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Abstract

Thermodynamic models of gene regulation can predict transcriptional regula-

tion in bacteria, but in eukaryotes chromatin accessibility and energy expen-

diture may call for a different framework. Here we systematically tested the

predictive power of models of DNA accessibility based on the Monod-Wyman-

Changeux (MWC) model of allostery, which posits that chromatin fluctuates

between accessible and inaccessible states. We dissected the regulatory dy-

namics of hunchback by the activator Bicoid and the pioneer-like transcription

factor Zelda in living Drosophila embryos and showed that no thermodynamic or

non-equilibrium MWC model can recapitulate hunchback transcription. There-

fore, we explored a model where DNA accessibility is not the result of thermal

fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone

acetylation, and found that this model can predict hunchback dynamics. Thus,

our theory-experiment dialogue uncovered potential molecular mechanisms of

transcriptional regulatory dynamics, a key step toward reaching a predictive

understanding of developmental decision-making.
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1. Introduction

Over the last decade, hopeful analogies between genetic and electronic cir-

cuits have posed the challenge of predicting the output gene expression of a

DNA regulatory sequence in much the same way that the output current of

an electronic circuit can be predicted from its wiring diagram (Endy, 2005).5

This challenge has been met with a plethora of theoretical works, including

thermodynamic models, which use equilibrium statistical mechanics to calcu-

late the probability of finding transcription factors bound to DNA and to relate

this probability to the output rate of mRNA production (Ackers et al., 1982;

Buchler et al., 2003; Vilar and Leibler, 2003; Bolouri and Davidson, 2003; Bintu10

et al., 2005b,a; Sherman and Cohen, 2012). Thermodynamic models of bacte-

rial transcription launched a dialogue between theory and experiments that has

largely confirmed their predictive power for several operons (Ackers et al., 1982;

Bakk et al., 2004; Zeng et al., 2010; He et al., 2010; Garcia and Phillips, 2011;

Brewster et al., 2012; Cui et al., 2013; Brewster et al., 2014; Sepulveda et al.,15

2016; Razo-Mejia et al., 2018) with a few potential exceptions (Garcia et al.,

2012; Hammar et al., 2014).

Following these successes, thermodynamic models have been widely applied

to eukaryotes to describe transcriptional regulation in yeast (Segal et al., 2006;

Gertz et al., 2009; Sharon et al., 2012; Zeigler and Cohen, 2014), human cells20

(Giorgetti et al., 2010), and the fruit fly Drosophila melanogaster (Jaeger et al.,

2004a; Zinzen et al., 2006; Segal et al., 2008; Fakhouri et al., 2010; Parker et al.,

2011; White et al., 2012; Samee et al., 2015; Sayal et al., 2016). However, two

key differences between bacteria and eukaryotes cast doubt on the applicability

of thermodynamic models to predict transcriptional regulation in the latter.25

First, in eukaryotes, DNA is tightly packed in nucleosomes and must become

accessible in order for transcription factor binding and transcription to occur
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(Polach and Widom, 1995; Levine, 2010; Schulze and Wallrath, 2007; Lam et al.,

2008; Li et al., 2011; Fussner et al., 2011; Bai et al., 2011; Li et al., 2014a;

Hansen and O’Shea, 2015). Second, recent reports have speculated that, unlike30

in bacteria, the equilibrium framework may be insufficient to account for the

energy-expending steps involved in eukaryotic transcriptional regulation, such

as histone modifications and nucleosome remodeling, calling for non-equilibrium

models of transcriptional regulation (Kim and O’Shea, 2008; Estrada et al., 2016;

Li et al., 2018; Park et al., 2019).35

Recently, various theoretical models have incorporated chromatin accessibil-

ity and energy expenditure in theoretical descriptions of eukaryotic transcrip-

tional regulation. First, models by Mirny (2010), Narula and Igoshin (2010),

and Marzen et al. (2013) accounted for chromatin occluding transcription-

factor binding by extending thermodynamic models to incorporate the Monod-

Wyman-Changeux (MWC) model of allostery (Fig. 1A; Monod et al., 1965).

This thermodynamic MWC model assumes that chromatin rapidly transitions

between accessible and inaccessible states via thermal fluctuations, and that the

binding of transcription factors to accessible DNA shifts this equilibrium toward

the accessible state. Like all thermodynamic models, this model relies on the

“occupancy hypothesis” (Hammar et al., 2014; Garcia et al., 2012; Phillips et al.,

2019): the probability pbound of finding RNA polymerase (RNAP) bound to the

promoter, a quantity that can be easily computed, is linearly related to the rate

of mRNA production dmRNA
dt

, a quantity that can be experimentally measured,

such that
dmRNA

dt
= Rpbound. (1)

Here, R is the rate of mRNA production when the system is in an RNAP-

bound state (see Section S1.1 for a more detailed overview). Additionally, in all

thermodynamic models, the transitions between states are assumed to be much

faster than both the rate of transcriptional initiation and changes in transcrip-

tion factor concentrations. This separation of time scales, combined with a lack40

of energy dissipation in the process of regulation, makes it possible to consider
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the states to be in equilibrium such that the probability of each state can be

computed using its Boltzmann weight (Garcia et al., 2007).

Despite the predictive power of thermodynamic models, eukaryotic tran-

scription may not adhere to the requirements imposed by the thermodynamic45

framework. Indeed, Narula and Igoshin (2010), Hammar et al. (2014), Estrada

et al. (2016), Scholes et al. (2017), and Li et al. (2018) have proposed the-

oretical treatments of transcriptional regulation that maintain the occupancy

hypothesis, but make no assumptions about separation of time scales or en-

ergy expenditure in the process of regulation. When combined with the MWC50

mechanism of DNA allostery, these models result in a non-equilibrium MWC

model (Fig. 1B). Here, no constraints are imposed on the relative values of the

transition rates between states and energy can be dissipated over time. To our

knowledge, neither the thermodynamic MWC model nor the non-equilibrium

MWC model have been tested experimentally in eukaryotic transcriptional reg-55

ulation.

Here, we performed a systematic dissection of the predictive power of these

MWC models of DNA allostery in the embryonic development of the fruit fly

Drosophila melanogaster in the context of the step-like activation of the hunch-

back gene by the Bicoid activator and the pioneer-like transcription factor Zelda60

(Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). Specifically, we com-

pared the predictions from these MWC models against dynamical measurements

of input Bicoid and Zelda concentrations and output hunchback transcriptional

activity. Using this approach, we discovered that no thermodynamic or non-

equilibrium MWC model featuring the regulation of hunchback by Bicoid and65

Zelda could describe the transcriptional dynamics of this gene. We proposed a

model in which Bicoid and Zelda, rather than passively biasing thermal fluctu-

ations of chromatin toward the accessible state, actively assist the overcoming

of an energetic barrier to make chromatin accessible through the recruitment

of energy-consuming histone modifiers or chromatin remodelers. This model70

(Fig. 1C) recapitulated all of our experimental observations. This interplay

between theory and experiment establishes a clear path to identify the molec-
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Figure 1: Three models of chromatin accessibility and transcriptional regulation. (A) Ther-

modynamic MWC model where chromatin can be inaccessible or accessible to transcription

factor binding. Each state is associated with a statistical weight given by the Boltzmann

distribution and with a rate of transcriptional initiation. ∆εchrom is the energy cost associ-

ated with making the DNA accessible and ω is an interaction energy between the activator

and RNAP. a = [activator]/Ka and p = [RNAP]/Kp with Ka and Kp being the dissociation

constants of the activator and RNAP, respectively. This model assumes the occupancy hy-

pothesis, separation of time scales, and lack of energy expenditure described in the text. (B)

Non-equilibrium MWC model where no assumptions about separation of time scales or energy

expenditure are made. Transition rates that depend on the concentration of the activator or

RNAP are indicated by an arrow incorporating the respective protein. (C) Transcription

factor-driven chromatin accessibility model where the activator catalyzes irreversible transi-

tions of the DNA through m silent states before it becomes accessible. Once this accessible

state is reached, the system is in equilibrium.
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ular steps that make DNA accessible, to systematically test our model of tran-

scription factor-driven chromatin accessibility, and to make progress toward a

predictive understanding of transcriptional regulation in development.75

2. Results

2.1. A thermodynamic MWC model of activation and chromatin accessibility by

Bicoid and Zelda

During the first two hours of embryonic development, the hunchback P2

minimal enhancer (Margolis et al., 1995; Driever et al., 1989; Perry et al., 2012;80

Park et al., 2019) is believed to be devoid of significant input signals other than

activation by Bicoid and regulation of chromatin accessibility by both Bicoid

and Zelda (Perry et al., 2012; Xu et al., 2014; Hannon et al., 2017). As a result,

the early regulation of hunchback provides an ideal scaffold for a stringent test

of simple theoretical models of eukaryotic transcriptional regulation.85

Our implementation of the thermodynamic MWC model (Fig. 1A) in the

context of hunchback states that in the inaccessible state, neither Bicoid nor

Zelda can bind DNA. In the accessible state, DNA is unwrapped and the binding

sites become accessible to these transcription factors. Due to the energetic cost

of opening the chromatin (∆εchrom), the accessible state is less likely to occur90

than the inaccessible one. However, the binding of Bicoid or Zelda can shift the

equilibrium toward the accessible state (Adams and Workman, 1995; Miller and

Widom, 2003; Mirny, 2010; Narula and Igoshin, 2010; Marzen et al., 2013).

In our model, we assume that all binding sites for a given molecular species

have the same binding affinity. Relaxing this assumption does not affect any95

of our conclusions (as we will see below in Sections 2.3 and 2.4). Bicoid upreg-

ulates transcription by recruiting RNAP through a protein-protein interaction

characterized by the parameter ωbp. We allow cooperative protein-protein in-

teractions between Bicoid molecules, described by ωb. However, since to our

knowledge there is no evidence of direct interaction between Zelda and any100

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.922054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.922054
http://creativecommons.org/licenses/by/4.0/


other proteins, we assume no interaction between Zelda and Bicoid, or between

Zelda and RNAP.

In Fig. 2A, we illustrate the simplified case of two Bicoid binding sites and

one Zelda binding site, plus the corresponding statistical weights of each state

given by their Boltzmann factors . Note that the actual model utilized through-105

out this work accounts for at least six Bicoid binding sites and ten Zelda binding

sites that have been identified within the hunchback P2 enhancer (Section 4.1;

Driever and Nusslein-Volhard, 1988b; Driever et al., 1989; Park et al., 2019).

This general model is described in detail in Section S1.2.

The probability of finding RNAP bound to the promoter is calculated by

dividing the sum of all statistical weights featuring RNAP by the sum of the

weights corresponding to all possible system states. This leads to

pbound =

(
1 + z

)nz

p
(

1 +
∑nb

i=1

(
nb

i

)
biωi−1

b ωibp

)
e∆εchrom/kBT︸ ︷︷ ︸
inaccessible

state

+
(

1 + z
)nz

︸ ︷︷ ︸
Zelda binding

(
1 + p+

∑
j=0,1

nb∑
i=1

(
nb
i

)
biωi−1

b pjωijbp

)
︸ ︷︷ ︸

Bicoid and RNAP binding

,

(2)

where b = [Bicoid]/Kb, z = [Zelda]/Kz, and p = [RNAP ]/Kp, with110

[Bicoid], [Zelda], and [RNAP ] being the concentrations of Bicoid, Zelda, and

RNAP, respectively, and Kb, Kz, and Kp their dissociation constants (see Sec-

tions S1.1 and S1.2 for a detailed derivation). Given a set of model parameters,

plugging pbound into Equation 1 predicts the rate of RNAP loading as a function

of Bicoid and Zelda concentrations as shown in Fig. 2B. Note that in this work,115

we treat the rate of transcriptional initiation and the rate of RNAP loading

interchangeably.

2.2. Dynamical prediction and measurement of input-output functions in devel-

opment

In order to experimentally test the theoretical model in Fig. 2, it is nec-120

essary to measure both the inputs – the concentrations of Bicoid and Zelda –

as well as the output rate of RNAP loading. Typically, when testing models
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Figure 2: Thermodynamic MWC model of transcriptional regulation by Bicoid and Zelda. (A)

States and statistical weights for a simplified version of the hunchback P2 enhancer. In this

model, we assume that chromatin occluded by nucleosomes is not accessible to transcription

factors or RNAP. Parameters are defined in the text. (B) 3D input-output function predicting

the rate of RNAP loading (and of transcriptional initiation) as a function of Bicoid and Zelda

concentrations for a given set of model parameters.
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of transcriptional regulation in bacteria and eukaryotes, input transcription-

factor concentrations are assumed to not be modulated in time: regulation is

in steady state (Ackers et al., 1982; Bakk et al., 2004; Segal et al., 2008; Garcia125

and Phillips, 2011; Sherman and Cohen, 2012; Cui et al., 2013; Little et al.,

2013; Raveh-Sadka et al., 2009; Sharon et al., 2012; Zeigler and Cohen, 2014;

Xu et al., 2015; Sepulveda et al., 2016; Estrada et al., 2016; Razo-Mejia et al.,

2018; Zoller et al., 2018; Park et al., 2019). However, embryonic development is

a highly dynamic process in which the concentrations of transcription factors are130

constantly changing due to their nuclear import and export dynamics, and due

to protein production, diffusion, and degradation (Edgar and Schubiger, 1986;

Edgar et al., 1987; Jaeger et al., 2004b; Gregor et al., 2007b). As a result, it

is necessary to go beyond steady-state assumptions and to predict and measure

how the instantaneous, time-varying concentrations of Bicoid and Zelda at each135

point in space dictate hunchback output transcriptional dynamics.

In order to quantify the concentration dynamics of Bicoid, we utilized an

established Bicoid-eGFP line (Sections 4.2, 4.4, and 4.5; Figs. 3A and S3A;

Video S1; Gregor et al., 2007b; Liu et al., 2013). As expected, this line displayed

the exponential Bicoid gradient across the length of the embryo (Section S2.1;140

Fig. S3B). We measured mean Bicoid nuclear concentration dynamics along

the anterior-posterior axis of the embryo, as exemplified for two positions in

Fig. 3A. As previously reported (Gregor et al., 2007b), after anaphase and

nuclear envelope formation, the Bicoid nuclear concentration quickly increases

as a result of nuclear import. These measurements were used as inputs into the145

theoretical model in Fig. 2.

Zelda concentration dynamics were measured in a Zelda-sfGFP line (Sec-

tions 4.2, 4.4, and 4.5; Video S2; Hamm et al., 2017). Consistent with previous

results (Staudt et al., 2006; Liang et al., 2008), the Zelda concentration was spa-

tially uniform along the embryo (Fig. S3). Contrasting Figs. 3A and B reveals150

that the overall concentration dynamics of both Bicoid and Zelda are quali-

tatively comparable. As a result of Zelda’s spatial uniformity, we used mean

Zelda nuclear concentration dynamics averaged across all nuclei within the field
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of view to test our model (Section S2.1; Fig. 3B).

