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ABSTRACT  23 

Currently, predictive translation tuning of regulatory elements to the desired output of 24 

transcription factor based biosensors remains a challenge. The gene expression of a biosensor 25 

system must exhibit appropriate translation intensity, which is controlled by the ribosome-binding 26 

site (RBS), to achieve fine-tuning of its dynamic range (i.e., fold change in gene expression between 27 

the presence and absence of inducer) by adjusting the translation initiation rate of the transcription 28 

factor and reporter. However, existing genetically encoded biosensors generally suffer from 29 

unpredictable translation tuning of regulatory elements to dynamic range. Here, we elucidated the 30 

connections and partial mechanisms between RBS, translation initiation rate, protein folding and 31 

dynamic range, and presented a rational design platform that predictably tuned the dynamic range 32 

of biosensors based on deep learning of large datasets cross-RBSs (cRBSs). A library containing 33 

24,000 semi-rationally designed cRBSs was constructed using DNA microarray, and was divided 34 

into five sub-libraries through fluorescence-activated cell sorting. To explore the relationship 35 

between cRBSs and dynamic range, we established a classification model with the cRBSs and 36 

average dynamic range of five sub-libraries to accurately predict the dynamic range of biosensors 37 

based on convolutional neural network in deep learning. Thus, this work provides a powerful 38 

platform to enable predictable translation tuning of RBS to the dynamic range of biosensors. 39 

  40 
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INTRODUCTION 41 

Biosensors have gained major attention in the field of biotechnology 1 especially for monitoring 42 

metabolite formation 2, 3. Genetically encoded biosensors derived from small-molecule inducer 43 

responsive transcription factors that produce fluorescence intensity proportional to the target 44 

metabolite concentration in the detection range have attracted substantial research attention 3, 4. 45 

However, the existing genetically encoded biosensors generally have the drawback of inappropriate 46 

dynamic range (i.e., fold change in gene expression between the presence and absence of inducer) 47 

5-9. Dynamic range is an important indicator for fine-tuning biosensors, and a high dynamic range 48 

can help to distinguish the small difference in the inducer concentrations. The gene expression in 49 

biosensor systems driven by small molecule responsive transcription factors can achieve the desired 50 

output at appropriate translation initiation rates (TIR). One of the key elements to regulate the TIR 51 

is the ribosome-binding site (RBS), which tunes the dynamic range of the biosensor by adjusting 52 

the TIR of the transcription factor and reporter. However, the existing genetically encoded 53 

biosensors usually suffer from unpredictable translation tuning of regulatory elements to dynamic 54 

range. Many attempts have been made to tune the dynamic range of biosensors. For instance, Levin-55 

Karp et al. used six RBSs ranging from strongest to weakest to achieve 20–200-fold dynamic range 56 

of protein expression 10. Wang et al. tuned the dynamic range of device input and output using five 57 

various-strength RBSs (RBS30–RBS34) from the Registry of Standard Biological Parts, and 58 

showed that RBS could be used as a linear amplifier to regulate protein expression levels 11. 59 

Although these methods might help to regulate the dynamic range of gene expression, the dynamic 60 

range of regulatory elements involved in gene expression could not been predicted. For example, if 61 

the RBS was changed, then obtaining the appropriate dynamic range of gene expression required 62 

time-consuming and laborious research.  63 

Establishment of a predictable and robust method can quickly achieve translation tuning of the 64 

RBS to biosensor dynamic range. In a previous report, Salis et al. calculated the Gibbs free energy 65 

difference (ΔGtot) between the initiation and termination states of protein translation initiation based 66 

on a thermodynamic model, and presented RBS calculator for designing and synthesizing the RBSs 67 

of genes of interest, ensuring the rational control of protein expression levels 12. This significant 68 

contribution had accelerated the construction and optimization of complex genetic systems as well 69 
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as promoted the development of synthetic biology. However, synthesis of the RBS through the 70 

calculation of free energy lacked experimental support. Therefore, rational design of the RBS by 71 

using a large amount of experimental data could make research on the RBS synthesis more robust. 72 

However, a large RBS database must rely on powerful analysis tools for better utilization of their 73 

application value, which can be solved by using mathematical models such as deep learning. Deep 74 

learning is an algorithm that uses artificial neural networks as a framework to characterize and learn 75 

databases. Deep learning models based on sequence levels have broad application prospects in the 76 

field of synthetic biology. For example, Chen et al. established Selene, a PyTorch-based deep 77 

learning library, which enables researchers to easily train the existing models to process biological 78 

problems of interest based on new databases and can be applied to any biological sequence data, 79 

including DNA, RNA, and protein sequences 13. Nielsen and Voigt used a deep learning based 80 

convolutional neural network (CNN) containing 42,364 plasmid DNA sequences datasets from 81 

Addgene to predict the lab-of-origin of a DNA sequence, and achieved 70% prediction accuracy 82 

and rapid analyses of DNA sequence information to guide the attribution process and understand 83 

the measures 14. While these studies provide a window for translation tuning of the RBS to 84 

biosensors dynamic range, the ability to design biosensors with reasonable dynamic ranges still 85 

remains a challenge 15-17.  86 

In general, the RBS controls the translation initiation rate of a protein, thus affecting the protein 87 

expression level 12. Therefore, in the study of biosensors, the RBS tunes the dynamic range of 88 

biosensors by regulating the expression of reporter and regulatory protein. In the present study, the 89 

