X = − ((n− 1)τ + ny) ∂τ + y∂y . (34)

The coordinate transformation generated by (34) is obtained by the expo-
nential map as

(τ̂ , ŷ) = (−yeε + (τ + y)e−(n−1)ε, yeε) (35)

where ε is the transformation parameter.
In addition to the linear symmetries described above, which are different

for models of different values of n, the Hill models (5) are all manifestly
invariant under a time translation transformation

(τ̂ , ŷ) = (τ + ε, y) (36)

for all n ∈ N+. The transformation is generated by the vector field

X = ∂τ , (37)

with components ξ(τ, y) = 1 and η(τ, y) = 0, which trivially satisfy the
linearised symmetry condition since ∂τωn = 0. Since the Hill model is a
first order ODE, its solution is uniquely determined by a choice of initial
condition at (say) τ = 0. Consequently, any non-trivial symmetry transfor-
mation can be obtained as equivalent time translation with a suitable choice
of transformation parameter.

A.5 Model selection method

The purpose of the symmetry based method for model selection is to in-
corporate global structural properties of the time series in the comparison of
candidate models. Symmetry transformations preserve the space of solutions
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to the ODE model, whereas general coordinate transformations do not. Con-
sequently, if we apply a symmetry transformation Γε of the candidate model
ω(τ, y) to the (non-dimensionalised) time series data, perform a least square
fit to the transformed data to obtain a solution of the candidate model, and
then apply the inverse transformation Γ−ε to the fitted model, the result will
be a (different) solution to the model ω(τ, y). If the transformation Γε is
also a symmetry of the model generating the time series data, the residuals
between the original time series data and the resulting solution should be
approximately independent of ε. In the limit of vanishing errors in the time
series data the independence becomes exact.

Conversely, if a transformation Γε which is not a symmetry of the true
model is applied in the same way, it will distort the transformed time series
data, causing a reduction in the quality-of-fit of the candidate model. The
dependence of the residuals on the transformation parameter ε is non-linear,
but in a neighbourhood of ε = 0 we expect the residuals of the fit to be
increasing since ε = 0 corresponds to the trivial transformation which intro-
duces no distortion. Throughout this paper, we use the ordinary RMS error,
ρ(ε) (40), for the residuals to quantify the quality-of-fit.

Since the symmetries of each candidate Hill model are most conveniently
implemented in the dimensionless coordinates (τ, y) according to (15), a pre-
liminary step in the model selection process outlined above is to estimate the
values of Km and vmax from the simulated data {(ti, Si)}Ni=1, using ordinary
nonlinear least-square optimisation, and compute the non-dimensionalised
data {(τi, yi)}Ni=1.

In order to avoid introducing a dependence on the non-dimensionalisation,
which differs depending on the candidate model, ρ(ε) is always computed in
the original dimensional context. Furthermore, to obtain a meaningful com-
parison between the effects of symmetry transformations of different candi-
date models we also normalise the scale of the parameter ε so that ε = 1
corresponds to the initial data point (τ1, y1) being shifted by (at least) 50%
of the time series range in both the τ and the y direction,

|τ̂1 − τ1| ≥
|τN − τ1|

2
, |ŷ1 − y1| ≥

|yN − y1|
2

, (38)

where (τ̂1, ŷ1) is the result of applying Γnε=1 to (τ1, y1).
Using the fact that the solution to any first order ODE is uniquely deter-
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mined by a choice of initial condition, we introduce the notation

Hn(τ | τ0, y0) =

{
y ∈ C1

∣∣∣∣ dy

dτ
= ωn(τ, y) , y(τ0) = y0

}
(39)

for a solution to the Hill model of order n ∈ N+. Given the time series
{(ti, Si)}Ni=1 of substrate concentrations, a set of integers n defining the can-
didate Hill models and a corresponding set of representations Γnε of one-
parameter symmetry groups unique to each candidate model, the method
for symmetry based Hill model selection can be described as follows. For
each value n of the candidate model order:

1. Estimate parameters Km and vmax from {(ti, Si)}Ni=1

2. Compute non-dimensionalised time series {(τi, yi)}Ni=1

3. Normalise transformation parameter ε

4. For each value ε of the transformation parameter:

i. Apply transformation Γnε to the data

{(τ̂i, ŷi)}Ni=1 = {Γnε (τi, yi)}Ni=1

ii. Set τ̂0 = τ̂1 and determine least-square fit Ĥn(τ | τ̂0, ŷ0) as

ŷ0 = arg min
ξ

N∑
i=1

(Hn(τ̂i | τ̂0, ξ)− ŷi)2

iii. Apply the inverse transform Γn−ε to the model

Hn(τ | τ0, y0) = Ĥn

(
τ |Γn−ε(τ̂0, ŷ0)

)
iv. Evaluate the fit ρ(ε) of Hn to {(τi, yi)}Ni=1

ρ(ε) = K1/n
m

(
N∑
i=1

1

N
(Hn(τ̂i | τ0, y0)− ŷi)2

)1/2

(40)

The different parts of Step 4 of the method are illustrated in Fig. 6.
Using the function ρ(ε) we can express the ordinary RMS error of the

classic approach as
ρ0 = ρ(0) . (41)
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Figure 6. Illustration of the symmetry based method for model selection. The
simulated dimensionless concentration y(τ) plotted versus dimensionless time τ for the
n = 1 model. The point transformation implemented is the symmetry Γ1

ε of the model.
(A) The original (y) and the transformed (ŷ) time series. (B) The transformed time series
(ŷ), the fitted Hill model (Ĥn) and the corresponding residuals. (C) The fitted Hill model
(Ĥn) and its inverse transform (Hn). (D) The inverse of the fitted Hill model (Hn), the
original data (y) and the corresponding residuals.