Given the high reproducibility of the concentration dynamics of Bicoid and155

Zelda (Fig. S3), we combined measurements from multiple embryos by synchro-

nizing their anaphase in order to create an “averaged embryo” (Section S2.1), an

approach that has been repeatedly used to describe protein and transcriptional

dynamics in the early fly embryo (Garcia et al., 2013; Bothma et al., 2014, 2015;

Berrocal et al., 2018; Lammers et al., 2019).160

Our model assumes that hunchback output depends on the instantaneous

concentration of input transcription factors. As a result, at each position along

the anterior-posterior axis of the embryo, the combined Bicoid and Zelda concen-

tration dynamics define a trajectory over time along the predicted input-output

function surface (Fig. 3C). The resulting trajectory predicts the rate of RNAP165

loading as a function of time. However, instead of focusing on calculating RNAP

loading rate, we used it to compute the number of RNAP molecules actively

transcribing hunchback at each point in space and time, a more experimentally

accessible quantity (Section 2.3). This quantity can be obtained by accounting

for the RNAP elongation rate and the cleavage of nascent RNA upon termina-170

tion (Section S2.2; Fig. S4; Bothma et al., 2014; Lammers et al., 2019) yielding

the predictions shown in Fig. 3D.

Instead of examining the full time-dependent nature of our data, we analyzed

two main dynamical features stemming from our prediction of the number of

RNAP molecules actively transcribing hunchback: the initial rate of RNAP175

loading and the transcriptional onset time, ton, defined by the slope of the

initial rise in the predicted number of RNAP molecules, and the time after

anaphase at which transcription starts as determined by the x-intercept of the

linear fit to the initial rise, respectively (Fig. 3D).

Examples of the predictions generated by our theoretical model are shown180

in Fig. 3E and F, where we calculate the initial rate of RNAP loading and

ton for different values of the Bicoid dissociation constant Kb. This framework

for quantitatively investigating dynamic input-output functions in living em-

bryos is a necessary step toward testing the predictions of theoretical models of
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Figure 3: Prediction and measurement of dynamical input-output functions. (A) Measure-

ment of Bicoid concentration dynamics in nuclear cycle 13. Color denotes different positions

along the embryo and time is defined with respect to anaphase. (B) Zelda concentration dy-

namics. These dynamics are uniform throughout the embryo. (C) Trajectories defined by the

input concentration dynamics of Bicoid and Zelda along the predicted input-output surface.

Each trajectory corresponds to the RNAP loading-rate dynamics experienced by nuclei at the

positions indicated in (A). (D) Predicted number of RNAP molecules actively transcribing

the gene as a function of time and position along the embryo, and calculation of the cor-

responding initial rate of RNAP loading and the time of transcriptional onset, ton. (E,F)

Predicted hunchback (E) initial rate of RNAP loading and (F) ton as a function of position

along the embryo for varying values of the Bicoid dissociation constant Kb. (A, B, error bars

are standard error of the mean nuclear fluorescence in an individual embryo, averaged across

all nuclei at a given position; D, the standard error of the mean predicted RNAP number in a

single embryo, propagated from the errors in A and B, is thinner than the curve itself; E, F,

only mean predictions are shown so as to not obscure differences between them; we imaged

n=6 Bicoid-GFP and n=3 Zelda-GFP embryos.)
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transcriptional regulation in development.185

2.3. The thermodynamic MWC model fails to predict activation of hunchback

in the absence of Zelda

In order to test the predictions of the thermodynamic MWC model

(Fig. 3E and F), we used the MS2 system (Bertrand et al., 1998; Garcia et al.,

2013; Lucas et al., 2013). Here, 24 repeats of the MS2 loop are inserted in the190

5’ untranslated region of the hunchback P2 reporter (Garcia et al., 2013), result-

ing in the fluorescent labeling of sites of nascent transcript formation (Fig. 4A;

Video S3). This fluorescence is proportional to the number of RNAP molecules

actively transcribing the gene (Garcia et al., 2013). The experimental mean

fluorescence as a function of time measured in a narrow window (2.5% of the195

total embryo length, averaged across nuclei in the window) along the length of

the embryo (Fig. 4B) is in qualitative agreement with the theoretical prediction

(Fig. 3D).

To compare theory and experiment, we next obtained the initial RNAP

loading rates (Fig. 4C, points) and ton (Fig. 4D, points) from the experimental200

data (Section S2.3; Fig. S5B). The step-like shape of the RNAP loading rate

(Fig. 4C) agrees with previous measurements performed on this same reporter

construct (Garcia et al., 2013). The plateaus at the extreme anterior and poste-

rior positions were used to constrain the maximum and minimum theoretically

allowed values in the model (Section S1.3). With these constraints in place, we205

attempted to simultaneously fit the thermodynamic MWC model to both the

initial rate of RNAP loading and ton. For a given set of model parameters, the

measurements of Bicoid and Zelda concentration dynamics predicted a corre-

sponding initial rate of RNAP loading and ton (Fig. 3E and F). The model pa-

rameters were then iterated using standard curve-fitting techniques (Section 4.6)210

until the best fit to the experimental data was achieved (Fig. 4C and D, lines).

Although the model accounted for the initial rate of RNAP loading (Fig. 4C,

line), it produced transcriptional onset times that were much lower than those

that we experimentally observed (Fig. S6B, purple line). We hypothesized that
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this disagreement was due to our model not accounting for mitotic repression,

when the transcriptional machinery appears to be silent immediately after cell

division (Shermoen and O’Farrell, 1991; Gottesfeld and Forbes, 1997; Parsons

and Tg, 1997; Garcia et al., 2013). Thus, we modified the thermodynamic

MWC model to include a mitotic repression window term, implemented as a

time window at the start of the nuclear cycle during which no transcription

could occur; the rate of mRNA production is thus given by

dmRNA

dt
=

0 if t < tMitRep

Rpbound if t ≥ tMitRep

, (3)

where R and pbound are as defined in Eqns. 1 and 2, respectively, and tMitRep is

the mitotic repression time window over which no transcription can take place

after anaphase (Sections S1.2 and S3.1). After incorporating mitotic repression,

the thermodynamic MWC model successfully fit both the rates of RNAP loading215

and ton (Fig. 4C and D, lines, Fig. S6A and B).

Given this success, we next challenged the model to perform the simpler

task of explaining Bicoid-mediated regulation in the absence of Zelda. This

scenario corresponds to setting the concentration of Zelda to zero in the models

in Section S1.2 and Fig. 2. In order to test this seemingly simpler model, we re-220

peated our measurements in embryos devoid of Zelda protein (Video S4). These

zelda− embryos were created by inducing clones of non-functional zelda mutant

(zelda294) germ cells in female adults (Sections 4.2, 4.3; Liang et al., 2008). All

embryos from these mothers lack maternally deposited Zelda; female embryos

still have a functional copy of zelda from their father, but this copy is not tran-225

scribed until after the maternal-to-zygotic transition, during nuclear cycle 14

(Liang et al., 2008). We confirmed that the absence of Zelda did not have a

substantial effect on the spatiotemporal pattern of Bicoid (Section S4.1; Xu

et al., 2014).

While close to 100% of nuclei in wild-type embryos exhibited transcription230

along the length of the embryo (Fig. 4E; Video S5), measurements in the zelda−

background revealed that some nuclei never displayed any transcription during
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Figure 4: The thermodynamic MWC model can explain hunchback transcriptional dynamics

in wild-type, but not zelda−, embryos. (A) The MS2 system measures the number of RNAP

molecules actively transcribing the hunchback reporter gene in live embryos. (B) Representa-

tive MS2 trace featuring the quantification of the initial rate of RNAP loading and ton. (C)

Initial RNAP loading rate and (D) ton for wild-type embryos (points), compared with best

fit to the thermodynamic MWC model (lines). (E) Fraction of transcriptionally active nuclei

for wild-type embryos. Active nuclei are defined as nuclei that exhibited an MS2 spot at any

time during the nuclear cycle. (F) Initial RNAP loading rate and (G) ton for zelda− embryos

(points), compared with best fit to the thermodynamic MWC model (lines). (H) Fraction of

transcriptionally active nuclei for zelda− embryos. Purple shading indicates the spatial range

over which at least 50% of nuclei display transcription. (B, error bars are standard error of

the mean observed RNAP number, averaged across nuclei in a single embryo; C,D,F,G, solid

lines indicate mean predictions of the model, shading represents standard error of the mean;

C,D,E, error bars in data points represent standard error of the mean over 8 embryos; F,G,H,

error bars in data points represent standard error of the mean over 14 embryos.)
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the entire nuclear cycle (Video S6). Specifically, transcription occurred only in

the anterior part of the embryo, with transcription disappearing completely in

positions posterior to about 40% of the embryo length (Fig. 4H). From those235

positions in the mutant embryos that did exhibit transcription in at least 50%

of observed nuclei, we extracted the initial rate of RNAP loading and ton as a

function of position. Interestingly, these RNAP loading rates were comparable

to the corresponding rates in wild-type embryos (Fig. 4F, points). However, un-

like in the wild-type case (Fig. 4D, points), ton was not constant in the zelda−240

background. Instead, ton became increasingly delayed in more posterior posi-

tions until transcription ceased posterior to 40% of the embryo length (Fig. 4G,

points). Together, these observations indicated that removing Zelda primarily

results in a delay of transcription with only negligible effects on the underly-

ing rates of RNAP loading, consistent with previous fixed-embryo experiments245

(Nien et al., 2011; Foo et al., 2014) and with recent live-imaging measurements

in which Zelda binding was reduced at specific enhancers (Dufourt et al., 2018;

Yamada et al., 2019). We speculate that the loss of transcriptionally active

nuclei posterior to 40% of the embryo length is a direct result of this delay in

ton: by the time that onset would occur in those nuclei, the processes leading250

to the next mitosis have already started and repressed transcriptional activity.

Next, we attempted to simultaneously fit the model to the initial rates of

RNAP loading and ton in the zelda− mutant background. Although the model

recapitulated the observed initial RNAP loading rates, we noticed a discrepancy

between the observed and fitted transcriptional onset times of up to ∼5 min255

(Fig. 4F and G). While the mutant data exhibited a substantial delay in more

posterior nuclei, the model did not produce significant delays (Fig. 4G, line).

Further, our model could not account for the lack of transcriptional activity

posterior to 40% of the embryo length in the zelda− mutant (Fig. 4H).

These discrepancies suggest that the thermodynamic MWC model cannot260

fully describe the transcriptional regulation of the hunchback promoter by Bicoid

and Zelda. However, the attempted fits in Fig. 4F and G correspond to a

particular set of model parameters and therefore do not completely rule out the
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possibility that there exists some parameter set of the thermodynamic MWC

model capable of recapitulating the zelda− data.265

In order to determine whether this model is at all capable of accounting for

the zelda− transcriptional behavior, we systematically explored how its parame-

ters dictate its predictions. To characterize and visualize the limits of our model,

we examined a mathematically convenient metric: the average transcriptional

onset delay along the anterior-posterior axis (Fig. 5A). This quantity is defined

as the area under the curve of ton versus embryo position, from 20% to 37.5%

along the embryo (the positions where the zelda− data display transcription),

divided by the corresponding distance along the embryo

〈onset delay〉 =
1

37.5%− 20%

∫ 37.5%

20%

(ton(x)− ton(x = 20%)) dx, (4)

where x is the position along the embryo and the value of ton at 20% along

the embryo was chosen as the offset with respect to which to define the zero of

this integral (Section S5.1). The average ton delay corresponding to the wild-

type data is close to zero, and is substantially different from the larger value

obtained from measurements in the zelda− background within experimental270

error (Fig. 5C, points).

Based on Estrada et al. (2016) and as detailed in Section S5.1, we used an al-

gorithm to efficiently sample the parameter space of the thermodynamic MWC

model (dissociation constants Kb and Kz, protein-protein interaction terms ωb

and ωbp, energy to make the DNA accessible ∆εchrom, and length of the mi-275

totic repression window tMitRep), and to calculate the corresponding average ton

delay for each parameter set. Fig. 5B features three specific realizations of this

parameter search; for each combination of parameters considered, the predicted

ton is calculated and the corresponding average ton delay computed. Although

the wild-type data were contained within the thermodynamic MWC model re-280

gion, the range of the average ton delay predicted by the model (Fig. 5C, green

rectangle) did not overlap with the zelda− data. We concluded that our ther-

modynamic MWC model is not sufficient to explain the regulation of hunchback

by Bicoid and Zelda.
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Figure 5: Failure of thermodynamic models to describe Bicoid-dependent activation of hunch-

back. (A) Experimentally determined ton. Horizontal dashed lines indicate the average ton

delay with respect to ton(x = 20%) for wild-type and zelda− data sets. (B) Exploration of

average ton delay from the thermodynamic MWC model. Each choice of model parameters

predicts a distinct ton profile of along the embryo. (C) Predicted range of average ton delay

for all possible parameter choices of the thermodynamic MWC model (green), as well as for

all thermodynamic models considering 12 Bicoid binding sites (yellow), compared with exper-

imental data (red, blue). (A,C, error bars represent standard error of the mean over 8 and

14 embryos for the wild-type and zelda− datasets, respectively; B, solid lines indicate mean

predictions of the model)
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2.4. No thermodynamic model can recapitulate the activation of hunchback by285

Bicoid alone

Since the failure of the thermodynamic MWC model to predict the zelda−

data does not necessarily rule out the existence of another thermodynamic model

that can account for our experimental measurements, we considered other possi-

ble thermodynamic models. Conveniently, an arbitrary thermodynamic model

featuring nb Bicoid binding sites can be generalized using the mathematical

expression

dmRNA

dt
=

(∑nb

i=0 P1,iR[Bicoid]i
)

pinacc +
∑1
r=0

∑nb

i=0 Pr,i[Bicoid]i
, (5)

where pinacc and Pr,i are arbitrary weights describing the states in our gener-

alized thermodynamic model, R is a rate constant that relates promoter occu-

pancy to transcription rate, and the r and i summations refer to the numbers of

RNAP and Bicoid molecules bound to the enhancer, respectively (Section S6.1;290

Bintu et al., 2005a; Estrada et al., 2016; Scholes et al., 2017).

Although this generalized thermodynamic model contains many more pa-

rameters than the thermodynamic MWC model previously considered, we could

still systematically explore these parameters and the resulting average ton de-

lays. For added generality, and to account for recent reports suggesting the295

presence of more than six Bicoid binding sites in the hunchback minimal en-

hancer (Park et al., 2019), we expanded this model to include up to 12 Bicoid

binding sites. Even though the generalized thermodynamic model occupied a

larger region of the average ton delay space than the thermodynamic MWC

model, it still failed to explain the zelda− data (Section S6.2; Fig. 5C, yellow300

rectangle). Thus, our results strongly suggest that no thermodynamic model

of Bicoid-activated hunchback transcription can predict transcriptional onset in

the absence of Zelda, casting doubt on the general applicability of these models

to transcriptional regulation in development.