RBS design principles for cdaR and sfgfp in glucarate biosensors were established. Subsequently, a 90 

library containing 24,000 cross-RBSs (cRBSs, combining RBSs of cdaR and sfgfp in glucarate 91 

biosensors) was constructed by using DNA microarray, which was divided into five sub-libraries 92 

through fluorescence-activated cell sorting (FACS). Finally, a CNN on the cRBSs libraries was 93 

trained and a classification model between cRBSs and average dynamic range of each sub-library 94 

was developed and was termed CLM-RDR, which performed well in predicting biosensors dynamic 95 

range (Fig. 1). The CLM-RDR used large RBS data according to a semi-rational design to provide 96 

a knowledge base for precise adjustment of biosensors dynamic range, thus helping researchers to 97 

better characterize biosensors dynamic range by using RBS datasets. Given the availability of a 98 
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large number of semi-rationally designed RBSs, the CLM-RDR classification model can be 99 

extended to other biosensors to fine-tune their dynamic ranges, thereby significantly simplifying the 100 

workload of the design–build–test–learn cycle for designing biosensors with moderate dynamic 101 

ranges in bacteria and accelerating intelligent fine-tuning of biosensor dynamic range. 102 

 103 

Fig. 1 Workflow of CLM-RDR development. First, the dynamic range of biosensors and the 104 

sequences of their related cRBSs were analyzed to establish an RBS design principle (Step 1). Based 105 

on this principle, a cRBSs library was designed and synthesized (Step 2) using DNA microarray. 106 

Subsequently, the library was divided into five sub-libraries (I–V) based on the fluorescence 107 

intensity of sfGFP measured by FACS (Step 3). Finally, to predict the dynamic range of biosensors 108 

with the given cRBSs, NGS and CNN model were employed to analyze the sequences of cRBSs in 109 

sub-libraries I–V and establish the CLM-RDR, respectively (Step 4). RBSn (NNNAGNNN), RBSs 110 

of cdaR; RBSm (NNGGAGNN), and RBSs of sfgfp; N = A, T, C, G. 111 

RESULTS 112 

RBS plays a crucial role in the regulation of biosensor dynamic range 113 

Although recent advances in synthetic biology have shed light on the importance of fine-tuning 114 

of biosensor dynamic range in various fields, the ability to design biosensors with moderate dynamic 115 

ranges remains limited 9, 18-20. To investigate the key factors in biosensor dynamic range regulation, 116 

we used glucarate biosensor and explored its response strength by employing diverse concentrations 117 
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of glucarate for induction (Supplementary Fig. 1a, b). Addition of 20 g/L glucarate biosensor 118 

presented the highest nine-fold dynamic range. However, the fluorescence intensity presented a 119 

downward trend when the glucarate concentration exceeded 20 g/L (Supplementary Fig. 1b). 120 

Similar observations have also been noted for other biosensors, such as acuR-based 3-121 

hydroxypropionate biosensor 3, which also exhibited downward trend of fluorescence intensity 122 

when cerulenin concentration exceeded a certain threshold value. This phenomenon may be owing 123 

to the rapid translation and transcription of sfGFP, which not only cause metabolic burden (slow 124 

growth) (Supplementary Fig. 1c) to the living cells, but also affect the natural folding of sfGFP 21, 125 

thus resulting in low fluorescence intensity. Faure et al. indicated that the occurrence of misfolding 126 

proteins increases with the increasing translation speed 22. Thus, although the amount of expressed 127 

sfGFP increased (Supplementary Fig. 1d), the fluorescence intensity per protein molecule 128 

significantly decreased when glucarate concentration exceeded 20 g/L, owing to excessive 129 

misfolding. A similar trend was also observed for CdaR. Therefore, it can be assumed that the most 130 

critical challenge for fine-tuning the dynamic range of biosensors might be to balance the translation 131 

rate of regulator and reporter to simultaneously achieve the desired total fluorescence intensity with 132 

the highest fluorescence intensity per protein molecule (Fig. 2a). These findings suggested that RBS 133 

might probably be a key element affecting the dynamic range of biosensors.  134 

To investigate the correlation between RBS and biosensor dynamic range, nine RBSs covering a 135 

wide range of TIR from weak to strong were chosen for combinatorial replacement of the RBSs of 136 

cdaR and sfgfp (Fig. 2b). The nine RBSs selected were RBS (R) and G10RBS (G10) derived from 137 

the plasmid pJKR-H-cdaR 4; RBS3 (R3), RBS7 (R7), and RBS8 (R8) designed with an RBS 138 

calculator 12; MCD2 (M2) and MCD10 (M10) derived from the monocistronic design by Mutalik et 139 

al. 23; and BBa_J61100 (BJ00) and BBa_J61106 (BJ06) obtained from the Anderson RBS library. 140 

Finally, 81 cRBS glucarate biosensors were obtained and their response strength and dynamic range 141 

were significantly improved when induced with various concentrations of glucarate (Fig. 2c, 142 

Supplementary Fig. 2a, b). In the cRBSs of R7M10 and RM10, 205-fold and 118-fold dynamic 143 

ranges were observed, respectively, depending on glucarate concentration (20 g/L), which were 144 

higher than that of the control RG10 (9-fold), indicating that the RBS played a very important role 145 

in fine-tuning biosensor dynamic range.  146 
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To validate whether the effect of cRBSs on the biosensor dynamic range was independent of 147 

reporter genes, we selected three cRBS biosensors with distinct dynamic ranges (RG10, RR8, and 148 

RM10) to replace sfgfp with lacZ. By comparing LacZ enzyme activity and sfGFP expression 149 

intensity, we found that the three cRBSs showed the same expression intensity trend regardless of 150 

the reporter gene (sfgfp or lacZ) (Fig. 2d). This finding indicated that the cRBSs could consistently 151 

fine-tune the dynamic range of biosensor irrespective of the reporter. Subsequently, we analyzed the 152 

datasets with and without 20 g/L glucarate to assess the significance of differential expressions of 153 

genes with 81 cRBSs. We found that 63% of the 81 cRBSs were available for analysis (P < 0.05), 154 

and that 24.7% of the cRBSs showed significant differential expression (Fig. 2e). Moreover, 11.1% 155 

of the 81 cRBSs were significantly differentially expressed, when compared with the control (RG10) 156 

