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Abstract 
 
Resource competition and metabolic cross-feeding are among the main drivers of microbial 
community assembly. Yet, the degree to which these two conflicting forces are reflected in the 
composition of natural communities has not been systematically investigated. Here, we use 
genome-scale metabolic modeling to assess resource competition and metabolic cooperation 
potential in large co-occurring groups, with up to 40 member species, across thousands of 
habitats. Our analysis revealed two distinct community types, clustering at opposite ends in a 
trade-off landscape between competition and cooperation. On one end lie highly cooperative 
communities, characterized by smaller genomes and multiple auxotrophies, reminiscent of the 
black queen hypothesis. At the other end lie highly competitive communities, conforming to the 
red queen hypothesis, featuring larger genomes and overlapping nutritional requirements. While 
the latter are mainly present in soils, the former are found both in free-living and host-associated 
habitats. Community-scale flux simulations showed that, while the competitive communities can 
better resist species invasion but not nutrient shift, the cooperative communities are susceptible 
to species invasion but resilient to nutrient change. In accord, we show, through analyzing an 
additional independent dataset, the colonization of the human gut by probiotic species is positively 
associated with the presence of cooperative species in the recipient microbiome. Together, our 
analysis highlights the bifurcation between competition and cooperation in the assembly of natural 
communities and its implications for community modulation. 
 
Introduction 
 
Microbial communities are fundamental constituents of ecosystems across scales1–6. They play a 
crucial role in, for example, geochemical cycles7 and in our health as our microbial symbionts7. 
The biological properties and functions of these communities are determined by their 
compositional make-up. For example, multiple diseases have been linked to compositional 
changes in the gut microbiome5,8. An emerging challenge in these and other microbial ecosystems 
is modulation or redesign of communities towards repairing a perturbed state or reaching a new 
community-level function9. However, it is currently difficult to predict which microbes would form 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.922583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922583
http://creativecommons.org/licenses/by-nc-nd/4.0/


a stable community or how a given community would respond to different biotic or abiotic 
perturbations. 
 
Nutrient availability is one of the most fundamental factors directing the establishment of a 
community and the metabolic interactions therein10–12. Previous studies have assessed the 
potential for such interactions using genome-scale metabolic models, which recapitulate the 
metabolic and biosynthetic capabilities of each community member. While these studies attest to 
the potential of genome-scale modeling to assess the competition and cooperation in microbial 
communities, they remain limited due to the low species numbers and habitat diversity analyzed. 
Furthermore, the restricted size of co-occurring groups (only species pairs) does not capture 
higher-order interactions (i.e. the influence of a third, or more, species in the interaction between 
two species), which are known to play a role in ecosystem function13–15. 
 
Here, we assessed, through simulating thousands of community-scale metabolic models, the 
prevalence and the nature of metabolic competition and cross-feeding interactions in microbial 
communities across thousands of samples from diverse environments represented in the Earth 
Microbiome Project (EMP)16 and validated some of the derived hypothesis using additional 
independent datasets. The broad habitat coverage and consideration of large co-occurring groups 
allowed us to gauge the relative role of metabolic competition and cooperation in community 
assembly, and the evolutionary signatures of this trade-off in microbial genomes. 
 
 
Results 
 
Co-occurring communities 
 
We first built metabolic models for individual species by mapping 16S rRNA sequences present 
in the EMP dataset, previously classified into operational taxonomic units (OTUs), to their closest 
reference genomes in NCBI RefSeq, a database of fully sequenced genomes17, using a 97% 
similarity cutoff (see Methods). We then used these genomes to build genome-scale metabolic 
models with CarveMe18. This resulted in a collection of unique models for 2986 species. Next, to 
uncover ecologically-relevant patterns of interactions among these species, we systematically 
searched for groups of significantly co-occurring species (i.e. groups of species that occur 
together across samples more often than expected by chance; see illustration in Figure 1a, and 
Methods for details). Although multiple methods have been proposed to compute co-occurring 
species in microbial samples, most are limited to species pairs19–22. On the other hand, 
experiments with synthetic communities have underlined the importance of higher-order 
interactions in community structure and dynamics. The emergent features of complex 
communities thereby cannot be inferred from pairwise interactions alone15. Supporting this, our 
previous work showed that co-occurring communities could be distinguished from random species 
assemblies much more markedly in triplets and quadruplets23. 
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In this work, we tackle higher-order interactions at an unprecedented scale by introducing a new 
heuristic approach (see Methods). In brief, the method begins by computing significantly co-
occurring species pairs, and iteratively creates larger assemblies using a sampling approach, 
based on roulette wheel selection, to avoid the combinatorial explosion. This allowed us to 
uncover thousands of co-occurring communities with up to 40 member species. To visualize the 
distribution of species in these communities, we applied dimensionality reduction using principal 
component analysis, and observed the formation of two spatially segregated clusters of co-
occurring communities (Supp. Fig. 2). 
 