Qualitatively, the reason for the failure of thermodynamic models to predict305

hunchback transcriptional is revealed by comparing Bicoid and Zelda concentra-

tion dynamics to those of the MS2 output signal (Fig. S10). The thermodynamic
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models investigated in this work have assumed that the system responds instan-

taneously to any changes in input transcription factor concentration. As a result,

since Bicoid and Zelda are imported into the nucleus by around 3 min into the310

nuclear cycle (Fig. 3A and B), these models always predict that transcription

will ensue at approximately that time. Thus, thermodynamic models cannot

accommodate delays in the ton such as those revealed by the zelda− data (see

Section S6.3 for a more detailed explanation). Rather than further complicat-

ing our thermodynamic models with additional molecular players to attempt315

to describe the data, we instead decided to examine the broader purview of

non-equilibrium models to attempt to reach an agreement between theory and

experiment.

2.5. A non-equilibrium MWC model also fails to describe the zelda− data

Thermodynamic models based on equilibrium statistical mechanics can be320

seen as limiting cases of more general kinetic models that lie out of equilib-

rium (Section S6.4; Fig. 1B). Following recent reports (Estrada et al., 2016;

Li et al., 2018; Park et al., 2019) that the theoretical description of transcrip-

tional regulation in eukaryotes may call for models rooted in non-equilibrium

processes – where the assumptions of separation of time scales and no energy325

expenditure may break down – we extended our earlier models to produce a

non-equilibrium MWC model (Sections S6.4 and S7.1; Kim and O’Shea, 2008;

Narula and Igoshin, 2010). This model, shown for the case of two Bicoid binding

sites in Fig. 6A, accounts for the dynamics of the MWC mechanism by positing

transition rates between the inaccessible and accessible chromatin states, but330

makes no assumptions about the relative magnitudes of these rates, or about

the rates of Bicoid and RNAP binding and unbinding.

Since this model can operate out of steady state, we calculate the proba-

bilities of each state as a function of time by solving the system of coupled

ordinary differential equations (ODEs) associated with the system shown in335

Fig. 6A. Consistent with prior measurements (Blythe and Wieschaus, 2016), we

assume that chromatin is inaccessible at the start of the nuclear cycle. Over
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time, the system evolves such that the probability of it occupying each state

becomes nonzero, making it possible to calculate the fraction of time RNAP

is bound to the promoter and, through the occupancy hypothesis, the rate of340

RNAP loading.

We systematically varied the magnitudes of the transition rates and solved

the system of ODEs in order to calculate the corresponding average ton delay.

Due to the combinatorial increase of free parameters as more Bicoid binding

sites are included in the model, we could only explore the parameter space for345

models containing up to five Bicoid binding sites (Section S7.2; Figs. 6B and S9).

Interestingly, while the upper bound of the average ton delay monotonically in-

creased with Bicoid binding site number, the lower bound of this delay did not

vary in a systematic fashion (Fig. 6B). This phenomenon where the parame-

ter space of a model does not strictly increase with binding site number has350

been previously observed (Estrada et al., 2016) and the reason for this effect

remains uncertain. Regardless, none of the non-equilibrium MWC models with

up to five Bicoid binding sites came close to reaching the mutant average ton

delay (Fig. 6B). We conjecture that the observed behavior extends to the bio-

logically relevant case of six or more binding sites. Thus, we conclude that the355

more comprehensive non-equilibrium MWC model still cannot account for the

experimental data, motivating an additional reexamination of our assumptions.

2.6. Transcription factor-driven chromatin accessibility can capture all aspects

of the data

Since even non-equilibrium MWC models incorporating energy expenditure360

and non-steady behavior could not explain the zelda− data, we further revised

the assumptions of our model in an effort to quantitatively predict the regulation

of ton along the embryo. In accordance with the MWC model of allostery, all

of our theoretical treatments so far have posited that the DNA is an allosteric

molecule that transitions between open and closed states as a result of thermal365

fluctuations (Narula and Igoshin, 2010; Mirny, 2010; Marzen et al., 2013; Phillips

et al., 2013).
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Figure 6: Non-equilibrium MWC model of transcriptional regulation cannot predict the ob-

served ton delay. (A) Model that makes no assumptions about the relative transition rates

between states or about energy expenditure. Each transition rate i, j represents the rate of

switching from state i to state j. See Section S7.1 for details on how the individual states

are labeled. (B) Exploration of average ton delay attainable by the non-equilibrium MWC

models as a function of the number of Bicoid binding sites compared to the experimentally

obtained values corresponding to the wild-type and zelda− mutant backgrounds. While the

non-equilibrium MWC model can explain the wild-type data, the exploration reveals that it

fails to explain thezelda− data, for up to five Bicoid binding sites.
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In the MWC models considered here, the presence of Zelda and Bicoid does

not affect the microscopic rates of DNA opening and closing; rather, their bind-

ing to open DNA shifts the equilibrium of the DNA conformation toward the370

accessible state. However, recent biochemical work has suggested that Zelda

and Bicoid play a more direct role in making chromatin accessible. Specifically,

Zelda has been implicated in the acetylation of chromatin, a histone modification

that renders nucleosomes unstable and increases DNA accessibility (Li et al.,

2014b; Li and Eisen, 2018). Further, Bicoid has been shown to interact with the375

co-activator dCBP, which possesses histone acetyltransferase activity (Fu et al.,

2004). Additionally, recent studies by Desponds et al. (2016) in hunchback and

by Dufourt et al. (2018) in snail have proposed the existence of multiple tran-

scriptionally silent steps that the promoter needs to transition through before

transcriptional onset. These steps could correspond to, for example, the re-380

cruitment of histone modifiers, nucleosome remodelers, and the transcriptional

machinery (Li et al., 2014b; Park et al., 2019), or to the step-wise unraveling

of discrete histone-DNA contacts (Culkin et al., 2017). Further, Dufourt et al.

(2018) proposed that Zelda plays a role in modulating the number of these steps

and their transition rates.385

We therefore proposed a model of transcription factor-driven chromatin ac-

cessibility in which, in order for the DNA to become accessible and transcription

to ensue, the system slowly and irreversibly transitions through m transcription-

ally silent states (Section S8.1; Fig. 7A). We assume that the transitions between

these states are all governed by the same rate constant π. Finally, in a stark

deviation from the MWC framework, we posit that these transitions can be

catalyzed by the presence of Bicoid and Zelda such that

π = cb[Bicoid] + cz[Zelda]. (6)

Here, π describes the rate (in units of inverse time) of each irreversible step, ex-

pressed as a sum of rates that depend separately on the concentrations of Bicoid

and Zelda, and cb and cz are rate constants that scale the relative contribution

of each transcription factor to the overall rate.
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In this model of transcription factor-driven chromatin accessibility, once the390

DNA becomes irreversibly accessible after transitioning through the m non-

productive states, we assume that, for the rest of the nuclear cycle, the system

equilibrates rapidly such that the probability of it occupying any of its possible

states is still described by equilibrium statistical mechanics. Like in our previ-

ous models, transcription only occurs in the RNAP-bound states, obeying the395

occupancy hypothesis. Further, our model assumes that if the transcriptional

onset time of a given nucleus exceeds that of the next mitosis, this nucleus will

not engage in transcription.

Unlike the thermodynamic and non-equilibrium MWC models, this model of

transcription factor-driven chromatin accessibility quantitatively recapitulated400

the observation that posterior nuclei do not engage in transcription, the initial

rate of RNAP loading, and ton for both the wild-type and zelda− mutant data

(Fig. 7B and C). Additionally, we found that a minimum of m = 5 steps was

required to sufficiently explain the data (Section S8.2; Fig. S13). Interestingly,

unlike all previously considered models, the model of transcription factor-driven405

chromatin accessibility did not require mitotic repression to explain ton (Sec-

tions S3.1 and S8.1). Instead, the timing of transcriptional output arose directly

from the model’s initial irreversible transitions (Fig. S13), obviating the need for

an arbitrary suppression window in the beginning of the nuclear cycle. The only

substantive disagreement between our theoretical model and the experimental410

data was that the model predicted that no nuclei should transcribe posterior

to 60% of the embryo length, whereas no transcription posterior to 40% was

experimentally observed in the embryo (Fig. 7B and C). Finally, note that this

model encompasses a much larger region of parameter space than the equilib-

rium and non-equilibrium MWC models and, as expected from the agreement415

between model and experiment described above, contained both the wild-type

and zelda− data points within its domain (Fig. 7D).
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Figure 7: A model of transcription factor-driven chromatin accessibility is sufficient to reca-

pitulate hunchback transcriptional dynamics. (A) Overview of the proposed model, with five

(m = 5) effectively irreversible Zelda and/or Bicoid-mediated intermediate transitions from

the inaccessible to the accessible states. (B,C) Experimentally fitted (B) initial RNAP load-

ing rates and (C) ton for wild-type and zelda− embryos using a single set of parameters and

assuming six Bicoid binding sites. (D) The domain of average ton delay covered by this tran-

scription factor-driven chromatin accessibility model (brown rectangle) is much larger than

those of the generalized thermodynamic model (yellow rectangle) and the non-equilibrium

MWC models (green rectangle), and easily encompasses both experimental datasets (points).

(B-D, error bars represent standard error of the mean over multiple embryos).
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3. Discussion

For four decades, thermodynamic models rooted in equilibrium statistical

mechanics have constituted the null theoretical model for calculating how the420

number, placement and affinity of transcription factor binding sites on regula-

tory DNA dictates gene expression (Bintu et al., 2005a,b). Further, the MWC

mechanism of allostery has been proposed as an extra layer that allows thermo-

dynamic and more general non-equilibrium models to account for the regulation

of chromatin accessibility (Mirny, 2010; Narula and Igoshin, 2010; Marzen et al.,425

2013).

In this investigation, we tested thermodynamic and non-equilibrium MWC

models of chromatin accessibility and transcriptional regulation in the context

of hunchback activation in the early embryo of the fruit fly D. melanogaster

(Driever et al., 1989; Nien et al., 2011; Xu et al., 2014). While chromatin430

state (accessibility, post-translational modifications) is highly likely to influence

transcriptional dynamics of associated promoters, specifically measuring the in-

fluence of chromatin state on transcriptional dynamics is challenging because

of the sequential relationship between changes in chromatin state and tran-

scriptional regulation. However, the hunchback P2 minimal enhancer provides a435

unique opportunity to dissect the relative contribution of chromatin regulation

on transcriptional dynamics because, in the early embryo, chromatin accessibil-

ity at hunchback is granted by both Bicoid and Zelda (Hannon et al., 2017). The

degree of hunchback transcriptional activity, however, is regulated directly by

Bicoid (Driever and Nusslein-Volhard, 1989; Driever et al., 1989; Struhl et al.,440

1989). Therefore, while genetic elimination of Zelda function interferes with

acquisition of full chromatin accessibility, the hunchback locus retains a measur-

able degree of accessibility and transcriptional activity stemming from Bicoid

function, allowing for a quantitative determination of the contribution of Zelda-

dependent chromatin accessibility on the transcriptional dynamics of the locus.445

With these attributes in mind, we constructed a thermodynamic MWC

model which, given a set of parameters, predicted an output rate of hunch-
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back transcription as a function of the input Bicoid and Zelda concentrations

(Fig. 2B). In order to test this model, it was necessary to acknowledge that de-

velopment is not in steady-state, and that both Bicoid and Zelda concentrations450

change dramatically in space and time (Fig. 3A and B). As a result, we went

beyond widespread steady-state descriptions of development and introduced a

novel approach that incorporated transient dynamics of input transcription-

factor concentrations in order to predict the instantaneous output transcrip-

tional dynamics of hunchback (Fig. 3C). Given input dynamics quantified with455

fluorescent protein fusions to Bicoid and Zelda, we both predicted output tran-

scriptional activity and measured it with an MS2 reporter (Figs. 3D and 4B).

This approach revealed that the thermodynamic MWC model sufficiently

predicts the timing of the onset of transcription and the subsequent initial rate

of RNAP loading as a function of Bicoid and Zelda concentration. However,460

when confronted with the much simpler case of Bicoid-only regulation in a zelda

mutant, the thermodynamic MWC model failed to account for the observations

that only a fraction of nuclei along the embryo engaged in transcription, and

that the transcriptional onset time of those nuclei that do transcribe was sig-

nificantly delayed with respect to the wild-type setting (Fig. 4D, E, G, and H).465

Our systematic exploration of all thermodynamic models (over a reasonable pa-

rameter range) showed that that no thermodynamic model featuring regulation

by Bicoid alone could quantitatively recapitulate the measurements performed

in the zelda mutant background (Fig. 5C, yellow rectangle).

This disagreement could be resolved by invoking an unknown transcription470

factor that regulates the hunchback reporter in addition to Bicoid. However, at

the early stages of development analyzed here, such a factor would need to be

both maternally provided and patterned in a spatial gradient to produce the

observed position-dependent transcriptional onset times. To our knowledge,

none of the known maternal genes regulate the expression of this hunchback475

reporter in such a fashion (Chen et al., 2012; Perry et al., 2012; Xu et al., 2014).

We conclude that the MWC thermodynamic model cannot accurately predict

hunchback transcriptional dynamics.
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To explore non-equilibrium models, we retained the MWC mechanism of

chromatin accessibility, but did not demand that the accessible and inaccessible480

states be in thermal equilibrium. Further, we allowed for the process of Bicoid

and RNAP binding, as well as their interactions, to consume energy. For up

to five Bicoid binding sites, no set of model parameters could quantitatively

account for the transcriptional onset delays in the zelda mutant background

(Fig. 6B). While we were unable to investigate models with more than five Bi-485

coid binding sites due to computational complexity (Estrada et al., 2016), the

substantial distance in parameter space between the mutant data and the in-

vestigated models (Fig. 6B) suggested that a successful model with more than

five Bicoid binding sites would probably operate near the limits of its explana-

tory power, similar to the conclusions from studies that explored hunchback490

regulation under the steady-state assumption (Park et al., 2019). Thus, despite

the simplicity and success of the MWC model in predicting the effects of pro-

tein allostery in a wide range of biological contexts (Keymer et al., 2006; Swem

et al., 2008; Martins and Swain, 2011; Marzen et al., 2013; Rapp and Yifrach,

2017; Razo-Mejia et al., 2018; Chure et al., 2019; Rapp and Yifrach, 2019), the495

observed transcriptional onset times could not be described by any previously

proposed thermodynamic MWC mechanism of chromatin accessibility, or even

by a more generic non-equilibrium MWC model in which energy is continuously

dissipated (Tu, 2008; Kim and O’Shea, 2008; Narula and Igoshin, 2010; Estrada

et al., 2016; Wang et al., 2017).500

Since Zelda is associated with histone acetylation, which is correlated with

increased chromatin accessibility (Li et al., 2014b; Li and Eisen, 2018), and

Bicoid interacts with the co-activator dCBP, which has histone acetyltransferase

activity (Fu et al., 2004; Fu and Ma, 2005; Park et al., 2019), we suspect that

both Bicoid and Zelda actively drive DNA accessibility. A molecular pathway505

shared by Bicoid and Zelda to render chromatin accessible is consistent with

our results, and with recent genome-wide experiments showing that Bicoid can

rescue the function of Zelda-dependent enhancers at high enough concentrations

(Hannon et al., 2017). Thus, the binding of Bicoid and Zelda, rather than just
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biasing the equilibrium of the open chromatin state as in the MWC mechanism,510

may trigger a set of molecular events that locks DNA into an accessible state. In

addition, the promoters of hunchback (Desponds et al., 2016) and snail (Dufourt

et al., 2018) may transition through a set of intermediate, non-productive states

before transcription begins.