(Fig. 2e). To verify whether RBS was the most critical factor affecting the dynamic ranges of 157 

glucarate biosensors, we performed analysis of variance (ANOVA) on cRBSs and glucarate datasets 158 

(Fig. 2f). The results suggested that cRBSs and glucarate contributed 84% and 13% to biosensor 159 

fine-tuning, respectively. In addition, an interaction (2%) between the two factors was also noted 160 

(Supplementary Table 1, see online methods). These results indicated that the RBS is a key 161 

element for tuning the dynamic range of biosensors. However, it is still unclear on how the RBS 162 

fine-tunes the biosensor dynamic range.  163 

The RBS fine-tunes biosensor dynamic range by controlling protein translation 164 

and folding 165 

To explore the relationship between TIR and dynamic range, total Gibbs free energy of the two 166 

variables, RBSn and RBSm, were respectively analyzed by using the RBS calculator 12 167 

(Supplementary Table 2). Under the same RBSn, the optimal TIR of RBSm produced the highest 168 

biosensor dynamic range, and similar trend was also found for the TIR of RBSn under the same 169 

RBSm (Fig. 2g, Supplementary Fig. 2c, d), suggesting that the maximum dynamic range can be 170 

achieved at optimal TIR. However, TIR higher than the optimal TIR could cause low biosensor 171 

dynamic range, which could be due to the rapid expression of sfGFP resulting in misfolding or 172 

unfolding, thus affecting the natural folding of sfGFP 22, 24. Therefore, we hypothesized that the RBS 173 

could affect protein folding by regulating the TIR of protein.  174 

To examine the relationship between dynamic range and protein folding, the reported wild-type 175 
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chaperone ring complex, GroEL/S, which has the ability to assist in the folding of heterologous 176 

protein in Escherichia coli 25, was used to verify the effect of the RBS on sfGFP folding. Five cRBSs 177 

(RR8, RM10, RR3, RM2, and RG10) with different TIRs were used to investigate the misfolding 178 

and repair of sfGFP. The fluorescence changes with and without GroEL/S were explored by flow 179 

cytometry upon addition of 20 g/L glucarate (Fig. 2h). SDS-PAGE revealed that the increase in 180 

fluorescence intensity of each cRBS was not caused by different expression levels of sfGFP, but 181 

was caused by GroEL/S repairing misfolded or unfolded sfGFP to a natural folded state 182 

(Supplementary Fig. 2e). Furthermore, the repair rate, dynamic range, TIR, and sfGFP expression 183 

levels were calculated, which indicated that sfGFP expression was positively correlated with repair 184 

rate, while optimal TIR was more beneficial for achieving higher biosensor dynamic range (Fig. 2h, 185 

Supplementary Fig. 2f–2h). This finding was consistent with our hypothesis, implying that strong 186 

RBSs have high TIR, which not only promotes the translation of sfGFP, but also results in high 187 

misfolding rate and repair rate. Although dynamic range is a comprehensive phenomenon indicating 188 

the amounts and folding state of sfGFP, it is difficult to establish a quantitative equation to define 189 

the relationship between the RBS, TIR, folding, and dynamic range, which severely hinders the 190 

development of rational design of biosensors. 191 
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 192 

Fig. 2 Effects of cRBSs on biosensor dynamic range. (a) Hypothesis indicating that RBS affects 193 

protein folding. TIR coordinates both protein expression and folding state. (b) Nine RBS sequences 194 

derived from various libraries were obtained to replace the RBSs of glucarate biosensor. (c) The 195 

dynamic ranges of 81 cRBS glucarate biosensors induced with different concentrations of glucarate. 196 

cRBSs are defined as the RBS combination of cdaR (RBSn) and sfgfp (RBSm); for example, RM10 197 
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(R represents the RBSn of cdaR, M10 denotes the RBSm of sfgfp). (d) Comparison of LacZ enzyme 198 

activity and sfGFP expression intensity in three cRBS glucarate biosensors controlled by two 199 

reporter genes. Red column, LacZ enzyme activity; Green column, fluorescence intensity. (e) 200 

Volcano plot of cRBS datasets. The horizontal gray dashed line indicates a P-value of 0.05. The 201 

upper part (P < 0.05) represents the significant cRBS datasets. The vertical gray dashed line from 202 

left to right denotes the onefold, twofold, and nine-fold dynamic range. The pink and blue double 203 

arrows represent the significantly different cRBS datasets. Red star indicates the ninefold dynamic 204 

range of the control cRBS (RG10). (f) ANOVA for mean-normalized dynamic range from cRBSs 205 

and glucarate concentration datasets, with element- and junction-specific contributions to total 206 

dynamic range as noted (Materials and Methods). (g) Effect of TIR on the dynamic range of 207 

glucarate biosensor. Yellow triangle bars represent the increasing TIRs of RBSn and RBSm for cdaR 208 

and sfgfp, respectively. (h) Analysis of the dynamic range of biosensor and repair rate of sfGFP 209 

based on the distinct TIRs and sfGFP expression of RBSs. The correlation coefficient square (R2) 210 

of the fitted curve of the repair rate was 0.95. Band density was measured using ImageJ software; 211 

green columns represent the dynamic range of the biosensor; pink circles indicate the repair rate of 212 

sfGFP controlled by different cRBSs; repair rate is calculated as: (Flu (GroELS+) − Flu (GroELS−)) 213 

