1 Oct4 regulates embryonic pluripotency via metabolic mechanisms and

2 Stat3 signalling

- 3
- 4 Giuliano Giuseppe Stirparo1*§, Agata Kurowski1,4§, Stanley Eugene
- 5 Strawbridge1, Hannah Stuart1, Thorsten Edwin Boroviak2,3, Ayaka Yanagida1,3
- 6 and Jennifer Nichols1,2,3*
- 7
- 8 Affiliations
- 9 1Wellcome Trust Medical Research Council Stem Cell Institute, University of
- 10 Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge
- 11 CB2 0AW, UK
- 12 2Department of Physiology, Development and Neuroscience, University of
- 13 Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- 14 3Centre for Trophoblast Research, University of Cambridge, UK
- 15 4Department of Pharmacological Sciences, Icahn School of Medicine at
- 16 Mount Sinai, New York, NY 10029, USA
- 17
- 18 §These authors contributed equally
- 19 *Authors for correspondence
- 20 jn270@cam.ac.uk
- 21 ggs28@cam.ac.uk

- 23
- 24
- 25

26 Highlights and novelty

27	 Major pluripotency-associated transcription factors are activated in 		
28	OCT4-deficient early mouse ICM cells, coincident with ectopic		
29	expression of trophectoderm markers		
30	 JAK/STAT signalling is defective in OCT4 null embryos 		
31	OCT4 promotes expression of KATS enzymes by means of glycolytic		
32	production of Acetyl CoA to secure chromatin accessibility for		
33	acquisition of epiblast identity		
34	 OCT4 regulates the metabolic and biophysical processes required for 		
35	establishment of embryonic pluripotency		
36			
37	Key Words		
38	OCT4		
39	STAT3		
40	Pluripotency		
41	Trophectoderm		
42	Single cell quantification		
43	Metabolism		

44 Abstract

45 OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 protects the 46 47 pluripotent lineage from differentiation into trophoblast, we used single cell 48 transcriptomics and quantitative immunofluorescence on blastocysts and 49 established differentially expressed genes and pathways between control and 50 OCT4 null cells. Activation of most pluripotency-associated transcription 51 factors in the early mouse inner cell mass appears independent of OCT4, 52 whereas JAK/STAT signalling requires OCT4, via activation of IL6ST. Single 53 cell deconvolution, diffusion component and trajectory inference dissected the 54 process of differentiation of OCT4 null cells by activating specific gene-55 network and transcription factors. Downregulation of glycolytic and oxidative 56 metabolism was observed. CHIPseg analysis suggests OCT4 directly targets 57 rate-limiting glycolytic enzymes. Concomitant with significant disruption of the 58 STAT3 pathway, oxidative respiration is significantly diminished in OCT4 null 59 cells. Upregulation of the lysosomal pathway detected in OCT4 null embryos 60 is likely attributable to aberrant metabolism.

61 Introduction

62 Formation of a mammalian organism pivots upon establishment of 63 extraembryonic tissues to pattern the foetus and expedite connection with the 64 maternal vascular system, whilst preserving a pluripotent population of cells 65 with the responsive capacity to generate body pattern and tissues 66 progressively during development. Specification of trophectoderm (TE, 67 founder of the placenta) on the outside of the preimplantation embryo 68 coincides with appearance of the blastocyst cavity and a metabolic switch 69 from pyruvate and lactose to glucose utilisation with increased oxygen 70 consumption₁₋₅. This dramatic change heralds an increase in metabolic 71 activity by the differentiating TE, comprising elevated ATP, amino acid 72 turnover and mitochondrial count_{6,7}. The murine embryo is equipped to 73 overcome adverse consequences associated with accumulation of reactive 74 oxygen species during the metabolic transition to oxidative phosphorylation, 75 largely facilitated by the transcriptional enhancer factor TEAD48.9. TEAD4 76 becomes intensified in the TE, where it cooperates with nuclear YAP to initiate 77 transcription of TE-specific genes10,11. TE differentiation is orchestrated by a 78 specific set of transcription factors; acquisition of TE identity actuates distinct 79 metabolic requirements compared with the undifferentiated inner cell mass 80 (ICM). During blastocyst expansion, the transcription factor OCT4 (encoded 81 by Pou5f1) becomes restricted to the ICM12. OCT4 is essential for 82 establishment of the pluripotent epiblast, preventing differentiation of the 83 embryo towards TE13, and is absolutely required for propagation of pluripotent stem cells in vitro13-17. Studies in embryonic stem cells (ESC) indicate that the 84 85 pluripotency network hinges upon OCT418-22. In the embryo OCT4 is detected