We therefore explored a model in which Bicoid and Zelda catalyze the tran-515

sition of chromatin into the accessible state via a series of slow, effectively ir-

reversible steps. These steps may be interpreted as energy barriers that are

overcome through the action of Bicoid and Zelda, consistent with the coupling

of these transcription factors to histone modifiers, nucleosome remodelers (Fu

et al., 2004; Li et al., 2014b; Li and Eisen, 2018; Park et al., 2019), and with520

the step-wise breaking of discrete histone-DNA contacts to unwrap nucleoso-

mal DNA (Culkin et al., 2017). In this model, once accessible, the chromatin

remains in that state and the subsequent activation of hunchback by Bicoid is

described by a thermodynamic model.

Crucially, this transcription factor-driven chromatin accessibility model suc-525

cessfully replicated all of our experimental observations. A minimum of five

intermediate transcriptionally silent states were necessary to explain our data

(Figs. 7D and S13C). Interestingly, recent work dissecting the transcriptional on-

set time distribution of snail suggested the existence of three such intermediate

steps in the context of that gene (Dufourt et al., 2018). These intermediate steps530

may reveal fundamental constraints for transcriptional regulation in the fruit fly.

Intriguingly, accounting for the intermediate states obviated the need for the ad

hoc imposition of a mitotic repression window (Sections S3.1 and S8.1), which

was required in the thermodynamic MWC model (Fig. S6). Our results sug-

gest a mechanistic interpretation of the phenomenon of mitotic repression after535

anaphase, where the promoter must traverse through intermediary states be-

fore transcriptional onset can occur. Finally, given that, as in hunchback, the

removal and addition of Zelda modulates the timing of transcriptional onset of

sog and snail (Dufourt et al., 2018; Yamada et al., 2019), we speculate that

transcription factor-driven chromatin accessibility may also be at play in these540
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pathways.

These clues into the molecular mechanisms of action of Bicoid, Zelda, and

their associated modifications to the chromatin landscape pertain to a time scale

of a few minutes, a temporal scale that is inaccessible with widespread genome-

wide and fixed-tissue approaches. Here, we revealed the regulatory action of545

Bicoid and Zelda by utilizing the dynamic information provided by live imaging

to analyze the transient nature of the transcriptional onset time, highlighting

the need for descriptions of development that go beyond steady state and ac-

knowledge the highly dynamic changes in transcription-factor concentrations

that drive developmental programs.550

While we showed that one model incorporating transcription factor-driven

chromatin accessibility could recapitulate hunchback transcriptional regulation

by Bicoid and Zelda, and is consistent with molecular evidence on the modes

of action of these transcription factors, other models may have comparable ex-

planatory power. In the future, a systematic exploration of different classes of555

models and their unique predictions will identify measurements that determine

which specific model is the most appropriate description of transcriptional reg-

ulation in development and how it is implemented at the molecular level. While

all the analyses in this work relied on mean levels of input concentrations and

output transcription levels, detailed studies of single-cell features of transcrip-560

tional dynamics such as the distribution of transcriptional onset times (Narula

and Igoshin, 2010; Dufourt et al., 2018) could shed light on these chromatin-

regulating mechanisms. Simultaneous measurement of local transcription-factor

concentrations at sites of transcription and of transcriptional initiation with high

spatiotemporal resolution, such as afforded by lattice light-sheet microscopy565

(Mir et al., 2018), could provide further information about chromatin accessi-

bility dynamics. Finally, different theoretical models may make distinct pre-

dictions about the effect of modulating the number, placement, and affinity of

Bicoid and Zelda sites (and even of nucleosomes) in the hunchback enhancer.

These models could be tested with future experiments that implement these570

modulations in reporter constructs.
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In sum, here we engaged in a theory-experiment dialogue to respond to the

theoretical challenges of proposing a passive MWC mechanism for chromatin ac-

cessibility in eukaryotes (Mirny, 2010; Narula and Igoshin, 2010; Marzen et al.,

2013); we also questioned the suitability of thermodynamic models in the con-575

text of development (Estrada et al., 2016). At least regarding the activation of

hunchback, and likely similar developmental genes such as snail and sog (Dufourt

et al., 2018; Yamada et al., 2019), we speculate that Bicoid and Zelda actively

drive chromatin accessibility, possibly through histone acetylation. Once chro-

matin becomes accessible, thermodynamic models can predict hunchback tran-580

scription without the need to invoke energy expenditure and non-equilibrium

models. Regardless of whether we have identified the only possible model of

chromatin accessibility and regulation, we have demonstrated that this dialogue

between theoretical models and the experimental testing of their predictions at

high spatiotemporal resolution is a powerful tool for biological discovery. The585

new insights afforded by this dialogue will undoubtedly refine theoretical de-

scriptions of transcriptional regulation as a further step toward a predictive

understanding of cellular decision-making in development.
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4. Materials and Methods

4.1. Predicting Zelda binding sites

Zelda binding sites in the hunchback promoter were identified as hep-

tamers scoring 3 or higher using a Zelda alignment matrix (Harrison et al.,

2011) and the Advanced PASTER entry form online (http://stormo.wustl.605

edu/consensus/cgi-bin/Server/Interface/patser.cgi) (Hertz et al., 1990;

Hertz and Stormo, 1999). PATSER was run with setting “Seq. Alphabet and

Normalization” as “a:t 3 g:c 2” to provide the approximate background frequen-

cies as annotated in the Berkeley Drosophila Genome Project (BDGP)/Celera

Release 1. Reverse complementary sequences were also scored.610

4.2. Fly Strains

Bicoid nuclear concentration was imaged in embryos from line yw; his2av-

mrfp1;bicoidE1,egfp-bicoid (Gregor et al., 2007b). Similarly, Zelda nuclear con-

centration was determined by imaging embryos from line sfgfp-zelda;+;his-irfp.

The sfgfp-zelda transgene was obtained from Hamm et al. (2017) and the his-615

iRFP transgene is courtesy of Kenneth Irvine and Yuanwang Pan.

Transcription from the hunchback promoter was measured by imaging em-

bryos resulting from crossing female virgins yw;HistoneRFP;MCP-NoNLS(2)

with male yw;P2P-MS2-LacZ/cyo;+ (Garcia et al., 2013).

In order to image transcription in embryos lacking maternally de-620

posited Zelda protein, we crossed mother flies whose germline was

w, his2av-mrfp1,zelda(294),FRT19A;+;MCP-egfp(4F)/+ obtained through

germline clones (see below) with fathers carrying the yw;P2P-MS2-LacZ/cyo;+

reporter. The zelda(294) transgene is courtesy of Christine Rushlow (Liang

et al., 2008). The MCP-egfp(4F) transgene expresses approximately double the625

amount of MCP than the MCP-egfp(2) (Garcia et al., 2013), ensuring similar

levels of MCP in the embryo in all experiments.

Imaging Bicoid nuclear concentration in embryos lacking maternally de-

posited Zelda protein was accomplished by replacing the MCP-egfp(4F)
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transgene described in the previous paragraph with the bicoidE1,egfp-630

bicoid transgene used for imaging nuclear Bicoid in a wildtype back-

ground. We crossed mother flies whose germline was w, his2av-

mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/+ obtained through germline

clones (see below) with yw fathers.

4.3. Zelda germline clones635

In order to generate mother flies containing a germline homozy-

gous null for zelda, we first crossed virgin females of w,his2av-

mrfp1,zelda(294),FRT19A/FM7,y,B;+;MCP-egfp(4F)/TM3,ser (or w, his2av-

mrfp1,zelda(294),FRT19A;+;bicoidE1,egfp-bicoid/+ to image nuclear Bicoid)

with males of ovoD,hs-FLP,FRT19A;+;+ (Liang et al., 2008). The resulting640

heterozygotic offspring were heat-shocked in order to create maternal germline

clones as described in Liang et al. (2008). The resulting female virgins were

crossed with male yw;P2P-MS2-LacZ/cyo;+ (Garcia et al., 2013) to image tran-

scription or male yw to image nuclear Bicoid concentration.

Male offspring are null for zygotic zelda. Female offspring are heterozygotic645

for functional zelda, but zygotic zelda is not transcribed until nuclear cycle 14

(Liang et al., 2008), which occurs after the analysis in this work. All embryos

lacking maternally deposited Zelda showed aberrant morphology in nuclear size

and shape (data not shown), as previously reported (Liang et al., 2008; Staudt

et al., 2006).650

4.4. Sample preparation and data collection

Sample preparation followed procedures described in Bothma et al. (2014),

Garcia and Gregor (2018), and Lammers et al. (2019).

Embryos were collected and mounted in halocarbon oil 27 between a semiper-

meable membrane (Lumox film, Starstedt, Germany) and a coverslip. Data col-655

lection was performed using a Leica SP8 scanning confocal microscope (Leica

Microsystems, Biberach, Germany). Imaging settings for the MS2 experiments

were the same as in Lammers et al. (2019), except the Hybrid Detector (HyD)
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for the His-RFP signal used a spectral window of 556-715 nm. The settings for

the Bicoid-GFP measurements were the same, except for the following. The660

power setting for the 488 nm line was 10 µW. The confocal stack was only 10

slices in this case, rather than 21, resulting in a spacing of 1.11 µm between

planes. The images were acquired at a time resolution of 30 s, using an image

resolution of 512 x 128 pixels.

The settings for the Zelda-sfGFP measurements were the same as the Bicoid-665

GFP measurements, except different laser lines were used for the different fluo-

rophores. The sf-GFP excitation line was set at 485 nm, using a power setting

of 10 µW. The His-iRFP excitation line was set at 670 nm. The HyD for the

His-iRFP signal was set at a 680-800 nm spectral window. All specimens were

imaged over the duration of nuclear cycle 13.670

4.5. Image analysis

Images were analyzed using custom-written software following the protocol

in Garcia et al. (2013). Briefly, this procedure involved segmenting individual

nuclei using the histone signal as a nulear mask, segmenting each transcription

spot based on its fluorescence, and calculating the intensity of each MCP-GFP675

transcriptional spot inside a nucleus as a function of time.

Additionally, the nuclear protein fluorescences of the Bicoid-GFP and Zelda-

sfGFP fly lines were calculated as follows. Using the histone-labeled nuclear

mask for each individual nucleus, the fluorescence signal within the mask was

extracted in xyz, as well as through time. For each timepoint, the xy signal was680

averaged to give an average nuclear fluorescence as a function of z and time.

This signal was then maximum projected in z, resulting in an average nuclear

concentration as a function of time, per single nucleus. These single nucleus

concentrations were then averaged over anterior-posterior position to create the

protein concentrations reported in the main text.685

4.6. Data Analysis

All fits in the main text were performed by minimizing the least-squares error

between the data and the model predictions. Unless stated otherwise, error bars
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reflect standard error of the mean over multiple embryo measurements. See

Section S2.1 for more details on how this was carried out for model predictions.690
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Supplementary Information

S1. Equilibrium Models of Transcription

S1.1. An overview of equilibrium thermodynamics models of transcription

In this section we give a brief overview of the theoretical concepts be-1065

hind equilibrium thermodynamics models of transcription. For a more detailed

overview, we refer the reader to Bintu et al. (2005b) and Bintu et al. (2005a).

These models invoke statistical mechanics in order to to calculate bulk proper-

ties of a system by enumerating the probability of each possible microstate of

the system. The probability of a given microstate is proportional to its Boltz-1070

mann weight e−βε, where ε is the energy of the microstate and β = (kBT )−1

with kB being the Boltzmann constant and T the absolute temperature of the

system (Garcia et al., 2007).

Specific examples of these microstates in the context of simple activation

are featured in Fig. S1. As reviewed in Garcia et al. (2007), the Boltzmann

weight of each of these microstates can also be written in a thermodynamic

language that accounts for the concentration of the molecular species, their

dissociation constant to DNA, and a cooperativity term ω that accounts for the

protein-protein interactions between the activator and RNAP. To calculate the

probability of finding RNAP bound to the promoter pbound, we divide the sum

of the weights of the RNAP-bound states by the sum of all possible states

pbound =

[P ]
Kp

+ ω [P ]
Kp

[A]
Ka

1 + [P ]
Kp

+ [A]
Ka

+ ω [P ]
Kp

[A]
Ka

. (S1)

Here, [P ] and [A] are the concentrations of RNAP and activator, respectively.

Kp and Ka are their corresponding dissociation constants, and ω indicates an1075

interaction between activator and RNAP: ω > 1 corresponds to cooperativity,

whereas 0 < ω < 1 corresponds to anti-cooperativity.

Using pbound, we write the subsequent rate of mRNA production by assuming

the occupancy hypothesis, which states that

dmRNA

dt
= Rpbound, (S2)
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Figure S1: Equilibrium thermodynamic model of simple activation. A promoter region with

one binding site for an activator molecule has four possible microstates, each with its corre-

sponding statistical weight and rate of RNAP loading.

where R is an underlying rate of transcriptional initiation (usually interpreted

as the rate of loading RNAP from the promoter-bound state). In the case of

simple activation illustrated in Fig. S1, the overall transcriptional initiation rate

is then given by

dmRNA

dt
= R

[P ]
Kp

+ ω [P ]
Kp

[A]
Ka

1 + [P ]
Kp

+ [A]
Ka

+ ω [P ]
Kp

[A]
Ka

. (S3)

From Eq. S1, one can derive the Hill equation that is frequently used to

model biophysical binding. In the limit of high cooperativity, ω [P ]
Kp
� 1 and

ω [A]
Ka
� 1 such that

pbound =
ω [P ]
Kp

[A]
Ka

1 + ω [P ]
Kp

[A]
Ka

. (S4)

If we then define a new binding constant K ′a =
KaKp

ω[P ] , we get the familiar Hill

equation of order 1 with a binding constant K ′a

pbound =

[A]
K′

a

1 + [A]
K′

a

(S5)

In general, any Hill equation of order n can be derived from a more fundamental

equilibrium thermodynamic model of simple activation possessing n activator

binding sites in the appropriate limits of high cooperativity. Thus, any time a1080

Hill equation is invoked, equilibrium thermodynamics is implicitly used, bring-

ing with it all of the underlying assumptions described in Section S6.4. This
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highlights the importance of rigorously grounding the assumptions made in any

model of transcription, to better discriminate between the effects of equilibrium

and non-equilibrium processes.1085

S1.2. Thermodynamic MWC model

In the thermodynamic MWC model, we consider a system with six Bicoid

binding sites and ten Zelda binding sites. In addition, we allow for RNAP

binding to the promoter.