Competition - cooperation tradeoff 
 
We next assessed metabolic interactions in the identified co-occurring communities using 
SMETANA, a flux balance analysis-based simulation tool24. Unlike other community simulation 
methods24–26, SMETANA does not assume any optimality at community or species level, its only 

Figure 1. a) Schematic of the two main steps in our analysis: identification of frequently co-occurring 
communities across the Earth Microbiome project samples, followed by the calculation of metabolic 
resource overlap (MRO) and metabolic interaction potential (MIP) scores; b-g) The trade-off between 
the competition (MRO) and cooperation (MIP) scores for different community sizes. Green and orange 
dots show co-occurring communities, while the grey dots represent random assemblies, with a total of 
1000 simulated communities per each community size and type; h) Cooperation potential as a function 
of community size; i) Competition potential as a function of community size (thick lines represent mean 
values and confidence intervals represent standard deviation). 
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assumption is that each species can survive using the available resources. Using SMETANA, we 
computed the metabolic resource overlap (MRO) and metabolic interaction potential (MIP) for 
each community (as illustrated in Fig. 1a). The MRO quantifies the similarity of the nutritional 
requirements between all species in a community, reflecting the intra-community risk for resource 
competition. The MIP provides an estimate for the number of metabolites that can be exchanged 
among the community members to decrease their dependency on the nutrient supply from the 
(abiotic) environment. As control groups, to contrast against the co-occurring communities, 
random assemblies of the same size as the co-occurring communities were used (1000 
communities for each community size). 
 
The first notable pattern from the simulation results was a trade-off between competition and 
cooperation (Fig. 1b). Species within communities with higher cooperation potential thereby have 
less resource overlap and vice-versa. This pattern, although intuitive, had not been observed 
before, most likely due to the limited scale of the previous studies. To check if the observed trade-
off pattern results from any biases in the EMP data (such as the habitats covered, experimental 
protocols, or data processing pipelines), we computed co-occurring communities using an 
independent collection of 16S amplicon data compiled from multiple sources by Chaffron and co-
workers21. Again, we observed a clear trade-off between competition and cooperation (Supp. Fig. 
3). 
 
When compared with the random assemblies, the co-occurring communities not only showed a 
striking distinction in terms of both competition risk and cooperation potential but also a clear 
polarization at the opposite ends of the competition-cooperation spectrum (Fig. 1b). Furthermore, 
in accordance with the ecological importance of higher-order interactions, the distinction of the 
co-occurring groups is more prominent for larger community sizes. The two polarized clusters of 
the co-occurring communities, the highly competitive and highly cooperative, coincide with the 
two main clusters previously observed based on species composition (Supp. Fig. 2). This stark 
contrast suggests opposite metabolic strategies undertaken by the species present in the two 
groups.  
 
Species characteristics in competing and cooperative groups 
 
To gain insights into ecological mechanisms underlying the divide of co-occurring communities 
between competitive and cooperative types, we compared the metabolic features of the 
respective member species. We observed that the species present in cooperative communities 
have fewer metabolic genes (mean 550, sd 65) compared to all the species mapped in the EMP 
dataset (mean 723, sd 62) (Fig. 2a). We then estimated the minimal nutritional requirements of 
each species (accordingly to the model simulations, discounting for inorganic compounds). In line 
with their small metabolic networks, species in cooperative communities have higher nutrient 
requirements, requiring an average of 10 (sd 1.6) organic compounds, in comparison to the 
average of 6.8 (sd 1.2), for all EMP species (Fig. 2b). In contrast, species in the competitive 
communities have, on average, more metabolic genes (mean 919, sd 75) and fewer nutritional 
requirements (mean 5.0, sd 1.0). 
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The fact that the cooperative communities have a smaller resource overlap amongst their member 
species, despite requiring more nutrients, seems puzzling, but can be explained by possible 
diversification of their nutritional requirements. To test this, we calculated the network dissimilarity 
within each community (defined as the average Jaccard distance between the metabolic networks 
of its species). Indeed, the cooperative communities were found to be more dissimilar than 
expected by chance (Cohen's d = 1.1, p < 0.001) (Fig. 2c), explaining their lower resource overlap 
and higher cross-feeding potential. Conversely, the lower dissimilarity in competitive communities 
(Cohen's d = -2.0, p < 0.001) was consistent with their high resource overlap. 
 