/ Flu (GroELS+), where Flu denotes fluorescence intensity. 214 

Semi-rational design of the RBS to fine-tune biosensor dynamic range 215 

Owing to the lack of quantitative relation between the RBS, TIR, folding, and dynamic range, it 216 

is possible to simulate and predict the biosensor dynamic range by mathematical models. As an 217 

alternative method, deep learning could predict complex biological relationships with simple neural 218 

network models, thereby circumventing the steps to understand the complicated biological 219 

mechanisms and achieving the expected effects of simulation and prediction. To obtain large data 220 

to train CNN model, we first accomplished rational designing of the RBS and further tuned the 221 

dynamic range of the biosensor. On the basis of the 81 cRBSs datasets, the conserved sequences of 222 

the RBSs in cdaR and sfgfp were generated by using the online software WebLogo 26. The 223 

engineered RBSs could be divided into a consensus sequence defined as upstream and downstream 224 

of the Shine-Dalgarno (SD) sequence (RBSn: TAACCATGCATA-SDn-GACTT for cdaR; RBSm: 225 
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TCTTAATCATG-SDm-GGTTTC for sfgfp) and an SD preference sequence (SDn: NNGGAGNN 226 

for cdaR; SDm: NNNGANNN for sfgfp; N = A, T, C, G) (Fig. 3a, b).  227 

To evaluate the reliability of this design principle of RBSs, we randomly constructed 400 cRBSs 228 

(20 × 20 RBSs, 20 RBSs of cdaR and sfgfp) (Supplementary Table 3). The fluorescence intensity 229 

and dynamic range of the 400 cRBSs biosensors with glucarate inducer showed a significant 230 

improvement, when compared with those without the inducer (Supplementary Fig. 3). In addition, 231 

the cRBSs biosensors presented an improved dynamic range upon addition of 20 g/L glucarate, 232 

when compared with the control (Fig. 3c). These findings implied that semi-rational design of 233 

cRBSs was more reliable and robust in improving the biosensor dynamic range. We further analyzed 234 

the datasets with and without glucarate to assess the differential expression of sfGFP, and found that 235 

up to 98% of the 400 cRBSs were available for analysis (P < 0.05) and 85.3% of the cRBSs showed 236 

significant differential expression (Fig. 3d). In particular, 35.3% of the 400 cRBSs presented 237 

significant differential expression, when compared with the control (RG10) (Fig. 3d). These results 238 

indicated that the semi-rational design of cRBSs considerably contributed to the improvement of 239 

biosensor dynamic range.  240 
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 241 

Fig. 3 Semi-rational design of RBSs. The semi-rational design principle of (a) RBSn (RBSs of 242 

cdaR) and (b) RBSm (RBSs of sfgfp) was obtained based on the 81 cRBSs sequences using the 243 

online software WebLogo. (c) Biosensors dynamic ranges of 400 cRBSs, which were designed by 244 

the semi-rational design principle of RBSs, were calculated upon the addition of 20 g/L glucarate. 245 

(d) Volcano plot of 400 cRBSs datasets. The horizontal gray dashed line represents a P-value of 246 

0.05. The upper part (P < 0.05) denotes the significant cRBS datasets. The vertical gray dashed line 247 

from left to right indicates onefold, twofold, and ninefold dynamic range. The pink and blue double 248 

arrows show the significantly different cRBS datasets. Red star represents the ninefold dynamic 249 

range of the control cRBS (RG10).  250 

Establishment of CLM-RDR for precise prediction of biosensor dynamic range 251 

To further extend the dataset for CNN model training, we constructed a much larger cRBS library 252 

through the RBS semi-rational design approach, and generated 100 RBSs for cdaR and 120 RBSs 253 

(Supplementary Table 3) for sfgfp (Fig. 3a, b). Then, a combinatorial library of 12,000 cRBSs as 254 

oligonucleotides was developed with DNA microarray (see online methods). To verify the 255 
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homogeneity of the 12,000 cRBSs, next-generation sequencing (NGS) was performed. The 256 

coverage of the 12,000 cRBSs was 100%, and the 10-fold variation reached a quality control value 257 

of 99.92% (Supplementary Fig. 4a, Supplementary Data 1, Accession No. SRR9301216). This 258 

cRBS library was used in the following pooled screening experiment to characterize the dynamic 259 

range of the glucarate biosensor.  260 

The 12,000 cRBS plasmid library was transformed into Escherichia coli (E. coli) BL21 (DE3) 261 

cells, which were cultured for 8 h in Luria–Bertani (LB) medium supplemented with 0 or 20 g/L 262 

glucarate. Then, by using FACS, we divided the cells induced with 20 g/L glucarate into five non-263 

adjacent sub-libraries I–V according to the expression intensity of sfGFP, and compared them with 264 

the control without glucarate induction (Fig. 4a). Subsequently, the average single cell fluorescence 265 

intensity and average dynamic range of the sub-library I–V and control were calculated, and a 26-266 

fold, 63-fold, 121-fold, 246-fold, and 545-fold average dynamic range were accomplished for the 267 

sub-libraries I–V, respectively (Fig. 4b). These results further demonstrated that the cRBS semi-268 

rational design approach was highly effective in tuning the dynamic range of the glucarate biosensor, 269 

and helped to establish a high-quality element library in synthetic biology and construct an approach 270 

for designing complex genetic circuits to fine-tune gene expression 27-29.  271 

To determine the cRBS sequences of the glucarate biosensors in each sub-library, we first 272 

obtained the assorted biosensor plasmids of the five sub-libraries. Then, the mixed PCR products of 273 

the five modified sub-libraries were linked with five barcodes and sequenced by NGS 30 (Accession 274 

No. SRR9301175; see online methods). Box plots showed the distribution of each cRBS count of 275 

five sub-libraries, and separate points indicated that the cRBS numbers ranged from 10 to 105 (Fig. 276 