86 throughout cleavage12, whereas many other pluripotency-associated factors, 87 such as NANOG, appear after the onset of zygotic genome activation₂₃. 88 However, in embryos lacking both maternal and zygotic OCT4, NANOG 89 emerges robustly, coincidentally with OCT4-positive controls24,25, ruling out 90 failure to express this key pluripotency network gene as a contributing feature 91 of the OCT4 null phenotype. Whether absence of other pluripotency-92 associated factors could play a role has not been investigated at the single 93 cell level. To date, evidence that the cells occupying an inside position in 94 OCT4 null embryos adopt a TE identity is largely restricted to morphology and 95 expression of TE-specific markers at the time of implantation_{13,24,26}. To 96 scrutinise the apparent lineage transition and probe the mechanism by which 97 acquisition of pluripotency in OCT4 null ICMs fails we used single cell RNA 98 sequencing (scRNAseq) and quantitative immunofluorescence (QIF) to 99 examine gene expression in wild type, heterozygous and OCT4 null early and 100 late blastocyst ICMs. Differences between samples and groups, calculated 101 using bioinformatics and computational analysis, revealed novel insight into 102 the role of OCT4 in defining the metabolic, pluripotent and biophysical status 103 of the murine ICM.

104 **Results**

105 Single cell transcriptional profiling reveals divergence of OCT4 null from wild

- 106 type and heterozygous ICM cells by the mid blastocyst stage
- 107 Following observation of NANOG protein in OCT4 null blastocysts24,25, we
- 108 performed whole transcriptome analysis by scRNAseq of ICM cells isolated
- 109 from *Pou5f1* heterozygous *inter* se mating at embryonic day (E)3.5 to
- 110 investigate the entire pluripotency network. Quality control, as previously
- reported₂₇, eliminated inadequate samples, leaving 29 null mutant (MUT), 42
- 112 wild-type (WT) and 16 heterozygous (HET) cells from 4, 5 and 2 mid
- 113 blastocysts, respectively (Fig.1A, Suppl.Table1). Pou5f1 RNA expression was
- 114 not detected in MUT embryos, confirming degradation of maternal transcripts
- 115 (Fig.1A, Fig.S1A), consistent with lack of OCT4 protein observed at the
- 116 morula stage₁₃. To characterize global differences and similarities between
- 117 genotypes t-SNE analysis was performed (Fig.1B, Fig.S1A) using the most
- variable genes identified in early blastocysts (n=2232, log₂FPKM>0.5,
- 119 logCV₂>0.5). MUT cells cluster separately from HET and WT, suggesting
- 120 major changes in transcriptome, despite no apparent difference in ICM
- 121 morphology. Interestingly, HET and WT cells clustered together, indicating no
- 122 more than a negligible effect of reduced *Pou5f1* in HET cells in the developing
- 123 embryo, contrasting with the elevated and more homogeneous expression of
- 124 Nanog, Klf4 and Estrogen-related-receptor B (Esrrb) previously reported in
- 125 Oct4 HET ESCs₂₈ (Fig.S1B).
- 126 Weighted gene correlation network analysis (WGCNA) allows
- 127 extraction of modules defined by co-regulated genes, combined with
- 128 unsupervised clustering (Fig.1C, Fig.S1C). Two main modules emerged,

129	clustering cells according to genotype: module 1 co-clusters HET and WT and
130	co-regulates pluripotency-associated genes such as Pou5f1, Gdf3 and
131	Zfp4229-31 (Fig.S1D); module 2 is specific for MUT cells, expressing
132	established TE markers, including Hand1, Krt18 and Gata3 (Fig.S1D)32-35.
133	
134	Activation of major pluripotency network elements in the mouse blastocyst is
135	independent of OCT4, but suppression of ectopic TE expression is not
136	In light of the significant transcriptional differences revealed, we sought insight
137	into regulation of the pluripotency network in WT/HET and MUT cells (Fig.1D,
138	Fig.S1D, Suppl.Table2). Consistent with previously published
139	immunohistochemistry (IHC) data24,25 Nanog was detected, albeit
140	heterogeneously, in MUT cells (Fig.1D). Conversely, Sox2 was not
141	significantly affected in MUT cells at both RNA (Fig.1D) and protein levels
142	(Fig.1E), as detected by quantitative immunofluorescence (QIF) ₃₆ . Esrrb,
143	reported to be a direct OCT4 target in vivo24, showed modest downregulation
144	in MUT cells by scRNAseq (Fig.1D), but no obvious difference at the protein
145	level via QIF (Fig.1F) suggesting initiation of expression independent of OCT4
146	in early blastocysts. Specific chromatin components are involved in
147	establishing and maintaining pluripotency in vivo and in vitro37. Utf1, a direct
148	target of OCT438, is expressed in normal ICM and epiblast39; its expression
149	decreases upon differentiation40, consistent with its role in maintaining
150	chromatin structure compatible with self-renewal in vitro41. As expected, Utf1
151	was not detected in MUT early blastocysts (Fig.1D). TE markers, such as
152	Btg1, Hand1 and Gata3 were found in most MUT cells, whereas Cdx2 was
153	poorly represented (5/29 MUT cells; Fig.1G), suggesting that TE

154 differentiation of MUT cells is not primarily directed by Cdx2, although its

155 protein appears in the majority of OCT4 null ICMs by E4.0₂₆.