A.6 Validation using the translation symmetry

In order to establish the validity of the symmetry based methodology we in-
vestigate the case of a point transformation which is not a symmetry for one
of the candidate model but not the others. The time translation transforma-
tion Γε in (7) is a symmetry of all Hill models, and it is therefore expected
that the goodness-of-fit is approximately independent of the parameter ε for
all model orders. We define the relative RMS, ∆(ε) as

∆(ε) =
ρ(ε)

ρ0
− 1 , (42)
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where the value ∆(ε) = 0 corresponds to the transformation having no effect
on the fitting procedure, and perform the symmetry based fitting procedure.

As expected, the common translation symmetry does not distinguish be-
tween the candidate models. For all three data sets generated with the mod-
els nSim = 1, 2, 3 the confidence intervals of the relative RMS is of the order
10−12 centered around ∆ = 0 (Fig. 7). Numerical tolerance of the optimiser
is set to 10−12 which suggests that ∆(ε) is zero to within numerical errors.
Accordingly, the translation transformation (7) is confirmed as a symmetry
of all models nFit = 1, 2, 3 incapable of distinguishing between the candidate
models. This result validates the fundamental assumption of the symmetry-
based methodology, that the symmetries Γε of the candidate models must be
distinct in order to differentiate between them. Furthermore, it provides a
consistency check of the method using a symmetry transformation different
from the specific transformations Γnε in (8) used to generate the results in
Fig. 4.

(A) (B) (C)

Transformation parameter, ε

R
el
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v
e

R
M

S
,
ρ
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ε
)

nSim = 1 nSim = 2 nSim = 3

Figure 7. Symmetry based approach for the translation symmetry. In all three
cases, the models with nFit = 1, 2, 3 are fitted to the simulated data over the range
ε ∈ [0, 1.5]. The relative RMS ∆(ε) is plotted against the transformation parameter ε where
the model selection is conducted with the common translation symmetry Γε : (t, y) 7→
(t̂, ŷ) = (t+ ε, y). The data is generated with the models corresponding to (A) nSim = 1,
(B) nSim = 2 and (C) nSim = 3 respectively. The data is generated using a log-normal
error-model with parameters: σ = 0.1, vmax = 0.0102 mM min−1, Km = 0.30 mM and
S0 = 2 mM. In all cases, the methodology cannot distinguish between any of the models
as the relative RMS is within the range of the numerical tolerance, i.e |∆(ε)| ≈ 10−12.
This result confirms the fact that Γε is a symmetry of all three models.
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and A. Vande Wouwer. Model selection, identification and validation in
anaerobic digestion: a review. Water Res., 45, 5347–5364, 2011.

[7] D. Hasdemir, H. C. J. Hoefsloot and A. K. Smilde. Validation and se-
lection of ODE based systems biology models: how to arrive at more
reliable decisions. BMC Syst. Biol., 9, 32, 2015.

[8] L. Geris and D. Gomez-Cabrero eds. Uncertainty in biology. Springer,
2016.

[9] J. F. Apgar, J. E. Toettcher, D. Endy, F. M. White and B. Tidor.
Stimulus design for model selection and validation in cell signaling. PLoS
Comput. Biol., 4, e30, 2008.

[10] D. Silk, P. D. W. Kirk, C. P. Barnes, T. Toni and M. P. H. Stumpf. Model
selection in systems biology depends on experimental design. PLoS Com-
put. Biol., 10, e1003650, 2014.

[11] K. Sigmund. Kolmogorov and population dynamics. In Kolmogorov’s
heritage in mathematics, 177–186. Springer, 2007.

[12] N. L. Komarova and D. Wodarz. ODE models for oncolytic virus dy-
namics. J. Theor. Biol., 263, 530–543, 2010.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.922005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.922005
http://creativecommons.org/licenses/by-nc-nd/4.0/


[13] J. D. Murray. Mathematical Biology I. An Introduction. Springer, 2002.

[14] F. Oliveri. Lie symmetries of differential equations: classical results and
recent contributions. Symmetry, 2, 658–706, 2010.

[15] P. E. Hydon. Symmetry methods for differential equations: a beginner’s
guide. Cambridge University Press, 2000.

[16] G. W. Bluman and S. Kumei. Symmetries and differential equations.
Springer Science & Business Media, 2013.

[17] C. N. Yang and R. L. Mills. Conservation of Isotopic Spin and Isotopic
Gauge Invariance, Phys. Rev. 96, 191–195, 1954.

[18] S. Weinberg. A Model of Leptons. Phys. Rev. Lett. 19, 1264–1266, 1967.

[19] M. Golubitsky and I. Stewart. Symmetry methods in mathematical bi-
ology. São Paulo J. Math. Sci., 9, 1–36, 2015.

[20] J. Fuchs and C. Schweigert. Symmetries, Lie algebras and representa-
tions. Cambridge University Press, 2003.

[21] H. Goldstein, C. Poole and J. Safko. Classical mechanics. Pearson, Ad-
dison Wesley, 2002.

[22] R. Bicknell and S. G. Waley. Single-turnover and steady-state kinetics
of hydrolysis of cephalosporins by β-lactamase i from bacillus cereus.
Biochem. J., 231, 83–88, 1985.

[23] M. A. Mourão, J. Srividhya, P. E. McSharry, E. J. Crampin and S.
Schnell. A graphical user interface for a method to infer kinetics and
network architecture (MIKANA). PloS One, 6, e27534, 2011.

[24] S. Bousgaard Mortensen, A. H. Jónsdóttir, S. Klim and H. Madsen.
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