In our model, the DNA can be in either an accessible or an inaccessible state.

The difference in free energy between the two states is given by −∆εchrom,

where ∆εchrom is defined as

∆εchrom = εaccessible − εinaccessible. (S6)

Here, εaccessible and εaccessible are the energies of the accessible and inaccessi-1090

ble states, respectively. A positive ∆εchrom signifies that the inaccessible state

is at a lower energy level, and therefore more probable, than the accessible state.

We assume that all binding sites for a given molecular species have the same

binding affinity, and that all accessible states exist at the same energy level com-

pared to the inaccessible state. Thus, the total number of states is determined1095

by the combinations of occupancy states of the three types of binding sites as

well as the presence of the inaccessible, unbound state. We choose to not allow

any transcription factor or RNAP binding when the DNA is inaccessible.

In this equilibrium model, the statistical weight of each accessible microstate

is given by the thermodynamic dissociation constants Kb, Kz, and Kp of Bicoid,1100

Zelda, and RNAP respectively. The statistical weight for the inaccessible state is

e
∆εchrom. We allow for a protein-protein interaction term ωb between nearest-

neighbor Bicoid molecules, as well as a pairwise cooperativity ωbp between Bicoid

and RNAP. However, we posit that Zelda does not interact directly with either

Bicoid or RNAP. For notational convenience, we express the statistical weights1105

in terms of the non-dimensionalized concentrations of Bicoid, Zelda, and RNAP,

given by b, z and p, respectively, such that, for example, b ≡ [Bicoid]
Kb

. Fig. S2
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Figure S2: States, weights, and rate of RNAP loading diagram for the thermodynamic MWC

model, containing six Bicoid binding sites, ten Zelda binding sites, and a promoter.

shows the states and statistical weights for this thermodynamic MWC model,

with all the associated parameters.

Incorporating all the microstates, we can calculate a statistical mechanical

partition function, the sum of all possible weights, which is given by

Z =e∆εchrom/kBT+ (S7)

(1 + z)
10︸ ︷︷ ︸

Zelda binding

(
1 + b+ b2ωb + ...+ b6ω5

b + p+ pbωbp + ...+ pb6ω5
bω

6
bp

)︸ ︷︷ ︸
Bicoid and RNAP binding

.

Using the binomial theorem

(a+ b)N =
N∑
n=0

(
N

n

)
anbN−n,
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Eq. S7 can be expressed more compactly as

Z = e∆εchrom/kBT +
(

1 + z
)10(

1 + p+
∑
j=0,1

6∑
i=1

(
6

i

)
biωi−1

b pjωijbp

)
. (S8)

From this partition function, we can calculate pbound, the probability of

being in an RNAP-bound state. This term is given by the sum of the statistical

weights of the RNAP-bound states divided by the partition function

pbound =
1

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
. (S9)

In this model, we once again assume that the transcription associated with each

microstate is zero unless RNAP is bound, in which case the associated rate is

R. Then, the overall transcriptional initiation rate is given by the product of

pbound and R

dmRNA

dt
= R

1

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
. (S10)

Note that since the MS2 technology only measures nascent transcripts, we can1110

ignore the effects of mRNA degradation and focus on transcriptional initiation.

S1.3. Constraining model parameters

The transcription rate R of the RNAP-bound states can be experimentally

constrained by making use of the fact that the hunchback minimal reporter used

in this work produces a step-like pattern of transcription across the length of

the fly embryo (Fig. 4C). Since in the anterior end of the embryo, the observed

transcription appears to level out to a maximum value, we assume that Bicoid

binding is saturated in this anterior end of the embryo such that

pbound(b→∞) ≈ 1. (S11)

In this limit, Eq. S10 can be written as

dmRNA

dt
= Rmax ≈ R, (S12)

where Rmax is the maximum possible transcription rate. Importantly, Rmax is

an experimentally observed quantity rather than a free parameter. As a result,
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the model parameter R is determined by experimentally measurable quantity1115

Rmax.

The value of p can also be constrained by measuring the transcription rate

in the embryo’s posterior, where we assume Bicoid concentration to be negli-

gible. Here, the observed transcription bottoms out to a minimum level Rmin

(Fig. 4C), which we can connect with the model’s theoretical minimum rate.

Specifically, in this limit, b approaches zero in Eq. S10 such that all Bicoid-

dependent terms drop out, resulting in

dmRNA

dt
= Rmin ≈

1

Z

((
1 + z

)10

p

)
Rmax, (S13)

where we have replaced R with Rmax as described above. Next, we can express

p in terms of the other parameters such that

p ≈
Rmin

(
e∆εchrom/kBT +

(
1 + z

)10
)

(
Rmax −Rmin

)(
1 + z

)10
. (S14)

Thus, p is no longer a free parameter, but is instead constrained by the ex-

perimentally observed maximum and minimum rates of transcription Rmax and

Rmin, as well as our choices of Kz and ∆εchrom. In our analysis, Rmax and

Rmin are calculated by taking the mean RNAP loading rate across all embryos1120

from the anterior and posterior of the embryo respectively, extrapolated using

the trapezoidal fitting scheme described in Section S2.3.

Finally, we expand this thermodynamic MWC model to also account for

suppression of transcription in the beginning of the nuclear cycle via mechanisms

such as mitotic repression (Section S3.1). To make this possible, we include a1125

trigger time term tMitRep, before which we posit that no readout of Bicoid or

Zelda by hunchback is possible and the rate of RNAP loading is fixed at 0. For

times t > tMitRep, the system behaves according to Eq. S10. Thus, given the

constraints stemming from direct measurements of Rmax and Rmin, the model

has six free parameters: ∆εchrom, ωb, ωbp, Kb, Kz, and tMitRep. The final1130
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calculated transcription rate is then integrated in time to produce a predicted

MS2 fluorescence as a function of time (Section S2.2).

For subsequent parameter exploration of this model (Section S5.1), con-

straints were placed on the parameters to ensure sensible results. Each param-

eter was constrained to be strictly positive such that:1135

• ∆εchrom > 0

• Kb > 0

• Kz > 0

• ωb > 0

• ωbp > 01140

• tMitRep > 0.

S2. Input-Output measurements, predictions, and characterization

S2.1. Input measurement methodology

Input transcription-factor measurements were carried out separately in in-

dividual embryos containing a eGFP-Bicoid transgene in a bicoid null mutant1145

background (Gregor et al., 2007b) or a Zelda-sfGFP CRISPR-mediated homol-

ogous recombination at the endogenous zelda locus (Hamm et al., 2017). Over

the course of nuclear cycle 13, the fluorescence inside each nucleus was extracted

(details given in Section 4.5), resulting in a measurement of the nuclear con-

centration of each transcription factor over time. Six eGFP-Bicoid and three1150

Zelda-sfGFP embryos were imaged.

Representative fluorescence traces of eGFP-Bicoid for a single embryo indi-

cate that the magnitude of eGFP-Bicoid fluorescence decreases for nuclei located

toward the posterior of the embryo (Fig. S3A). Further, the nuclear fluorescence

of eGFP-Bicoid at 8 min into nuclear cycle 13 (Fig. S3B) exhibited the known1155

exponential decay of Bicoid, with a mean decay length of 23.5% ± 0.6% of the
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total embryo length, consistent with but slightly different than previous mea-

surements that suggested a mean decay length of 19.1%±0.8% (Liu et al., 2013).

This discrepancy could stem, for example, from minor differences in acquisition

from the laser-scanning two-photon microscope used in Liu et al. (2013) versus1160

the laser-scanning confocal microscope used here, such as differences in axial res-

olution (due both to different choices of objectives and the inherent differences

in axial resolution of one-photon and two-photon fluorescence excitation pro-

cesses). Nevertheless, the difference was minute enough that we felt confident

in our eGFP-Bicoid measurements.1165

Intra-embryo variability in eGFP-Bicoid nuclear fluorescence, defined by the

standard deviation across nuclei within a single embryo divided by the mean,

was in the range of 10-30%, as was the inter-embryo variability, defined by

the standard deviation of the mean amongst nuclei, across different embryos

(Fig. S3C, blue and black, respectively). Six separate eGFP-Bicoid embryos1170

were measured.

Similarly, representative fluorescence time traces of Zelda-sfGFP for a sin-

gle embryo are shown in Fig. S3D. Unlike the eGFP-Bicoid profile, the Zelda-

sfGFP nuclear fluorescence was approximately uniform across embryo position

(Fig. S3E), consistent with previous fixed-tissue measurements (Staudt et al.,1175

2006; Liang et al., 2008). Intra-embryo variability in Zelda-sfGFP nuclear flu-

orescence was very low (less than 10%), whereas inter-embryo variability was

relatively higher, up to 20% (Fig. S3F, red and black, respectively). Three

separate Zelda-sfGFP embryos were measured.

Due to the consistency of Zelda-sfGFP nuclear fluorescence, we assumed1180

the Zelda profile to be spatially uniform in our analysis, and thus created a

mean Zelda-sfGFP measurement for each individual embryo by averaging all

mean nuclear fluorescence traces in space across the anterior-posterior axis of

the embryo (Fig. S3D, inset). This mean measurement was used as an input

in the theoretical models. However, we still retained inter-embryo variability in1185

Zelda, as described below.

To combine multiple embryo datasets as inputs to the models explored

55

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.922054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.922054
http://creativecommons.org/licenses/by/4.0/


throughout this work, the fluorescence traces corresponding to each dataset

were aligned at the start of nuclear cycle 13, defined as the start of anaphase.

Because each embryo may have possessed slightly different nuclear cycle lengths1190

and/or experimental sampling rates (due to the manual realignment of the z-

stack to keep nuclei in focus), the individual datasets were not combined in order

to create average Bicoid and Zelda profiles across embryos. Instead, a simula-

tion and model prediction were performed for each combination of measured

input Bicoid and Zelda datasets, essentially an in silico experiment covering a1195

portion of the full embryo length. In all, outputs at each embryo position were

predicted in at least three separate simulations. Subsequent analyses used the

mean and standard error of the mean of these amalgamated simulations. With

six GFP-Bicoid datasets and three Zelda-GFP datasets, there were 18 unique

combinations of input embryo datasets; for a single set of parameters used in a1200

particular model, each derived metric (e.g. ton) was calculated using predicted

outputs from each of the 18 possible input combinations. This procedure pro-

vided full embryo coverage and resulted in a distribution of the derived metric

for that particular set of parameters. From this distribution, the mean and

standard error of the mean were calculated, leading to the error bars in plots1205

such as Fig. S6.

S2.2. MS2 fluorescence simulation protocol

To calculate a predicted MS2 fluorescence trace from measured Bicoid

and Zelda inputs for a given theoretical model, we utilized a simple model

of transcription initiation, elongation, and termination. First, the dynamic1210

transcription-factor concentrations were used as inputs to each of the theoret-

ical models outlined throughout the paper. These models generated a rate of

RNAP loading as a function of time and space across the embryo over the course

of nuclear cycle 13.

For each position along the anterior-posterior axis, the predicted rate of

RNAP loading was integrated over time to generate a predicted MS2 fluores-

cence trace. Given the known reporter construct length L of 5.2 kb (Garcia
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Figure S3: Measurements of input transcription-factor concentration dynamics . (A) Nuclear

eGFP-Bicoid concentration as a function of time into nuclear cycle 13 across various positions

along the anterior-posterior axis of a single embryo. (B) eGFP-Bicoid concentration at 8 min

into nuclear cycle 13 as a function of position along the embryo averaged over all measured

embryos (n=6). The fit of the concentration profile to an exponential function results in a

decay length of 23%± 0.6% embryo length. (C) Intra- and inter-embryo variability in eGFP-

Bicoid nuclear fluorescence along the anterior-posterior axis. (D) Zelda-sfGFP concentration

as a function of time into nuclear cycle 13 across various anterior-posterior positions of a

single embryo. (D, inset) Zelda-sfGFP concentration averaged over the data shown in D. (E)

Zelda-sfGFP concentration at 8 min into nuclear cycle 13 as a function of position along the

anterior-posterior axis of the embryo averaged over all measured embryos (n=3). Note that

anterior of 40% and posterior of 77.5% only a single embryo was measured; no error bars were

calculated. (F) Intra- and inter-embryo variability in Zelda-sfGFP nuclear fluorescence along

the anterior-posterior axis. (B,E, error bars represent standard error of the mean nuclear

fluorescence, measured across embryos; C,F, error bars represent standard error of the mean

intra-embryo variability, measured across embryos.)
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et al., 2013), we assume that RNAP molecules are loaded onto the start of

the gene at a rate R(t) predicted by the particular model under consideration

(Fig. S4; see Sections S1.2, S6.1, S7.1, and S8.1 for model details). Each RNAP

molecule traverses the gene at a constant velocity v of 1.54 kb/min, as measured

experimentally by Garcia et al. (2013). With these numbers, we calculate an

elongation time

telon =
L

v
. (S15)

Finally, we assume that upon reaching the end of the reporter gene, the RNAP1215

molecules terminate and disappear instantly such that they no longer contribute

to spot fluorescence.

The MS2 fluorescence signal reports on the number of RNAP molecules ac-

tively occupying the gene at any given time and, under the assumptions outlined

above, is given by the integral

F (t) = α

∫ t

0

(
R(t′)−R(t′ − telon)

)
dt′, (S16)

where F (t) is the predicted fluorescence value, R(t) is the RNAP loading rate

predicted by each specific model, R(t − telon) is the time-shifted loading rate

that accounts for RNAP molecules finishing transcription at the end of the gene,1220

and α is an arbitrary scaling factor to convert from absolute numbers of RNAP

molecules to arbitrary fluorescence units. The predicted value F (t) was scaled

by α to match the experimental data.

The final predicted MS2 signal was modified in a few additional ways. First,

any RNAP molecule that had not yet reached the position of the MS2 stem loops

had its fluorescence value set to zero (Fig. S4, i), since only RNAP molecules

downstream of the MS2 stem loop sequence exhibit a fluorescent signal. Second,

RNAP molecules that were only partially done elongating the MS2 stem loops

contributed a partial fluorescence intensity, given by the ratio of the distance

traversed through the stem loops to the total length of the stem loops

Fpartial =
Lpartial
Lloops

,
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R(t) R(t - L/v)

v

Lpartial Lpartial

L

Figure S4: MS2 fluorescence calculation protocol. RNAP molecules load onto the reporter

gene at a time-dependent rate R(t), after which they elongate at a constant velocity v. Upon

reaching the end of the gene after a length L has been transcribed, they are assumed to ter-

minate and disappear instantly, given by the time-shifted rate R(t− L
v

). The time-dependent

MS2 fluorescence is calculated by summing the contributions of RNAP molecules that are

located before, within, or after the MS2 stem loop sequence (i, ii, and iii, respectively).

where Fpartial is the partial fluorescence contributed by an RNAP molecule

within the stem loop sequence region, Lpartial is the distance within the stem1225

loop sequence traversed, and Lloops is the length of the stem loop sequence

(Fig. S4, ii). For this reporter construct, the length of the stem loops was

approximately Lloops = 1.28 kb. RNAP molecules that had finished transcribing

the MS2 stem loops contributed the full amount of fluorescence (Fig. S4, iii).