We next analyzed the nature of the compounds that different communities compete for or 
exchange within their member species (Supp. Fig. 4). While the cooperative communities mainly 
require amino acids, the competitive communities showed a more uniform distribution of 
requirements, including amino acids, carbohydrates, and pyrimidines. Regarding nutrient 
exchange, cooperative communities showed a three-fold higher propensity for amino acid cross-
feeding than the competitive communities (Welch's t-test: p < 0.001).  
 
To what extent do the cooperative or competitive metabolic strategies of a community influence 
the fitness of its members? To answer this, we calculated the total (relative) abundance of the 
species that participate in co-occurring communities and compared it with the abundance of 

Figure 2. Characteristics of the member species of the cooperative, competitive, and randomly-
assembled communities. Shown are the distributions of: a) the number of metabolic genes; b) the 
number of nutrients (discounting inorganic compounds) required; c) the dissimilarity (Jaccard distance) 
between the metabolic networks of all species pairs; d) the abundance of community members across 
all the samples wherein the community occurs (in this case, the random assemblies correspond to 
random subcommunities of equal size taken from the same samples); e) phylogenetic distance between 
all pairs of species. 
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random subsets with the same number of species (Fig. 2d). We find that the species forming 
cooperative communities are highly abundant, representing a large fraction of the total biomass 
in each sample (in the range of 10-100%, median 21.6%). In stark contrast, species participating 
in competitive communities are only slightly more abundant (median 1.2%) than expected by 
chance (median 0.5%). Since a given species can be part of multiple co-occurring communities, 
we analyzed how the fitness of an individual species (in terms of its relative abundance) is related 
to the total number of co-occurring partners present in each sample (Supp. Fig. 5). While for the 
competitive species the number of partners present does not seem to influence their abundance 
(Spearman's r = -0.02, p < 0.05), the species participating in cooperative communities have a 
higher abundance when more cooperative members are also present in the same samples 
(Spearman's r = 0.28, p < 0.001). Membership of a cross-feeding community thus seems to carry 
a substantial benefit in terms of increased fitness. 

 
Habitat preferences of cooperative and competitive communities 
 
The evolution of metabolic competition and cooperation is expected to be driven by nutrient 
availability in the habitat. We tested this by using the EMP ontology describing 17 types of habitats 
(9 free-living and 8 host-associated)16. When counting the number of distinct habitats in which all 
members of a given community co-occur, we observed a striking difference between competitive 
and cooperative communities (Fig. 3). The competitive communities are mostly present in free-
living environments, with over two-thirds of the respective samples coming from studies in soil 
diversity27–29. On the other hand, the cooperative communities are present both in free-living and 
host-associated habitats, with the respective samples coming from varied sources, including 
studies of the human microbiome and studies of microbes present in indoor environments and 
wastewater treatment30–33. Interestingly, we noted several indoor environment samples where 
competitive and cooperative communities co-exist. These samples come from the Home 
Microbiome Project (HMP), a study that tracked the microbiome of 18 individuals and 4 pets at 
multiple body sites, as well as multiple indoor surfaces during 6 weeks. These samples thus likely 
represent encounters of bacteria from soil, pets, and humans during daily life activity. 
 
The high habitat diversity of the cooperative communities supports their advantage as a group, 
enabling movement between different environments as largely self-sufficient modules. However, 
to maintain their function, and exchange all required metabolic precursors in suitable amounts, 
these modules would need to maintain a stable composition in terms of the relative abundance of 
its members. Therefore, we queried the temporal stability of cooperative and competitive 
communities in the HMP samples, using two different metrics (see Methods): individual stability 
(i.e. how stable is the abundance of each species over time), and group stability (i.e. how stable 
is the relative abundance between community members over time). Supporting our hypothesis, 
the cooperative communities appear to be more stable than expected by chance (Supp. Fig. 6), 
both in terms of individual stability (lower coefficient of variation in the abundance of each species, 
Cohen's d = -3.5, p < 0.001) and group stability (higher similarity of abundance profiles, Cohen's 
d = 3.2, p < 0.001). Competitive communities, on the other hand, showed no coherent trend. 
Together, the habitat preference analysis brings forward cooperative communities as functionally 
coupled modules that can successfully migrate between different environments. 
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Phylogeny and evolution 
 