4c, Supplementary Data 2). In addition, the diversity of cRBSs in each sub-library was analyzed, 277 

and there were 6219, 7630, 2214, 2892, and 5079 cRBSs in sub-libraries I–V, respectively (Fig. 4d). 278 

Besides, more than 12,000 cRBSs were found, possibly because of mutations introduced into the 279 

sequence through bacterial evolution during cultivation. Although the mutation rates of the 280 

consensus sequences of RBSn and RBSm in the five sub-libraries were 0.15, 0.19, 0.06, 0.09, and 281 

0.15, respectively, and they did not affect subsequent model development (Supplementary Data 282 

2). Therefore, to ensure data integrity, the sequenced 24,000 cRBSs were used as the data sources 283 

for further data processing.  284 
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Although the cRBSs sequences of each sub-library were obtained, it was extremely crucial to 285 

determine the functional relationships between the cRBSs sequences and average dynamic range of 286 

glucarate biosensor. Functional relationships could help to quickly analyze the dynamic range of a 287 

corresponding cRBS biosensor, which could reduce the burden of the design–build–test–learn cycle. 288 

Therefore, CNNs of deep learning was chosen to establish a classification model between cRBSs 289 

and the average dynamic range of each sub-library (CLM-RDR). The cRBSs and average dynamic 290 

range of sub-libraries I–V were the input and output of CLM-RDR, respectively. First, 85% of the 291 

cRBSs in each sub-library were randomly selected as datasets to train the CNN model 292 

(Supplementary Fig. 5). Next, we evaluated how well CLM-RDR predicted the average dynamic 293 

range of the glucarate biosensor from the remaining 15% of cRBSs sequences in each sub-library 294 

(Fig. 4e). The results indicated that CLM-RDR predicted the dynamic range of the glucarate 295 

biosensor with high accuracy, yielding an area under the curve (AUC) of 0.83, 0.87, 0.90, 0.92, and 296 

0.94 for sub-libraries I–V, respectively, and an average AUC of 0.89. Moreover, CLM-RDR 297 

performed better in predicting sub-libraries with high dynamic range, when compared with that with 298 

low dynamic range, implying that cRBSs in the high dynamic range could more easily achieve fine 299 

tuning of the biosensor dynamic range.  300 

 301 
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Fig. 4 Accurate prediction of the dynamic range of glucarate biosensor from cRBS sequences 302 

by deep learning model. (a) A larger cRBSs library was formed than the original libraries. Division 303 

of cells induced with 20 g/L glucarate into five non-adjacent sub-libraries (I–V), which were 304 

compared with the control (0 g/L glucarate) based on the expression intensity of sfGFP measured 305 

by FACS. (b) Analysis of average fluorescence intensity (green column) and average dynamic range 306 

(red column) of each sub-library and control. (c) The counts of each cRBS of the five sub-libraries 307 

were obtained by NGS. (d) Diversity of cRBSs of five sub-libraries. (e) Establishment of CLM-308 

RDR based on 24,000 cRBS sequences. Receiver operating characteristic (ROC) curves for cRBSs 309 

of sub-libraries I–V (solid lines of various colors) and total library (pink dotted line). Biosensor 310 

dynamic ranges with five test-positive samples were used to classify.  311 

Applications of the CLM-RDR to other biosensors 312 

The CLM-RDR is expected to tune the dynamic range of different biosensors. Therefore, to 313 

further evaluate the performance of the CLM-RDR, we randomly selected 16 cRBSs to modify the 314 

glucarate biosensor, glycolate biosensor, and arabinose biosensor (see online methods). We first 315 

predicted the average dynamic range of 16 cRBSs by using CLM-RDR and then performed an 316 

experiment to detect the dynamic ranges of the biosensors via FACS (Supplementary Fig. 6). By 317 

analyzing the predicted and experimentally observed dynamic ranges, CLM-RDR was found to have 318 

good predictive performance for three biosensors. Predicted accuracy rates of 62.5% (Fig. 5a), 62.5% 319 

(Fig. 5b), and 68.75% (Fig. 5c) were obtained for glucarate, arabinose (Fig. 5d), and glycolate (Fig. 320 

5e) biosensors, respectively. These results indicated that the CLM-RDR had a certain degree of 321 

universality in predicting the dynamic ranges of biosensors. The CLM-RDR can probably be further 322 

improved by providing additional training datasets.  323 
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 324 

Fig. 5 CLM-RDR verification for three genetically encoded biosensors. Sixteen cRBSs were 325 

randomly selected for biosensor modification and comparison of the observed and predicted 326 

dynamic ranges. The CLM-RDR performed well in predicting the dynamic ranges of (a) glucarate 327 

biosensor, (b) arabinose biosensor, and (c) glycolate biosensor. I–V represent the five sub-libraries 328 

of cRBSs. The black diagonal denotes y = x. (d) Structure of ParaB-based arabinose sensor. Pc 329 

represents the constitutive promoter that controls transcription of the regulatory protein AraC. ParaB 330 

is an inducible promoter containing the AraC-binding DNA sequence. Blunt-end arrows denote 331 

repression. (e) Structure of PglcD-based glycolate sensor. Pffs 
31 indicates the constitutive promoter 332 

that controls transcription of the regulatory protein GlcC. PglcD is a constitutive promoter that 333 

controls the transcription of the reporter sfGFP. In the absence of glycolate, GlcC remained as a 334 

non-functional regulatory protein, whereas in the presence of glycolate, the regulatory protein GlcC 335 

and glycolate bound to the activator GlcC-glycolate, which in turn bound to the upstream activation 336 

site (UAS) of the promoter PglcD, thus enhancing transcription and expression of sfgfp. Pointed 337 

arrows indicate activation. (f) Detailed illustration of 16 cRBSs and three biosensors. Solid circle: 338 

glucarate biosensor; solid triangle: arabinose biosensor; solid diamond: glycolate biosensor. 339 