Finally, to make this simulation compatible with the trapezoidal fitting scheme1230

in Section S2.3, we included a falling signal at the end of the nuclear cycle,

achieved by setting R(t) = 0 after 17 min into the nuclear cycle and thus

preventing new transcription initiation events.

Given the predicted MS2 fluorescence trace, the rate of RNAP loading and

ton were extracted with the fitting procedure used on the experimental data1235

(Section S2.3).

S2.3. Extracting initial RNAP loading rate and transcriptional onset time

To extract the initial rate of RNAP loading and the transcriptional onset

time ton used in the data analysis, we fit both the experimental and calculated
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MS2 signals to a constant loading rate model, the trapezoidal model (Garcia1240

et al., 2013).

The trapezoidal model provides a heuristic fit of the main features of the

MS2 signal by assuming that the RNAP loading rate is either zero or some

constant value r (Fig. S5A). At time ton, the loading rate switches from zero

to this constant value r, producing a linear rise in the MS2 signal. After the1245

elongation time telong, the loading of new RNAP molecules onto the gene is

balanced by the loss of RNAP molecules at the end of the gene, producing a

plateau in the MS2 signal. Finally, at the end of the nuclear cycle, transcription

ceases at toff and the RNAP loading rate switches back to zero, producing the

falling edge of the MS2 signal and completing the trapezoidal shape. Because1250

we only consider the initial dynamics of transcription in the nuclear cycle in this

investigation, we do not explore the behavior of toff .

Fig. S5B shows the results of fitting the mean MS2 fluorescence from a

narrow window within a single embryo to the trapezoidal model (Section 2.3).

With this fit, we can extract the initial rate of RNAP loading (given by the1255

initial slope) as well as ton (given by the intercept of the fit onto the x-axis).

As a consistency check, the ton values extrapolated from the trapezoidal

fit of the data were compared with the experimental time points at which the

first MS2 spots were observed for both the wild-type and zelda− mutant ex-

periments (Fig. S5C). Due to the detection limit of the microscope, this latter1260

method reports on the time at which a few RNAP molecules have already be-

gun transcribing the reporter gene, rather than a “true” transcriptional onset

time. Using the first frame of spot detection yields similar trends to the trape-

zoidal fits, except that the measured first frame times are systematically larger

by 3-5 min. Additionally, utilizing the first frame of detection to measure ton1265

appears to be a noisier method, likely because the actual MS2 spots cannot be

observed below a finite signal-detection limit, whereas the extrapolated ton from

the trapezoidal fit corresponds to a “true” onset time below the signal-detection

limit.
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Figure S5: Outline of fitting to the trapezoidal model of transcription. (A) The trapezoidal

model of transcription, where transcription begins at an onset time ton and loads RNAP

molecules with a constant rate r. (B) Results of fitting the MS2 fluorescence data from a

single embryo to the trapezoidal model to extract ton and the initial rate of RNAP loading.

(C) Comparison of inferred ton values between the trapezoidal model (solid lines) and using

the time of first detection of signal in a fluorescence spot (dashed lines) for both wild-type

and zelda− backgrounds. (B, error bars are standard error of the mean averaged over multiple

nuclei within the embryo, for data in a wild-type background at 50% along the embryo length;

C, error bars are standard error of the mean, averaged across embryos).
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S3. Mitotic Repression1270

S3.1. Mitotic repression is necessary to recapitulate Bicoid- and Zelda-mediated

regulation of hunchback using the thermodynamic MWC model

As described in Section 2.3 of the main text, a mitotic repression window was

incorporated into the thermodynamic MWC model (Section S1.2) in order to

explain the observed transcriptional onset times of hunchback. Here, we justify1275

and explain this theoretical modification in greater detail.

Fig. S6A and B depicts the experimentally observed initial rates of RNAP

loading and ton across the length of the embryo (blue points) for the wild-

type background. After constraining the maximum and minimum theoretically

allowed rates of RNAP loading (Section S1.3), we attempted to simultaneously1280

fit the thermodynamic MWC model to both the rate of RNAP loading and ton.

The fit results demonstrate that while the thermodynamic MWC model

can recapitulate the measured step-like rate of RNAP loading at hunchback

(Fig. S6A, purple line), it fails to predict the ton throughout the embryo

(Fig. S6B, purple line; see Sections S2.2 and S2.3 for details about experi-1285

mental and theoretical calculations). This model yields values of ton that are

much smaller than those experimentally observed, a trend that holds through-

out the length of the embryo. This disagreement becomes more evident when

comparing the output transcriptional activity reported by the measured MS2

fluorescence with the input concentrations of Bicoid and Zelda. Specifically, the1290

Bicoid and Zelda concentration measurements at 45% along the embryo, shown

for a single embryo in Fig. S6C, are used in conjunction with the previously

mentioned best-fit model parameters to predict the output MS2 signal at the

same position. This prediction can then be directly compared with experimental

data (Fig. S6D, purple line vs. black points, respectively). Whereas the model1295

predicts that transcription will commence around 1 min after anaphase due to

the concurrent increase in the Bicoid and Zelda concentrations, the observed

MS2 signal begins to increase around 3 min after anaphase (Fig. S6D). As a

result, the predicted transcriptional dynamics in Fig. S6D are systematically
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Figure S6: A thermodynamic MWC model including mitotic repression can recapitulate

hunchback regulation by Bicoid and Zelda. (A) Measured initial rates of RNAP loading and

(B) ton (blue points) across the length of the embryo, compared to fits to the thermodynamic

MWC model with and without accounting for mitotic repression (blue and purple curves,

respectively). (C) Nuclear concentration dynamics of Bicoid and Zelda with proposed mitotic

repression window (gray shading). (D) Predicted MS2 dynamics with no mitotic repression

term or a 2.5 min mitotic repression window compared to experimental measurements. (A,B,

solid lines indicate mean predictions of the model and shading represents standard error of

the mean, while points indicate data and error bars represent the standard error of the mean,

across 8 embryos; C, D, data from single embryos at 45% of the embryo length with error bars

representing the standard error of the mean across nuclei, errors in model predictions in D

were negligible and are obscured by the prediction curve; fitted parameter values for a 2.5 min

mitotic repression window were ∆εchrom = 8.9 kBT , Kb = 152.3 AU , Kz = 416.3 AU , with

different arbitrary fluorescent units for Bicoid and Zelda, ωb = 6.4, ωbp = 2.5, for a model

assuming six Bicoid binding sites.)
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shifted in time with respect to the observed data.1300

The observed disagreement in ton suggests that in this model, transcription

is prevented from starting at the time dictated solely by the increase of Bicoid

and Zelda concentrations. While we speculate that this effect could stem from

processes such as RNAP escape from the promoter, DNA replication at the start

of the cell cycle, and post-mitotic nucleosome clearance from the promoter, we1305

choose not to commit to a detailed molecular picture and instead ascribe this

transcriptional refractory period at the beginning of the nuclear cycle to mitotic

repression, the observation that the transcriptional machinery cannot operate

during mitosis (Shermoen and O’Farrell, 1991; Gottesfeld and Forbes, 1997;

Parsons and Tg, 1997; Garcia et al., 2013). To account for this phenomenon,1310

we revised our thermodynamic MWC model by stating that hunchback can only

read out the inputs and begin transcription after a specified mitotic repression

time window after the previous anaphase (Section S1.3).

Since we expect mitotic repression to operate independently of position along

the length of the embryo (Shermoen and O’Farrell, 1991), we assumed that the1315

duration of mitotic repression was uniform throughout the embryo. After incor-

porating a uniform 2.5 min mitotic repression window into the thermodynamic

MWC model (Fig. S6C and D, grey shaded region), the model successfully re-

capitulates ton throughout the embryo (Fig. S6B and D, blue curves), while still

explaining the observed rates of RNAP loading (Fig. S6A, blue curve). Thus,1320

once mitotic repression is accounted for, the thermodynamic MWC model based

on statistical mechanics can quantitatively recapitulate the regulation of hunch-

back transcription by Bicoid and Zelda.

S4. zelda− mutant embryos

S4.1. The effect of the zelda− background on the Bicoid concentration profile1325

Our models rest on the assumption that the Bicoid gradient remains un-

altered regardless of whether these measurements are made in the wild-type

or zelda− backgrounds. To confirm this assumption, we measured eGFP-Bicoid
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concentrations in a zelda− background. These flies were heterozygous for eGFP-

labeled Bicoid and for wild-type Bicoid, resulting in roughly 50% of total Bicoid1330

being labeled with eGFP. As shown in Fig. S7, the resultant eGFP-Bicoid nu-

clear fluorescence levels at 8 min into nuclear cycle 13 in the zelda− background

(red) were roughly half the magnitude of the equivalent measurements in the

wild-type background (blue). After doubling the heterozygote eGFP-Bicoid nu-

clear fluorescence measurements to rescale them (black), the two eGFP-Bicoid1335

measurement curves were similar, although the zelda− eGFP-Bicoid values were

systematically lower than in the wild-type background. The normalized dif-

ference, defined as the absolute value of the difference between the wild-type

and zelda− profiles at each position in the embryo divided by the value of the

wild-type profile at the position, averaged across all measured positions, was1340

15.46% ± 1.64%. This value is within the range of the inter-embryo variability

of eGFP Bicoid in wild-type background embryos (Fig. S3C). Measuring the

decay length of the eGFP-Bicoid profile in the zelda− background also yielded a

slightly different result: 20.8% +/- 1.4% of the total embryo length, as opposed

to 23.5% +/- 0.6% in the wild-type background (dashed curves).1345

Nevertheless, these differences would have a negligible effect on our overall

conclusions. In the context of our models, an overall rescaling in the magnitude

of the Bicoid gradient between the wild-type and zelda− backgrounds can be

compensated by a corresponding rescaling in the dissociation constant of Bicoid,

Kb. Because our systematic exploration of theoretical models considers many1350

possible parameter values (Section S5.1), this rescaling has no effect on our

conclusion that the equilibrium models are insufficient to explain the zelda−

data. As a result and given that our statistics for the wild-type eGFP-Bicoid

data consisted of more embryos than the data for the zelda− background, we

used this wild-type data in our analyses as an input to both the wild-type and1355

zelda− model calculations.
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Figure S7: eGFP-Bicoid measurements in wild-type (blue) and zelda− mutant embryos (red),

along with rescaled mutant profiles (black). Fits to an exponentially decaying function yield

decay lengths in each background (blue and black dashed curves). A total of n=3 embryos

were measured. All error bars are standard error of mean across embryos.

S5. State-space exploration of theoretical models

S5.1. General methodology

To help visualize the limits of our models, we collapsed our observations onto

a two-dimensional state space, following a method similar to that described1360

in Estrada et al. (2016). In this space, the x-axis is the average ton delay.

This magnitude was computed by integrating the ton across 20% to 37.5% of

the embryo length, corresponding to the range in which both wild-type and

zelda− experiments exhibited transcription in at least 50% of observed nuclei

(Figs. S8A and 5A; Eq. 4). We first subtracted all values of ton by the value at1365

20% of the embryo length, removing the “baseline” from the calculation of the

integral. After computing the integral, the resulting value was then normalized

by dividing by the distance along the embryo integrated over (see Section 2.3

for more detail).

The y-axis in our state space exploration plane is given by the position along1370

the embryo at which the rate of RNAP loading reaches its midpoint (Fig. S8B)

when fitted to a Hill function of Hill-coefficient six, the number of known Bi-
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coid binding sites on the hunchback P2 enhancer (Driever and Nusslein-Volhard,

1988a; Park et al., 2019). The maximum and minimum values of the RNAP

loading rate are fixed to Rmax and Rmin (Section S1.3), motivated by the obser-1375

vation that the wild-type RNAP loading rates exhibit maximum and minimum

plateaus at either end of the embryo (Fig. S6A). Note that due to the large

space of possible model behaviors, many predicted rate profiles did not fit well

to this Hill function (e.g. Fig. S8B). Instead, this process should be interpreted

as a way to extract, for a particular model realization, the best-fit midpoint1380

position of the observed wild-type RNAP loading rate profile. If a particular

model is capable of recapitulating the experimental data, then the best-fit mid-

point position under this protocol should agree with that of the data. Hereafter

we refer to this quantity as the rate midpoint position.

Combined, the average ton delay and the rate midpoint position provide1385

a simplified description of our data as well as of our theoretical predictions.

Each theoretical model inhabits a finite region in this two-dimensional state

space, which we can calculate by systematically varying model parameters.

Fig. S8A and B show an example of how the average ton delay and the rate

midpoint position are calculated using the wild-type background data presented1390

in Fig. 4C and D (points) in the main text.

Due to the large number of parameters of each model explored, the cor-

responding state-space boundaries were generated by efficient sampling of the

underlying high-dimensional parameter space (Fig. S8C). The methodology is

similar to the one described in Estrada et al. (2016). Briefly, a set of 100 ini-1395

tial points was generated, each with a randomized set of initial parameters,

the specifics of which depended on the model being tested (Fig. S8C, i). The

state space was sectioned into 10 horizontal and vertical slices (Fig. S8C, ii).

The most extremal points in each slice were found, resulting in two extremal

anterior-posterior positions for the mid-point of the rate of RNAP loading and1400

two extremal average ton delay points (Fig. S8C, iii). For each of these points,

a new set of five points was generated using random parameters within a small

neighborhood of the seed points determined by the extremal points of the pre-
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vious iteration (Fig. S8C, iv). These new points were plotted; some of these

points may be more extreme than the previous set of points. Steps ii-iv were1405

iterated, resulting in a growing boundary over time (Fig. S8C, v). Constraints

imposed by the data were used to filter unrealistic results. First, if the simulated

ton at the most anterior position (20% of the embryo length) was greater than

5.5 min or less than 1.5 min, the point was filtered out. This removal was jus-

tified experimentally, since none of the observed transcriptional onset values in1410

this position in either experiment lay outside of these bounds (Fig. 4D and G).

Second, if the simulated rate midpoint position was smaller than 16% or larger

than 100% of the embryo length, then this point was also excluded. This exclu-

sion was also justified experimentally, since the rate midpoints values of both

experiments were within this interval (Fig. 4C and F). Points that fulfilled these1415

constraints were retained for the next iteration of the algorithm. This process

was repeated until the resulting space of points no longer grew appreciably, re-

sulting in an estimate of the size and shape of the state space for each of the

models presented in Sections S1.2, S6.1, S7.1, and S8.1.

To determine whether the algorithm had indeed converged, the total area of1420

each model’s region in parameter space was tracked with each iteration number.

If the algorithm worked well, then this area would approach some saturation

value. Fig. S8D shows the area of the state space corresponding to each model

(normalized by the final area at the final iteration number) as a function of the

iteration number. Each model converged to a finite value, indicating that the1425

parameter space occupied by the models had been thoroughly explored.