We next investigated the role played by gene loss (or gain) by the member species. To address 
this, we reconstructed a phylogenetic tree (using 40 universal marker genes) for all species in the 
EMP dataset (see Methods) and calculated the average phylogenetic distance within the 
members of cooperative and competitive communities. Members of both competitive and 
cooperative groups are observed across the four main phyla (Fig. 4a), indicating that this 
polarization is a broadly distributed phenomenon. Also, we observe that the species participating 
in cooperative communities are phylogenetically more distant than expected by chance (Cohen's 
d = 0.3, p < 0.001), whereas competitive communities are closer to each other (Cohen's d = -0.9, 
p < 0.001) (Fig. 2e). This agrees with metabolic dissimilarity as one of the distinguishing features 
between cooperative and competitive communities (Fig. 2c). 
 
To gain insights into the connection between phylogenetic relatedness and inter-species 
metabolic dependencies, we calculated cross-feeding scores between the 50 most frequently co-
occurring species within each community type (see Methods). As expected, we observe stronger 
interactions between species in cooperative communities (Fig. 4b). Notably, inter-phylum 
interactions seem to be the rule rather than the exception (2.8-fold more frequent than intra-
phylum interactions). Cross-feeding interactions are predominant in Firmicutes with both 
Actinobacteria and Proteobacteria. In agreement, interactions between these phyla have been 
experimentally observed34 and reported in systematic reviews of microbial interactions35,36.  

Figure 3. Habitat preferences of co-occurring communities. Circle position indicates the total number of 
habitats (according to EMPO level 3) for given community size, and the circle size indicates the fraction 
of communities that live in that number of habitats (out of 1000 computed communities per size). The 
circle color indicates the ratio between host-associated and free-living habitats. 
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Our data shows that cross-feeding of amino acids is the most prevalent type of interaction in 
cooperative communities. This agrees with previous experimental observations reporting amino 
acid exchange as one of the main drivers of community interactions12,35,37. Moreover, engineered 
complementary amino acid auxotrophies have been shown to enable the stable assembly of 
synthetic microbial communities38,39. Spontaneous acquisition of amino acid auxotrophies and 
cross-feeding has also been observed during laboratory evolution of E. coli40. However, there is 
still limited evidence for the co-evolution of amino acid exchanges within multi-species consortia 
in natura41. Do complementary auxotrophies precede community assembly or are they a 
consequence of species co-evolution? 
 
To address this question, we assessed whether the amino acid auxotrophies in the cooperative 
species (i.e. the members of the cooperative communities) have been acquired after speciation 
or rather inherited from an ancestral species. For a reliable assessment, we used two 
complementary approaches. One is based on taxonomy (fraction of auxotrophic species within 
the same genus), and the other based on phylogeny (ancestral state reconstruction along the 
phylogenetic tree). While a majority of amino acid auxotrophies (~90%) seem to have been 
inherited (Supp. Fig. 7), we also observe a few cases (12 in total) indicative of recent auxotrophy 
acquisition. The latter are most frequent for proline (G. haemolysans, L. hominis, L. inners) and 
methionine (A. tetradius, M. luteus, R. dentocariosa). Thus, both the assembly of species with 

Figure 4. Phylogenetic trees for all the species in the EMP dataset that could be mapped to reference 
genomes. a) distribution of competitive (green) and cooperative species (orange) across the four 
main phyla; b) predicted cross-feeding interactions between the 50 most frequently occurring 
species in competitive (green) and cooperative (orange) communities. The edge width represents 
the SMETANA score for each interaction (indicating the frequency and total number of exchanged 
compounds). 
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pre-existing auxotrophies and the subsequent gene loss appear to have contributed to the 
establishment of natural communities. 
 
Response to perturbations 
 
We next asked whether the distinct metabolic characteristics of the cooperative and competitive 
communities manifest in differential response to abiotic and biotic perturbations. To answer this, 
we created 100 community models of each type (with 10 members per community, randomly 
sampled from the most frequently co-occurring species, see Methods) and simulated their 
response to abiotic (changes in nutrient availability) and biotic perturbations (introduction of a 
foreign, i.e. non-member, species) (Fig. 5a-b). In particular, we analyzed how the species 
interaction network is affected by these perturbations. We define sensitivity as a measure of 
network reconfiguration upon perturbation (see Methods), with lower sensitivity values being an 
indicator of community resilience.   
 