Software package 340 

To encourage experimental biologists to use CLM-RDR, we uploaded the model to GitHub, 341 

which converted an RBS sequence directly into biosensor dynamic range. The code for predicting 342 

biosensor dynamic range can be found at https://github.com/YuDengLAB/CLM-RDR. 343 
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DISCUSSION  344 

Genetically encoded biosensors derived from transcription factors responding to small-molecule 345 

inducers are receiving increasing research attention 3. The currently available genetically encoded 346 

biosensors usually have the major problem of inappropriate dynamic range 6, 8. Although many 347 

valuable works, such as promoter modification studies, have attempted to tune the dynamic range 348 

of biosensors, universality may be difficult to achieve owing to small datasets and insufficient 349 

analysis tools. Therefore, fine-tuning of the biosensor dynamic range remains a huge challenge 5, 17. 350 

In general, RBS controls the translation initiation rate 12, 23 of regulatory proteins and reporters, 351 

which can control the dynamic range of biosensors. Previous reports had indicated that the dynamic 352 

ranges of device input or output were not well tuned by replacing the RBS 10, mainly because the 353 

RBS design was not sufficiently rational and the RBS datasets were limited. Therefore, to fine-tune 354 

the dynamic range of biosensors, in the present study, we established the design principle of the 355 

RBS in biosensors through ANOVA and online WebLogo processing. Accordingly, 12,000 cRBSs 356 

were semi-rationally designed based on the design principle, and five average dynamic ranges were 357 

calculated by dividing the cRBSs into five sub-libraries using FACS. Most importantly, we 358 

developed CLM-RDR, a classification model between cRBSs and average dynamic range of five 359 

sub-libraries. The CLM-RDR showed accurately predictive performance and was able to quickly 360 

determine the average dynamic range of a biosensor corresponding to a cRBS. In addition, the CLM-361 

RDR also had good predictive ability toward glycolate and arabinose biosensors, thus indicating 362 

that this model can be extended to other biosensors. Besides, the developed model significantly 363 

simplified the workload of the design–build–test–learn cycle of fine-tuned biosensor dynamic range 364 

in bacteria and accelerated intelligent fine-tuning of biosensor dynamic range. 365 

RBSs play a role in fine-tuning genetic components and determining the TIR of proteins 12, 23. 366 

Proteins usually present tight and loose structures. The mRNA structure affects the translation rate 367 

of a protein, and fast translation prevents the formation of compact structures, which affects protein 368 

folding 22. Thus, we hypothesized that the RBS might also affect the conformations of proteins by 369 

controlling TIR, thereby achieving fine-tuning of gene expression. To further explore the 370 

relationship between TIR, protein folding, and biosensor dynamic range, a wild-type chaperone 371 

GroEL/S, which could assist in the folding of recombinant sfGFP in E. coli, was combined with a 372 
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set of constructed biosensors 25. Although there was no one-to-one relationship between the protein 373 

expression level and predicted TIR, a positive correlation trend was noted. In other words, when 374 

compared with low TIR, high TIR not only increased the protein expression, but also produced more 375 

misfolded proteins, which in turn resulted in a higher repair rate of sfGFP by GroEL/S (Fig. 2a, h). 376 

Therefore, appropriate protein expression level and protein folding state achieved the optimal 377 

biosensor dynamic range, thus further implying that RBS is one of the key factors affecting the 378 

dynamic range of biosensors. 379 

Sequence-based deep learning models had been reported to show good predictive performance 380 

for biological phenotypes 13, 32, 33. Deep learning models can accurately establish the correspondence 381 

between genotypes and phenotypes through large datasets, thus making investigations more 382 

universal. The present study found that one of the key factors affecting the dynamic range of 383 

biosensors was RBS. However, the mechanism of the RBS tuning the dynamic range of biosensors 384 

was complex (Fig. 2a), not only requiring exploration of the mechanism of RBS tuning translation 385 

and folding of regulators and reporter, but also examination of the binding mechanism of regulators 386 

and operator sites and further investigation of the effects on downstream reporter transcription. 387 

Therefore, analysis of these mechanisms using current technology is a huge challenge. However, 388 

deep learning models do not require understanding of specific mechanisms to establish the 389 

relationship between RBS and biosensor dynamic range, and can be extended to other biosensors 390 

research. Hence, to develop a universal tool to fine-tune the dynamic range of biosensors, we 391 

developed CLM-RDR, a classification model based on deep learning between cRBSs and average 392 

dynamic range. The CLM-RDR showed good prediction performance for the dynamic range of the 393 

biosensor using only less than 24,000 cRBSs datasets. More importantly, it could be extended to 394 

other biosensors, achieving the same prediction effects, implying that CLM-RDR has certain 395 

universality in predicting the dynamic range of biosensors. It should be noted that the present study 396 

only examined the effect of the RBS on biosensor dynamic range. The results of this study, along 397 

with further research on promoters, plasmid copy numbers, and regulatory protein evolution, could 398 

propel fine-tuning of the dynamic range of biosensors into the era of intelligence. 399 
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ONLINE METHODS 400 

Strains and culture conditions 401 

All strains used in this study are listed in Supplementary Table 4. E. coli JM109 and E. coli 402 

BL21 (DE3) cells were used for plasmid cloning and protein expression, respectively. M9 minimal 403 

medium, consisting of Na2HPO4 (6.78 g/L), KH2PO4 (3.0 g/L), NaCl (0.5 g/L), MgSO4·7H2O (0.5 404 

g/L), CaCl2 (0.011 g/L), NH4Cl (1.0 g/L), and glucose (5 g/L), was used for fluorescence intensity 405 

assessment. The final concentrations of ampicillin, kanamycin, and spectinomycin employed in this 406 

study were 100, 50, and 50 μg/mL, respectively. The final concentration of isopropyl β-D-407 

thiogalactoside was 1 mM.  408 

Plasmid construction 409 

All plasmids and primers used in this study are listed in Supplementary Tables 4 and 5, 410 

respectively. The pJKR-H-cdaR plasmid for glucarate biosensor was purchased from Addgene 411 