S5.2. State space exploration with the thermodynamic MWC model

Fig. S9A shows the resulting two-dimensional state space for the thermo-

dynamic MWC model (green shading), as well as all of the theoretical models

considered here. We plotted the wild-type and zelda− data on the same state1430

space. While the wild-type data are represented as a small ellipse of uncer-

tainty, the zelda− data appear as a large region because we cannot accurately

determine the midpoint of the rate of RNAP loading due to the lack of tran-
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scriptional activity past about 40% of the embryo length. This shaded region

represents a conservative estimate of the possible location of the zelda− data in1435

this state space. Any successful model must occupy a region that overlaps both

the wild-type data point and the zelda− data region.

The state space corresponding to the thermodynamic MWC model fails to

overlap with the zelda− data. To make the picture more intuitive, this two-

dimensional state space was projected onto the x-dimension, the average ton1440

delay. To do this projection, we reasoned that since both the wild-type and

zelda− data only occupied midpoint values between 40% and 100%, we would

only retain points in that range. The resulting subset of state space was col-

lapsed onto the x-axis, resulting in the bars shown in Fig. S9B. Even in this

one-dimensional representation, the failure of the thermodynamic MWC model1445

(Fig. S9B, green bar) is evident. This one-dimensional projection is the one

presented in the main text.

S6. Failures and assumptions of thermodynamic models of transcrip-

tion

S6.1. Generalized thermodynamic model1450

The generalized thermodynamic model is an extension of the thermodynamic

MWC model presented in Section S1.2. For extra generality, we assume the

presence of twelve Bicoid binding sites and one RNAP binding site, but do not

include the action of Zelda since the objective was to attempt to recapitulate

the zelda− mutant experimental data. We still allow for an inaccessible DNA1455

state.

In this generalized model, the weight of each microstate can be arbitrary,

rather than determined by underlying biophysical parameters. Since pbound only

depends on whether RNAP is bound, there is no need to distinguish between

different microstates that have the same number of Bicoid molecules bound:1460

the arbitrary coefficients allow separate microstates to effectively be combined

together into the same weight. Thus, each microstate corresponds only to the
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Figure S8: Description of state-space metrics and boundary-exploration algorithm. (A) Rep-

resentative average ton delay (black dashed line) for the wild-type background data in Fig. 4D,

calculated by integrating the area under the curve from positions 20% to 37.5% along the em-

bryo length and normalizing by dividing by the length over which the integral was taken. (B)

Rate midpoint position for the wild-type background data in Fig. 4C, calculated by fitting a

Hill equation of order 6 to the initial rates of RNAP loading. (C) Overview of the boundary-

exploration algorithm. (i) A set of 100 points with random input parameters generates an

initial state space of the investigated model. (ii) The space is sectioned into 10 horizontal and

10 vertical slices. (iii) The extremal points of each slice are found. (iv) For each extremal

point, five new points are generated with input parameters in a small neighborhood around

the parameters of this extremal point. (v) The new space is plotted with these new points,

and steps (ii) - (iv) are repeated. (D) Normalized area of each investigated model’s region

in parameter space as a function of algorithm iteration number. All areas approach a steady

value, indicating convergence.
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Figure S9: Exploration of state space. (A) Two-dimensional state-space exploration, show-

ing the extents of state space of the wild-type (blue) and zelda− (red) data as well as of

various models explored in the main text. (B) One-dimensional state-space exploration, cre-

ated by projecting the two-dimensional state space in (A) for rate midpoint values between

40% and 100% onto the x-axis corresponding to the average ton delay. Areas covered by the

experimental data represent the standard error of the mean.
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overall number of bound molecules, regardless of binding site ordering. With

twelve Bicoid sites, in addition to the inaccessible state, there are 27 total mi-

crostates and 26 free parameters describing the weights of each state (with the1465

accessible, unbound microstate normalized to unity). Like with the thermo-

dynamic MWC model, we assume that transcription only occurs when RNAP

is bound, with the same constrained maximum rate of RNAP loading Rmax.

However, since the weights of each microstate are arbitrary, we no longer have

a variable p that can be constrained by Rmin like in Eq. S14.1470

This generalized model is much more powerful than the thermodynamic

MWC model due to a lack of coupling between individual microstate weights.

Whereas in the previous model the underlying parameters Kb and ωb caused

similar microstates to be related mathematically, now the statistical weights

for each microstate are completely independent. Physically, this scenario can1475

arise due to, for example, higher-order cooperativities or non-identical binding

energies between binding sites (Estrada et al., 2016).

The partition function in this generalized thermodynamic model is given by

the polynomial

Z = pinacc +
1∑
r=0

12∑
n=0

Pr,n[Bicoid]n, (S17)

where pinacc is the weight of the inaccessible state and Pr,n is the weight of the

accessible state with r RNAP molecules bound and n Bicoid molecules bound.

The overall transcriptional initiation rate is now

dmRNA

dt
=

1

Z

( 12∑
n=0

P1,nR[Bicoid]n
)
, (S18)

where P1,n is the statistical weight of each RNAP-bound state and R is the

corresponding rate of transcriptional initiation. Note that, as described above,

R is still equal to Rmax, the constraint described in Section S1.3, but we no1480

longer use the Rmin constraint.

The resulting rate of transcriptional initiation is integrated over time to

produce a simulated MS2 fluorescence trace using the same procedure as for the

models presented in Sections S1.2, S7.1, and S8.1 (see Section S2.2 for details).
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As with the thermodynamic MWC model, we allow for a mitotic repression time1485

window to account for the lack of transcription early in the nuclear cycle.

S6.2. Generalized thermodynamic model state space exploration

Due to the high-dimensional parameter space of the generalized thermody-

namic model, constraints were necessary to efficiently explore this parameter

space (Section S5.1). These constraints were placed on the values of the in-1490

dividual microstate weights Pr,n, based on dimensional analysis and heuristic

arguments. Specifically, each weight Pr,n is derived from a product of bind-

ing constants Kd for either Bicoid or RNAP, pairwise cooperativity parameters

ω, and higher-order cooperativity terms. For the purposes of these parameter

constraints, we only consider the Kds and ωs, and ignore constraints on higher-1495

order cooperativities. In principle, each Bicoid binding site possesses a unique

Kd and protein-protein interaction terms ω with other Bicoid molecules and/or

with RNAP. However, as described below, these biophysical parameters, once

non-dimensionalized, can be constrained to reasonable values by scaling rela-

tions through a simple bounding scheme.1500

For illustrative purposes, consider the microstate with RNAP and one Bicoid

molecule bound. Its weight depends on two independent binding constants p, b

and a cooperativity term between RNAP and Bicoid ωbp. First, we assume that

the p, b terms are non-dimensionalized, i.e. they take the form p = [RNAP ]/Kp

and b = [Bicoid]/Kb. Although the two individual p, b terms are in principle

different since RNAP and Bicoid have can different binding energies, we can be

generous about the constraints and assume that the non-dimensionalized forms

are both bounded below and above by 0 and 1000, respectively. This strategy

is justified by assuming that neither RNAP nor Bicoid exist in concentrations

three orders of magnitude above their dissociation constants, and do not exist

at negative concentrations (Estrada et al., 2016). Similarly, we can be generous

about any possible cooperativities and say that ωbp and ωb have a similar bound

between 0 and 1000, thus accounting for both positive and negative coopera-

tivities. For this state with RNAP and one Bicoid molecule bound, we can say
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that

P1,1 = bpωbp (S19)

which has bounds

0 < P1,1 < (1000)2(1000) = 109 (S20)

and thus provide a bound for the possible values that the weight P1,1 can take.

In general, this process can be applied to enforce bounds on any microstate

weight Pr,n through constraining the possible values of p, b, ωbp, and ωb. As a

result, the weight of a microstate with more Bicoid bound (i.e. higher values of

n) will have a more generous dynamic range, due to the larger powers of b and1505

ωb. In this way, exploration of parameter space can be made more constrained

by restricting the possible values of the microstate weights Pr,n.

The generalized thermodynamic model of transcription encompasses a

larger area of the explored state space than the thermodynamic MWC model

(Fig. S9A). However, as evident by the projection onto the x-axis, this model1510

fails to capture the delays observed in zelda− data (Fig. S9B, yellow rectangle).

S6.3. Investigation of the failure of thermodynamic models

Here, we provide an intuitive explanation for why equilibrium thermody-

namic models fail to recapitulate the delay in ton for zelda− embryos. The

combination of the occupancy hypothesis and the assumption of separation of1515

times scales described in Section S6.4 imply that the rate of transcriptional

initiation at any moment in time is an instantaneous readout of the Bicoid con-

centration at that time point. Thus, any thermodynamic model is memoryless.

Intuitively, this means that a thermodynamic model requires transcription to

begin as soon as the Bicoid concentration crosses a certain “threshold” since1520

time delays between input and output require some sense of memory. Exam-

ination of the dynamic measurements of MS2 output in zelda− embryos re-

veals that no matter what “threshold” concentration of Bicoid is assigned for

the start of transcription, the model cannot simultaneously describe two val-

ues of ton corresponding to different positions along the anterior-posterior axis1525

(Fig. S10A and B).
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Figure S10: Intuition for failure of equilibrium models. (A) Mean Bicoid concentrations for

two positions along the embryo (blue, red), with a “threshold” chosen to to attempt to match

the corresponding ton in (B). (B) MS2 fluorescence signal for the two positions shown in

(A) for the zelda− experiment. Note that no single threshold value of Bicoid can match the

timings in (A) with the transcriptional onset times in (B). (C) Mean Bicoid concentration at

ton as a function of position for the zelda− data.

Another self-consistency check of a thermodynamic model is to examine the

concentration of Bicoid at ton for various positions along the embryo. Due to

the memoryless nature of thermal equilibrium, a valid thermodynamic model

predicts that, at different positions along the embryo, ton will occur when Bicoid1530

reaches the same threshold value. For the zelda− data, however, the level of

Bicoid at each anterior-posterior position’s ton value actually decreases with

increasing ton, suggesting the failure of the thermodynamic model (Fig. S10C).

Thus, the strong position-dependent delay in ton for the zelda− data cannot be

explained by an instantaneous Bicoid readout mechanism.1535
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S6.4. Re-examining thermodynamic models of transcriptional regulation

Thermodynamic models based on equilibrium statistical mechanics can be

seen as limiting cases of more general kinetic models. For example, consider

simple activation, where an activator whose concentration is modulated in time

regulates transcription by binding to a single site (Fig. S11). In this generic1540

model, the presence of activator can modulate the rates of activator and RNAP

binding and unbinding through the parameters α, β, γ, and δ.

In order to reduce kinetic models to thermodynamic models where the prob-

abilities of each state are dictated by Boltzmann weights such as those in Fig. 2,

four conditions must be fulfilled. First, the rate of mRNA production must

be linearly related to the probability of finding RNAP bound to the promoter

(Fig. S11i). This occupancy hypothesis is necessary for Eq. S2 to hold. Second,

the time scales of binding and unbinding of RNAP and transcription factors

must be much faster than the time scales of the concentration dynamics of

these proteins (Fig. S11ii). Third, these time scales must also be much faster

than the rate of transcriptional initiation and mRNA production (Fig. S11iii).

Under these conditions of separation of time scales, the binding and unbinding

of proteins quickly reaches steady state while the overall concentrations of these

molecular players are modulated (Segel and Slemrod, 1989). Fourth, there must

be no energy input into the system (Fig. S11iv). This condition demands “de-

tailed balance” (Vilar and Leibler, 2003; Ahsendorf et al., 2014; Hill, 1985): the

product of state transition rates in the clockwise direction over a closed loop

is equal to the product going in the counterclockwise direction, a constraint

known as the cycle condition (Estrada et al., 2016). In the case of Fig. S11, this

requirement implies that

kONP δkONA βkOFFP kOFFA = kOFFP kONA αkONP γkOFFA . (S21)

If these four conditions are met, then the system is effectively in equilibrium

and the various binding states adopt probabilities that can be calculated using

equilibrium statistical mechanics.1545
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Figure S11: A simple kinetic model of transcriptional activation in which activator molecules

influence RNAP binding kinetics. The assumptions that make it possible to turn this kinetic

model into a thermodynamic one are (i) the occupancy hypothesis, (ii, iii) a separation of time

scales between binding and unbinding rates, and activator and mRNA production dynamics,

respectively, and (iv) no energy expenditure (detailed balance).
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S7. Non-equilibrium MWC model

S7.1. Non-equilibrium MWC model

The non-equilibrium MWC model is an extension of the thermodynamic

MWC model presented in Section S1.2, where we now relax the assumption of

separation of time scales (Fig. S11 ii and iii) and make it possible to assume,1550

for example, that the system responds instantaneously to changes in activator

concentration. Here, we explicitly simulate the full system of ordinary differen-

tial equations (ODEs) that describe the dynamics of the system out of steady

state. Additionally, we allow for energy to be expended and thus do not enforce

detailed balance through the cycle condition (Fig. S11iv). We still employ a1555

mitotic repression window term, before which no transcription is allowed.

We consider a generic model with n Bicoid binding sites, and again ignore

Zelda since we are only interested in recapitulating the zelda− mutant data. As

a result, this new model has n+ 1 total binding sites which, together with the

closed chromatin state, results in a total of 2n+1 + 1 = N microstates. In the1560

case of six Bicoid binding sites, this results in N = 129 total microstates. We

assign each microstate xi a label i and describe the transition rate from state j

to state i using kij , where i, j range from 0 to N − 1, inclusive.

In matrix notation, we write the system of ODEs as

d ~X

dt
= K ~X, (S22)

where ~X is a vector containing the fractional occupancy of each microstate xi

and K is a matrix containing all the transition rates kij . Normalizing such that1565

the sum of all the components in the vector ~X is unity, we now have a vector

representing the instantaneous probability of being in each microstate.

To relate the occupancies of the different states to the rate of transcriptional

initiation, we retain the occupancy hypothesis presented earlier: that pbound, the

probability of being in a microstate with a bound RNAP molecule, is linearly1570

related to the overall average transcriptional initiation rate that we determine

from experimentally measurements.
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For this particular system, it is helpful to define an intuitive microstate

labeling system. Because the relevant physical processes are the binding and

unbinding of Bicoid and RNAP molecules, we can represent any microstate in

binary form, where the total number of digits is the total number of binding

sites n+ 1, and each digit represents an individual binding site. Our convention

is to assign the first digit to the promoter, and the subsequent ones to the Bicoid

sites. By assigning 0 to an unbound site and 1 to a bound site, we can rewrite

each unique microstate’s label i in binary form. For example, for a model with

six Bicoid sites, the label for the microstate with no RNAP bound and the first

two Bicoid sites occupied is represented with

i = bin(0110000) = 48. (S23)

Here, bin() indicates taking the base 2 value of the binary label in the paren-

theses. The closed chromatin state is added manually and assigned to the last

position in our binary label, xN−1. This convention allows us to intuitively de-1575

fine each unique label for the system’s microstates and provides a way to map

the physical contents of a microstate with its associated label i.