The competitive communities were found to be more sensitive to abiotic perturbations than either 
cooperative or randomly-assembled communities (Fig. 5c). This was indeed expected as the 
former are mostly driven by competition for shared resources, and the introduction of different 
nutrients can result in niche expansion. On the other hand, competitive communities seem very 
robust to biotic perturbations and less likely to be invaded by foreign species (Fig. 5d). In 
agreement with these results, Goldford et al have recently shown that the assembly of plant and 
soil-derived communities (the kind of habitat where we find competitive communities to be 
prevalent) is primarily determined by the carbon source, and has little influence from the initial 
species diversity in the inoculum42.  
 
Cooperative communities, on the other hand, seem robust to abiotic perturbations, but quite 
sensitive to the introduction of foreign species (Fig. 5d). The magnitude of the response appears 
to increase with the number of species introduced. This can be explained by the fact that these 
communities have multiple cross-feeding interactions, which can be "intercepted" by the invading 
species, leading to the rewiring of the species network. To test this hypothesis, we analyzed the 
species invasion pattern in a recent study by Zmora et al, wherein a host-specific response to 
colonization by probiotics was observed, identifying colonization permissive and colonization 
resistant individuals43. In light of our results, we hypothesized that the microbiomes of permissive 
and resistant individuals will be characterized, respectively, by the presence of cooperative and 
competitive species. Confirming this, the individuals permissive to colonization display an 
increased presence of cooperative species along the lower gastrointestinal (LGI) tract, both in 
terms of total number of species per location (Wilcoxon signed-rank test, p = 0.017) and their 
relative abundance (Wilcoxon signed-rank test, p = 0.018) (Supp. Fig. 8). Notably, this difference 
is more striking in the early LGI track (terminal ileum, cecum, ascending colon). Supporting our 
hypothesis, the presence of cooperative species appears to facilitate colonization by probiotic 
species. 
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Discussion 
 
The polarization of co-occurring microbial communities into competitive and cooperative groups 
and its spread across the phylogenetic tree indicates two different, habitat-driven, evolutionary 
paths in community assembly: the one followed by competitive communities in accordance with 
the red queen hypothesis37, and the other followed by cooperative communities conforming to the 
black queen hypothesis38. Both the red queen and the black queen theories thus seem to be 
operating in the community assembly in natura, reflecting two extremes in the trade-off between 
competition and cooperation. Our analysis brings forward the abiotic habitat and the evolutionary 
gene loss as the main drivers determining whether a competitive or cooperative community will 
be established.  
 
The competitive red queen species are generally restricted to free-living habitats wherein the 
resources are likely to be more scarce making competition more prevalent. In contrast, the 
nutritional richness of the host-associated habitats seems to support the more cooperative black 
queen species, which exhibit complementary auxotrophies, in part resulting from gene loss. This 
adaptation not only confers a fitness advantage but is also likely to facilitate the survival of these 
species during migration between the hosts and the external environment as a highly self-
sufficient group. The generally higher abundance and diverse habitat occupation of the 

Figure 5. Response of communities to perturbations. a) schematic illustration of abiotic perturbations, 
changes in medium composition, simulated herein; b) schematic illustration of biotic perturbations, 
introduction of foreign species in the community, simulated herein; c-d) Simulation results, in terms of 
sensitivity measure, of cooperative, competitive, and control (randomly-assembled) communities as a 
function of the total number of simultaneous abiotic (c) and biotic (d) perturbations. 
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cooperative groups point to the advantages offered by the division of metabolic labor in the group, 
and the consequent independence from the environment.  
 
The existence of two community types with contrasting metabolic make-up and habitat preference 
means that the strategies to modulate or re-engineer these communities also need to be 
separately tailored. Our in silico results, with support from previously published experimental data, 
show that the competitive communities are more malleable through abiotic perturbations, whereas 
the cooperative communities are more malleable through biotic perturbations. These findings 
could, in future, be further refined to consider metagenome-assembled genomes44, improving 
coverage at species and strain levels, and by accounting for viral45 and fungal46 interactions. 
Altogether, we conclude that devising intervention strategies tailored to communities according to 
their position in the competition-cooperation landscape would be key to the modulation of complex 
microbial ecosystems.   
 