(#62557). In addition to RBS and g10RBS, we selected seven RBSs: RBS3, RBS7, RBS8, MCD2, 412 

MCD10, BBa_J61100 and BBa_J61106 (Supplementary Table 2). The primer design was based 413 

on the different RBS sequences, and the pJKR-H-cdaR plasmid was used as the template for plasmid 414 

PCR. Plasmids pJKR-H-RBSs-cdaR-RBSs (RBSs are represented as R, R3, R7, R8, G10, M2, M10, 415 

BJ00, or BJ06), pJKR-H-RBSn81-cdaR-RBSm56, pJKR-H-RBSn81-cdaR-RBSm97, and pJKR-H-416 

RBSn81-cdaR-RBSm117 were constructed through DpnI digestion, and the digestion products were 417 

introduced into E. coli JM109 cells for screening by colony PCR and Sanger sequencing. The 418 

plasmids pJKR-H-R-cdaR-G10-lacZ-his, pJKR-H-R-cdaR-M10-lacZ-his, pJKR-H-R-cdaR-R8-419 

lacZ-his, NGS-RBSn-RBSm-I, NGS-RBSn-RBSm-II, NGS-RBSn-RBSm-III, NGS-RBSn-RBSm-420 

IV, NGS-RBSn-RBSm-V, and pRSF-groEL-groES were constructed using with Gibson assembly 34. 421 

The plasmid pHS-AVC-LW1125 was synthesized by Beijing Syngentech Co., Ltd in china. through 422 

DNA microarray technique. 423 

Plasmids containing the glycolate biosensor pUC-glcC-ffs and arabinose biosensor pUC-araC 424 

were constructed through Gibson assembly methods. In both of the biosensors, the rrnB strong 425 

terminator, antibiotic resistance gene, and origin of replication were derived from the glucarate 426 

biosensor (pJKR-H-cdaR) 4. All the sequences of transcriptional regulators and their promoters are 427 
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provided in Supplementary Table 6. To evaluate the general performance of the CLM-RDR, we 428 

randomly selected eight RBSs to engineer three biosensors using plasmid PCR method: RBScdaR 429 

(Rc) and g10RBS derived from the glucarate biosensor; BBa_J61104 (BJ04) and BBa_J61108 (BJ08) 430 

obtained from the Anderson RBS library; MCD10 generated from the monocistronic design by 431 

Mutalik, et al; RBSglcC (Rg) obtained from the glycolate biosensor; and RBSpRSF (RpR) and RBSpTrc99a 432 

(RpT) derived from plasmids pRSF and pTrc99a, respectively (Supplementary Table 6). The 433 

plasmid construction methods for each biosensor had been described earlier, and the concentrations 434 

of the inducers, glycolate and arabinose, were 70 and 20 mM, respectively (Supplementary Fig. 435 

6).  436 

ANOVA model for cRBSs:glucarate combinatorial datasets 437 

To understand the contribution and interaction between cRBSs and glucarate in the precise 438 

regulation of biosensors, we performed ANOVA 23 on the following linear model, using fluorescence 439 

data from sfGFP 35 440 

Fluorescenceijk = μ + Ci + Gj + (C:G) ij + εijk 441 

         for i = (1–81); j = (1–12) 442 

where Fluorescenceijk is the fluorescent output signal measured from the translation element, Ci, and 443 

induced substrate glucarate, Gj; (C:G)ij represents any interaction between the ith translational 444 

element and jth concentration of glucarate; μ is the overall average signal; and εijk is the error term 445 

for each C:G combination. The analysis output is presented in Supplementary Table 1. 446 

β-Galactose activity assays  447 

The process of gene deletion in E. coli BL21 (DE3) cells was performed as described by Jiang et 448 

al 36. The sgRNA of lacZ is shown in Supplementary Table 6. An appropriate amount of 449 

fermentation broth was centrifuged at 8000 × g for 10 min at 4 ºC, the supernatant was discarded, 450 

and the cells were collected. The cells were washed twice with cold lysis buffer (Tris–HCl; 0.01 M, 451 

pH 7.5). Then, the cells were resuspended in 2.5 mL of 0.01 mol/L Tris–HCl buffer (pH 7.5), and 452 

glass beads 37 and 50 μL of PMSF stock solution were added to the cell culture. The cell culture was 453 

oscillated six times at high speed for 15 s each and placed on ice intermittently. Subsequently, 2.5 454 

mL of Tris–HCl buffer were added to the culture, and the supernatant collected after centrifugation 455 
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at 8000 × g for 15 min at 4 °C was the crude enzyme solution. Next, 1 mM o-nitrophenyl-β-D-456 

galactopyranoside (oNPG) solution was prepared with 50 mM oNPG. Approximately 10 μL of the 457 

diluted crude enzyme solution and 20 μL of the oNPG solution were added to 70 μL of Z-buffer 458 

(16.1 g/L Na2HPO4
.7H2O, 5.5 g/L NaH2PO4

.H2O, 0.75 g/L KCl, 0.246 g/L MgSO4
.7H2O, and 2.7 459 

mL β-mercaptoethanol; pH 7.0, stored at 4 °C) for 10 min at 30 °C. Then, 120 μL of 1 mol/L pre-460 

cooled Na2CO3 were immediately added to stop the reaction and develop color. Finally, the 461 

absorbance was measured with a spectrophotometer at a wavelength of 420 nm. One unit of enzyme 462 

activity was defined as the amount of enzyme catalyzing the production of 1 μmol o-nitrophenol 463 