In general, the overall transition matrix K can be very complex. However,

we benefit from the fact that the only non-zero transitions kij are the ones

that correspond to physical processes: modifying the open/closed chromatin1580

state, and binding and unbinding of Bicoid or RNAP molecules. In this binary

notation, these constraints imply that the only nonzero transitions are the ones

that represent individual flips between 0 and 1, as well as between the open and

closed states 0 and N −1. The transition matrix K is then easier to write, since

it is clear from the binary representation which transitions must be nonzero.1585

Finally, diagonal elements kii are entirely constrained because they represent

probability loss from a particular state i, and must be equal to the negative of

the rest of the column i, such that the sum over each column in K is zero.

Given that the Bicoid concentration changes as a function of time and that

we assume first-order binding kinetics, whichever rates kij correspond to Bicoid1590

binding rates must be multiplied by this time-dependent nuclear concentra-
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tion. In contrast, all off-rates are independent of Bicoid concentration. To

keep subsequent parameter exploration simple, we non-dimensionalized the Bi-

coid concentration by rescaling it by its approximate scale. This was achieved

by dividing all Bicoid concentrations by the average Bicoid concentration, cal-1595

culated by averaging the mean Bicoid nuclear fluorescence across all datasets,

anterior-posterior positions, and time points, yielding approximately 35 arbi-

trary fluorescence units. Thus, all of the transition rates kij in the model here

are expressed in units of inverse minutes.

To model transcription specifically, we assumed that at the beginning of the1600

nuclear cycle, the system is in the closed chromatin state: xi(t = 0) = 0 except

for the closed chromatin state xN−1(t = 0) = 1. We simulated the full trajec-

tory of all the microstates xi over time by solving the system of ODEs given

in Eq. S22. Finally, we calculated pbound by summing the xi’s that correspond

to RNAP-bound states, and then computed the subsequent transcriptional ini-1605

tiation rate by multiplying pbound with the transcription rate R. Here, R is

the same Rmax as in Sections S1.2 and S6.1 but again we do not constrain the

model using Rmin, just as in Section S6.1.

Fig. S12A shows an example of this model for a system with only one Bicoid

binding site and no closed chromatin state, for simplicity, resulting in a four-

state network. The binary indexing labels (shown beneath each state in light

pink) can be converted into the base-10 labels (light teal) ranging from 0 to 3.

The connection matrix for this system is

C =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 (S24)
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and the corresponding transition rate matrix K is

K =


k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33

 , (S25)

where, in this example, k02 represents the transition rate from state j to state i.

The diagonal elements kii are equal to the negative of the sum of the elements1610

in the rest of the column in order to preserve conservation of probability. For

example, k00 = −(k10 + k20 + k30).

With all this information in hand, we solve for the occupancy of each of the

four states using the matrix ODE
dx0

dt

dx1

dt

dx2

dt

dx2

dt

 =


k00 k01 k02 0

k10 k11 0 k13

k20 0 k22 k23

0 k31 k32 k33




x0

x1

x2

x3

 . (S26)

In this case, the occupancy hypothesis relates pbound to the overall transcription

rate, resulting in

dmRNA

dt
= Rpbound = R

x1 + x3

x0 + x1 + x2 + x3
. (S27)

This model can produce time-dependent behavior not found in the thermo-

dynamic models. Fig. S12B contains an example of a hypothetical input Bicoid

activator concentration that switches instantaneously from zero to a finite value.1615

In the thermodynamic models, the predicted transcriptional initiation rate also

responds instantaneously (Fig. S12B, top). In contrast, for a suitable set of pa-

rameters, the non-equilibrium MWC model predicts a slow response over time

(Fig. S12B, bottom).

To produce a simulated MS2 fluorescence trace, the resulting rate of mRNA1620

production is integrated over time using the same procedure (Section S2.2) as the

models presented in Sections S1.2, S6.1, and S8.1. As with the thermodynamic

MWC model, we allow for a time window of mitotic repression to account for

the lack of transcription early in the nuclear cycle.
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Figure S12: Example of a four-state time-dependent model with one Bicoid binding site and

no closed chromatin state. (A) The binary label for each state (light pink) can be converted

into a base-10 label for each state (light teal). The transition rates kij are defined as the

transition rate from state i into state j using this labeling system. (B) For an example input

activator concentration temporal profile that is a step function, the time-dependent response

is compared for the cases of separation of time scales and lack thereof. In the former, the

transcriptional initiation rate responds instantaneously to the increase in activator input,

while the response is slower in the latter.
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S7.2. Non-equilibrium MWC model state space exploration1625

In the parameter exploration of this model (Section S5.1), the transition

rates kij were constrained with minimum and maximum values of kmin = 1 and

kmax = 105 respectively, in units of inverse minutes. These bounds were conser-

vatively chosen using the following estimates. First, we estimate the values of

the possible unbinding rates koff . We assume that RNAP and Bicoid obey the

same unbinding kinetics. Estimates of in vivo single-molecule binding kinetics

inferred from Mir et al. (2018) indicate that the lifetime of Bicoid on DNA is

on the order of 3 s−1. Second, we estimate the values of the possible on-rates

kon using the classic Berg-Purcell equation for the case of a diffusion-limited

binding to a perfectly absorbing spherical receptor (Berg and Purcell, 1977). In

this case, the on-rate of molecule binding is given by

kon = 4πDaco, (S28)

where D is the diffusion coefficient of the molecule, a is the estimated size of

the spherical receptor, and c0 is the background concentration of the molecular

species. Since here we are talking about transcription factor binding to a Bicoid

binding site, we assume a to be on the order of 5 nm. We assume that RNAP and

Bicoid obey the same diffusion characteristics, leading to a diffusion coefficient of

approximately 0.3 µm2s−1 (Gregor et al., 2007b). Finally, Bicoid is is present

at concentrations between 10 nM and 55 nM in the nucleus (Gregor et al.,

2007a), and we assume that nuclear RNAP concentrations exist within the same

range. Plugging these values into Eq. S28 yields estimates for the maximum and

minimum on-rates:

kmaxon ∼ (4π)(0.3 µm2s−1)(1 µm)(55 nM)

∼ 0.5 s−1 ∼ 30 min−1.

and

kminon ∼ (4π)(0.3 µm2s−1)(1 µm)(10 nM)

∼ 0.05 s−1 ∼ 3 min−1.
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Thus, our maximum and minimum transition rate bounds of kmin = 1 min−1

and kmax = 105 min−1 lie outside these estimated binding and unbinding rates.

One caveat of the state-space exploration approach is that the high dimen-

sionality of the non-equilibrium MWC model prevented us from calculating the

full state-space boundary using six Bicoid binding sites. Due to computational1630

costs, we were only able to accurately produce a state-space boundary for this

model (Section S7.1) using five Bicoid binding sites. Running the exploration

for a model with six Bicoid binding sites took over two weeks on our own server,

and the algorithm had not noticeably converged in the end.

The results of the state space exploration for the non-equilibrium MWC1635

model using five Bicoid binding sites resulted in larger average ton delays than

the thermodynamic models (Sections S1.2 and S6.1). However, this model, like

those, failed to reproduce the delays observed in zelda− data (Fig. S9B, gray

bar).

S8. Transcription factor-driven model of chromatin accessibility1640

S8.1. Transcription factor-driven model of chromatin accessibility

The transcription factor-driven model of chromatin accessibility is a slight

modification of the thermodynamic MWC model (Section S1.2) that replaces

the MWC mechanism of chromatin transitions with a direct driving action due

to Bicoid and Zelda. Here, we retain the idea of inaccessible vs. accessible1645

states, but no longer demand that these states be in thermodynamic equilib-

rium. Instead, the system begins in the inaccessible state and undergoes a

series of m identical, slow, and effectively irreversible transitions to the acces-

sible state. Once these transitions into the accessible state occur, the system

can rapidly and reversibly transition into all of its accessible microstates such1650

that the probability of the system being in any of these microstates is described

by thermodynamic equilibrium. The accessible states are governed by the same

rules and parameters as the thermodynamic MWC model (Section S1.2), albeit
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without the ∆εchrom parameter since now the transition from the inaccessible

to accessible state is unidirectional.1655

Additionally, we consider two possible contributions for these irreversible

transitions: a Bicoid-dependent pathway and a Zelda-dependent pathway. We

assume the transition rates to be first-order in Bicoid and Zelda, respectively,

such that

πb = cb[Bicoid] (S29)

and

πz = cz[Zelda]. (S30)

Here, πb is the Bicoid-dependent contribution to the transition rates and πz is

the corresponding Zelda-dependent contribution. There are two input parame-

ters cb and cz that give the relative speed of each transition rate contribution.

The overall rate π of each irreversible transition is given by the sum

π = πb + πz = cb[Bicoid] + cz[Zelda]. (S31)

Because the accessible states are in thermodynamic equilibrium with each

other, we can effectively treat them as a single state and describe the entire

system with m+ 1 states, corresponding to the inaccessible, intermediate, and

accessible states. We label the inaccessible state with 0, the m− 1 intermediate

states with 1 through m − 1, and the final accessible state with m. Thus, we

describe the probability pi of the system being in the state i with the probability

vector ~P

~P =


p0

p1

...

pm

 . (S32)

Calculating the overall RNAP loading rate then simply corresponds to rescaling

pbound with the overall probability pm(t) of being in the accessible state:

dmRNA

dt
= Rpbound pm, (S33)
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where R is the same maximum rate used in Section S1.2. Note that pm(t) is a

time-dependent quantity that changes over time. To calculate pm(t), we solve

the corresponding system of ODEs that describes the time evolution of ~P

d~P

dt
= Π~P , (S34)

where Π is the transition rate matrix describing the time evolution of the system.

Π, by definition, is a square matrix with dimension m + 1. Given the initial

condition that the system begins in the inaccessible state

~P =


1

0

...

0

 (S35)

the system of ODEs can be solved to find the probability of being in the ac-

cessible state pm(t). For example, for m = 3 irreversible steps, Π takes the

form

Π =


−π 0 0 0

π −π 0 0

0 π −π 0

0 0 π 0

 , (S36)

where π is given by Eq. S31.

For simplicity, the time evolution of ~P was solved using MATLAB’s ode15s

solver.

With the probability pm(t) of the system being in the accessible state calcu-

lated, we now calculate the probability pbound of RNAP bound to the promoter

in the accessible states, which lie in thermodynamic equilibrium with each other.

Because we now only have accessible states, the partition function is

Z =
(

1 + z
)10(

1 + p+
∑
j=0,1

6∑
i=1

(
6

i

)
biωi−1

b pjωijbp

)
, (S37)

where z, p, and b correspond to the non-dimensionalized concentrations of Zelda,

RNAP, and Bicoid, respectively, and ωb and ωbp are the cooperativities between
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Bicoid molecules and between Bicoid and RNAP, respectively. Thus, the overall

transcriptional initiation rate is given by

Rate =
R

Z

((
1 + z

)10

p
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b ωibp

))
pm (S38)

= R

(
p
(

1 +
∑6
i=1

(
6
i

)
biωi−1

b ωibp

))
(

1 + p+
∑
j=0,1

∑6
i=1

(
6
i

)
biωi−1

b pjωijbp

)pm.
Due to the lack of the inaccessible state in the partition function and because

we assume that Zelda does not directly interact with Bicoid or RNAP, now the1660

presence of Zelda mathematically separates out so that only Bicoid influences

transcription. The calculation above is a standard equilibrium statistical me-

chanical calculation, except that we have weighted the final result with pm(t),

the probability of being in the accessible states. The resulting rate is inte-

grated to produce a simulated MS2 fluorescence trace using the same procedure1665

(Section S2.2) as the models presented in Sections S1.2, S6.1, and S7.1.

Interestingly, we found that a mitotic repression term was not necessary to

recapitulate the data, since the presence of intermediary states produced the

necessary delay to explain the experimentally observed ton values in the data

(Fig. 4D and G, points).1670

In order to sufficiently explain the data, we found that a minimum of m = 5

irreversible steps was necessary. Fig. S13A and B show the results of fitting

this model to the observed rates of RNAP loading and ton for the wild-type and

zelda− data, for increasing values of m (wild-type results not shown, since all

values of m easily explained the wild-type data). We see that while lower values1675

of m do a poor job of recapitulating the data, once we reach m = 5 the model

sufficiently predicts the experimental data within experimental error. For values

of m higher than 5, explanatory power increases marginally. Considering the

parameter exploration of this model (Section S8.2) highlights the necessity of

having at least m = steps.1680
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Figure S13: Testing the transcription factor-driven model of chromatin accessibility. (A,B)

Best-fit results of the non-equilibrium MWC model to the mutant zelda− data. (A) initial

RNAP loading rates, and (B) ton, for varying numbers m of irreversible steps. (C) Parameter

exploration in average ton delay space for increasing values of m.
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S8.2. Transcription factor-driven model of chromatin accessibility state space

exploration

In the parameter exploration of this model (Section S5.1), the parameters

were constrained as

• cb > 01685

• cz > 0.

The parameters shared with the thermodynamic MWC model retained the con-

straints described in Section S1.3.

Fig. S13C shows the parameter space explorations (see Section S5.1) of this

transcription factor-driven model for increasing numbers of intermediate steps1690

m. Not until m = 5 does the model explain the average ton delay for both the

wild-type and zelda− data, indicating that m = 5 is the minimum number of

irreversible steps necessary. In the state space exploration shown in Fig. S9,

the number of irreversible steps was fixed at m = 5.

Unlike the other models investigated (Sections S1.2, S6.1, and S7.1), the1695

transcription factor-driven model of chromatin accessibility occupied a region

in state space that encompassed both the wild-type and zelda− data (Fig. S9,

brown rectangle).

S9. Supplementary Videos

S1. Video 1. Measurement of eGFP-Bicoid. Movie of eGFP-Bicoid fusion1700

in an embryo in nuclear cycle 13. Time is defined with respect to the

previous anaphase.

S2. Video 2. Measurement of Zelda-sfGFP. Movie of Zelda-sfGFP fusion

in an embryo in nuclear cycle 13. Time is defined with respect to the

previous anaphase.1705

S3. Video 3. Measurement of MS2 fluorescence in a wild-type back-

ground. Movie of MS2 fluorescent spots in a wild-type background embryo

in nuclear cycle 13. Time is defined with respect to the previous anaphase.
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S4. Video 4. Measurement of MS2 fluorescence in a zelda− back-

ground. Movie of MS2 fluorescent spots in a zelda− background embryo1710

in nuclear cycle 13. Time is defined with respect to the previous anaphase.

S5. Video 5. Transcriptionally active nuclei in a wild-type back-

ground. Movie of MS2 fluorescent spots in a wild-type background embryo

in nuclear cycle 13, with transcriptionally active nuclei labeled with an over-

lay. Time is defined with respect to the previous anaphase.1715

S6. Video 6. Transcriptionally active nuclei in a zelda− background.

Movie of MS2 fluorescent spots in a zelda− background embryo in nuclear

cycle 13, with transcriptionally active nuclei labeled with an overlay. Time

is defined with respect to the previous anaphase.
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