 
Methods 
 
Mapping OTUs to reference genomes 
 
The EMP dataset provides 16S tags with multiple lengths. The abundance table with the longest 
reads (150 bp) was downloaded from the EMP portal (http://www.earthmicrobiome.org). All 
reference/representative bacterial genomes were downloaded from NCBI RefSeq (release 84). 
The 16S tags from the EMP data were mapped to those extracted from the reference genomes 
using diamond with a 97% identity threshold and a 95% alignment coverage. If multiple genomes 
were found, the ones with the highest alignment identity and length were selected. As expected, 
a large fraction of OTUs did not have a matching assembled genome (and some OTUs matched 
the same genomes). Overall, the diversity in each sample is reduced by almost an order of 
magnitude (from an average of 990 OTUs per sample to an average of 159 genomes) (Supp. Fig. 
1a). Nevertheless, we observe an enrichment regarding species prevalence (7-fold increase, 
Welch's t-test: p < 0.001) and abundance (2.5-fold increase, Welch's t-test: p < 0.001) (Supp. Fig. 
1b,c), indicating that the unmapped OTUs are associated with less prevalent and less abundant 
species. This was also reflected when we compared the fraction of OTUs covered per sample 
(mean 20.8%) to their relative abundance (mean 40.6%) (Supp. Fig. 1d).  
 
Computing co-occurrence 
 
We computed higher-order co-occurrence using an iterative algorithm that begins with species 
pairs and gradually computes co-occurring groups of larger sizes. At the beginning of each 
iteration, all combinations of species are evaluated for co-occurrence by counting the total number 
of samples in which they co-occur. We calculate the number of co-occurring observations 
expected by chance using a binomial distribution and the probability of observing each species 
individually. We also calculate FDR-corrected p-values (q = 0.05), and select all species 
combinations that: 1) co-occur in at least 10 samples; 2) co-occur at least twice more than 
expected by chance; 3) pass the FDR-correction test. The 1000 most frequently co-occurring 
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groups of species are selected as the best solutions for the current group size. In the next iteration, 
larger sets are created by extending all groups with a new element from the complete set of 
species in a combinatorial manner. To cope with the combinatorial explosion, at each iteration we 
only propagate a population of 10,000 solutions to the next iteration. This population is randomly 
selected using roulette wheel selection with a probability proportional to the co-occurrence 
frequency. The presence/absence of a species in any sample is evaluated with a relative 
abundance cutoff. In particular, using cut-off values of 0.1% and 0.01% originated the two different 
community types analyzed in this study. We tried higher and lower cut-off values, without any 
observable differences in the results (Supp. Fig. 2).  
 
This method is implemented as a standalone python package, HiOrCo, openly available at 
https://github.com/cdanielmachado/hiorco.  
 
Community simulation 
 
All simulations were performed using SMETANA v1.0. The different scores computed with 
SMETANA used in this study (such as MIP and MRO) are described in its original publication23. 
The tool is implemented as a standalone python package, and is openly available at 
https://github.com/cdanielmachado/smetana. 
 
Phylogenetic analysis 
 
A maximum likelihood-approximate phylogenetic tree of 2992 species of Prokaryotes was built 
using ETE3 toolkit47 with JTT model48 by aligning protein sequences of the 40 conserved universal 
marker genes49,50 with default parameters in the ClustalOmega aligner51 and FastTree2 tree-
builder52. A cophenetic distance matrix was constructed from the tree using the ape package53 in 
R (v3.4.4).  The phylogenetic trees were visualized and exported with iTOL54. 
 
To estimate the ancestral state of amino acid auxotrophies, we first calculated auxotrophies for 
all reference species using genome-scale metabolic models. We then used the make.simmap 
function from the phytools55 library in R (v.3.4.4) with 100 stochastic character mappings followed 
by the describe.simmap function to obtain posterior probabilities of auxotrophic ancestral state 
(considered as a discrete trait). This method relies on stochastic character mapping that is 
sampled from a Markov chain Monte Carlo Bayesian posterior probabilities distribution56. 
 