(oNP) per minute 38, 39. 464 

Bovine serum albumin (BSA) was dissolved in Z-buffer at different dilutions (0.0–0.2 mg/mL 465 

BSA), and standard curves were generated. Crude enzyme (20 μL) was added to 200 μL of Bradford 466 

reagent, mixed, and its absorbance was determined at a wavelength of 595 nm. The crude enzyme 467 

concentration was calculated with a standard curve. The formula for calculating the enzyme activity 468 

was as follows. U/mg protein = OD420 × 1.7/(0.0045 × protein content × crude enzyme volume × 469 

time), where OD420 is the optical density of the product oNP at 420 nm, coefficient 1.7 is the 470 

corrected value of the reaction volume, coefficient 0.0045 is the optical density (OD) of 1 mM oNP 471 

solution, protein content is expressed in mg/mL, crude enzyme volume is expressed in mL, and time 472 

is shown in min.  473 

Fluorescence assays  474 

The cells were grown overnight to saturation before being diluted into fresh LB medium at a ratio 475 

of 1:100 and incubated at 250 rpm and 37 ºC. After 3 h, 100 μL of log-phase cells were transferred 476 

to 96-well plates and stock inducers were respectively added to achieve the desired induction 477 

concentrations. Different concentrations of glucarate, glycolate, and arabinose were obtained by 478 

diluting 100 g/L glucarate, 1 M glycolate, and 1 M arabinose mother liquor in 96-well plates. Before 479 

measurements, the cultures were diluted into 0.01 M phosphate buffered saline (PBS; pH 7.4) to 480 

ensure that the OD600 value was about 0.5. Measurements were performed using a Biotek HT plate 481 

reader (Winooski, VT, USA) under excitation wavelength of 485/20 nm and emission wavelength 482 

of 528/20 nm at 37 ºC and rapid shaking. Fluorescence intensity was measured in arbitrary units 483 

(AU), and the OD was determined by absorbance. For a given measurement, normalized 484 
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fluorescence was determined by dividing the fluorescence by OD. The ratio of fluorescence to 485 

absorbance at 600 nm was used to compensate for the changes in cell density over time and between 486 

experiments (AU/OD). 487 

E. coli BL21 (DE3) cells containing the plasmid libraries were cultured to saturation, and then 488 

incubated at a concentration of 1% into 250-mL flasks containing LB medium at 250 rpm and 37 C. 489 

After 2 h, inducers were added to the desired final concentration, and incubation was resumed for 490 

12 h. The induced cultures were diluted into cold PBS and kept on ice until evaluation with a BD 491 

FACS AriaII cell sorter (Becton Dickinson) 24. At least 100,000 events were captured for each 492 

sample. BD FACSDiva software was used to divide the gate for sfGFP 35 (bandpass filter, 530/30 493 

nm; blue laser, 488 nm).  494 

Construction of the RBS library and NGS analysis 495 

In total, 12,000 cRBS sequences were synthesized using DNA microarray, amplified by PCR, and 496 

were cloned into a glucarate biosensor plasmid backbone (pHS-BVC-LW274 and pHS-BVC-497 

LW276) via two-step Golden Gate assembly 34 (completed by Synbiotic Gene Company) to obtain 498 

the glucarate biosensor plasmid library. Next, the plasmid library was transformed into E. coli BL21 499 

(DE3) cells, which were cultured for 8 h in LB medium with or without 20 g/L glucarate 500 

supplementation. Then, the cells induced with 20 g/L glucarate were divided into five non-adjacent 501 

sub-libraries (I–V), which were compared with the positive control without glucarate induction 502 

according to the fluorescence intensity of sfGFP by FACS. To ensure the reliability of fluorescence 503 

intensity, cell adhesion was removed by executing FSC-A/FSC-H and SSC-A/SSC-H operation. 504 

Finally, the cells from each sub-library were obtained. Although the distance between the two RBSs 505 

in the glucarate biosensor was 2208 bp, NGS was able to measure only up to 250 bp; therefore, 506 

Gibson assembly 34 was used to modify the plasmids of the five sub-libraries. The modified sub-507 

libraries contained 134 bp between two RBSs (Supplementary Fig. 4b), and the mixed PCR 508 

products of the five modified sub-libraries were linked with five barcodes and sequenced by NGS. 509 

Finally, the cRBS sequences and sequence abundance of the five sub-libraries were determined. 510 

Deep learning 511 

First, 24,000 cRBS sequences were combined to create datasets for subsequent deep learning. 512 

Then, the fluorescence intensity was divided into five levels for evaluating the biosensor 513 
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corresponding to the RBS. To classify the RBS sequences, one-hot coding was initially employed. 514 

A neural network model 32, 33 consisting of three convolutional layers and three full connection 515 

layers was proposed to accurately classify the RBS sequences. The convolutional layers comprised 516 

stride 1 and the pooling layers were non-overlapping. The convolution layer included two functions: 517 

feature extraction and feature mapping. On the one hand, the input of each neuron was connected 518 

to the local receptive field of the previous layer, and the local features were extracted. After the local 519 

features were extracted, the positional relationships between them and other features were also 520 

determined. On the other hand, each computing layer of the network was composed of multiple 521 

feature maps, each feature maps into a plane, and all the neurons on the plane exhibited the same 522 

weight. The feature map used the ReLU function with a small kernel of the influence function as 523 

the activation function of the convolution network, so that it had an invariance of displacement. 524 

Software and graphics generation 525 

Deep learning was performed with SciPy (1.0.0), NumPy (1.14.0), and TensorFlow (1.9.0) Python 526 

packages.  527 
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