Simulating community response to perturbations 
 
For each of the two types of communities (competitive and cooperative), we selected the 50 most 
representative species (i.e., those that are most frequently present in all co-occurring 
communities), and used them to randomly generate 100 communities of 10 species each. Each 
community was subject to multiple random perturbations with N perturbation elements (up to 10). 
In the abiotic case, the perturbations consisted of 100 random perturbations per community 
adding N additional nutrients to the growth medium. The biotic case consisted of 10 random 
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perturbations per community, introducing N foreign species. The sensitivity to perturbations is 
calculated as follows: 
 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐶) 	= 	 - .-
/𝑆1,34 	−	𝑆1,36 78

𝑆1,36

9

4:;

<
(1,3)	∈>

 

 
where N is the number of perturbations, (x,y) is a pair of species in community C, and Sx,y is the 
SMETANA score for cross-feeding interactions between x and y, defined as: 
 

𝑆1,3 = 𝑆𝐶𝑆1,3 ⋅ @- 𝑀𝑃𝑆1,C ⋅ 𝑀𝑈𝑆3,C
C∈E

F 

 
where SCS (species coupling score), MPS (metabolite production score) and MUS (metabolite 
uptake score) are calculated as defined in Zelezniak et al23, and M is the complete set of 
metabolites that can be produced and consumed. 
 
Community stability analysis 
 
Individual species stability was calculated as the coefficient of variation of the relative species 
abundance across all time points in a given sample: 
 

𝑥HI =
J1𝑁∑ /𝑥4,N − �̅�47

89
N:;

�̅�4
 

 
where xi,t is the relative abundance of species i at time point t and N is the number of time points. 
 
Group stability was calculated as the average cosine distance Di,j between the time-course 
profiles of every pair of species in a group and is defined as: 
 

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	 = @ - 𝐷4,T

4UTUV

4,T

F
2(𝐾 − 2)!

𝐾!
 

 
where K is the number of species in the group.  
 
For each sample, we computed the stability of the competitive and cooperative subcommunities 
present in those samples as well as the stability of 100 randomly-assembled subcommunities. 
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Supplementary Figures 

 

 

Supplementary Figure 1: Results for mapping OTUs to reference genomes: a) comparison of sample 
diversity in terms of OTUs (blue) and genomes (orange); b) comparison of species prevalence in terms 
of OTUs and genomes across samples;  c) species abundance distribution; d) total abundance of each 
sample that is captured by the mapped genomes in comparison to the ratio of genomes to OTUs. 
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Supplementary Figure 2: a) Principal component analysis of co-occurring communities computed 
using different abundance thresholds. Marker size indicates co-occurring community size (up to 30 
species) and marker shapes indicates independent runs of the algorithm (3 runs for each threshold); b) 
Average number of samples where all species in a co-occurring community can be found together as a 
function of community size (computed for the threshold values used in this work). 
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Supplementary Figure 3: Simulation results for competition (MRO score) and cooperation potential 
(MIP score) for microbial communities obtained from Chaffron et al. Blue dots represent co-occurring 
communities of different sizes (up to 1000 per size) and grey dots represent randomly-assembled 
communities of similar size (1000 communities per size). 
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Supplementary Figure 4: Resource distribution: a) compounds competed for in cooperative 
communities; b) compounds competed for in competitive communities; c) cross-fed compounds in 
cooperative communities; d) cross-fed compounds in competitive communities. Compound 
classification according to the Human Metabolome Database (HMDB).   
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Supplementary Figure 5: Average species abundance of co-occurring species as a function of the total 
number of co-occurring species present in each sample. The colored line denotes the average 
abundance for each type of community, the shadowed area indicates standard deviation, and the 
dashed grey line indicates the average species abundance across all species and samples. In all cases 
the average is calculated as the mean relative abundance value in log-space (i.e. the geometric mean 
of the relative abundances).  
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Supplementary Figure 6: Community stability measured in terms of: a) individual stability (lower 
coefficient of variation per species indicates higher stability); b) group stability (lower cosine distance 
indicates higher covariation of species abundance within each community). 
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Supplementary Figure 7: Analysing the recent acquisition of amino acid auxotrophies using two 
complementary approaches: taxonomy based (T), measuring the fraction of auxotrophic species at 
genus level; phylogeny based (P), estimating the probability of the auxotrophy being present in the 
most recent ancestor of the species. Green color in both columns is indicative of a consensus. 
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Supplementary Figure 8: Presence of cooperative species in the lower gastrointestinal (LGI) tract of 
patients permissive to probiotic colonization (P), patients resistant to colonization (R) and control 
patients (C). Asterisks indicate significance of Wilcoxon signed-rank test (p < 0.05).   
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