156

157 Reduction of JAK/STAT signalling machinery distinguishes OCT4 null ICMs

158 The JAK/STAT signalling pathway is fundamental for self-renewal and

159 pluripotency *in vivo* and *in vitro*42-44. Active P-STAT3 protein and its targets

160 *Klf4*⁴⁵ and *Tfcp2l1*⁴⁶ were significantly lower in MUT cells at both protein and

161 mRNA levels (Fig.2A-D). Total *Stat3* mRNA levels did not vary (Fig. S2A).

162 The reduced STAT3 signalling in MUT embryos was most likely attributable to

absence of its upstream cytokine receptor subunit, gp130 (II6st) (Fig.2A). II6st

164 is also a putative target of OCT4 in ESC (Suppl.Table3, https://chip-

165 <u>atlas.org/</u>). Unsurprisingly, Suppressor of Cytokine Signalling (Socs)3, a direct

166 STAT3 target that exerts negative feedback regulation₄₇ was barely

167 detectable in MUT cells (Fig.2A). PCA computed with genes in JAK/STAT

168 signalling pathway (https://www.genome.jp/kegg/) segregates MUT from

169 WT/HET cells (Fig.2E); cumulative sum on the relative percentage of gene

expression is significantly higher (pval < 0.05) in WT/HET, indicating that in

171 MUT cells the pathway is downregulated (Fig.2F).

The results presented thus far reveal reduced expression of certain factors in MUT cells, particularly direct OCT4 targets and JAK/STAT pathway members, as well as ectopic activation of some TE marker genes, indicating transcriptional divergence in MUT cells by E3.5.

176

177 Dissecting overt impairment of lineage segregation in maturing OCT4 null

178 *ICMs*

179 For detailed characterisation of events associated with diversion of ICM to TE 180 in embryos lacking OCT4, diffusion component analysis was performed on 181 implanting embryos 24 hours older (E4.5) (Fig.3A; Fig.S3A); 19 cells isolated 182 from 2 MUT, 22 from 2 WT and 44 from 4 HET late ICMs were analysed 183 (Suppl.Table1, Fig. 3B,C). The expression level of *Pou5f1* was measured in 184 each cell (Fig.S3B). WT and HET cells assume identity of either epiblast (EPI) 185 or primitive endoderm (PrE): 39 versus 33 respectively (Fig.3A-C Fig.S3A). 186 No MUT cells cluster in proximity of EPI or PrE (Fig.3A, Fig.S3A). ScRNAseq 187 failed to identify any significant expression of maturing PrE markers such as 188 Sox17, Gata4 or Sox7 (Fig.3D) in MUTs, as predicted from previous IHC or 189 bulk RNA analysis_{24,25}. Rarely, MUT cells expressed *Pdgfra*, probably 190 reflecting initiation of expression prior to loss of maternal OCT4, since 191 PDGFRα, like GATA6, is a very early presumptive PrE marker_{48,49}. 192 WGCNA revealed independent clustering of MUT cells and co-193 expression of specific genes normally mutually exclusive by E4.5 (Fig.S3C, 194 Suppl.Table4). We assessed quantitatively and qualitatively the PrE and EPI 195 genes underrepresented in MUTs (Fig.3E, Fig.S3D, see methods). A 196 significant drop in intensity in MUT cells was observed, suggesting global 197 failure to activate both PrE and EPI transcription networks. In normal late 198 blastocysts Gata6 becomes restricted to a subset of cells constituting the PrE. 199 As expected, in WT/HET embryos its expression is mutually exclusive with 200 Nanog (Fig.S3E)_{49,50}. However, in MUTs, 7/19 cells co-expressed Gata6 and 201 Nanog (Fig.S3E), suggesting a role for OCT4 in mediating mutual repression, 202 as previously suggested₂₄. PrE induction and differentiation is mediated by 203 FGF4 produced from EPI cells51 interacting with FGF receptors (R)1 and

204	252,53. The failure of this early lineage segregation in MUT ICMs confirms the
205	requirement for OCT4 induction of FGF413 and places this obligation at an
206	early stage in PrE/EPI specification. Consistent with previous findings13, E4.5
207	MUT cells do not express FGF4 but upregulate FGFR1 and FGFR2 (Fig.S3F).
208	We adapted a model of the gene network involved in the second lineage
209	decision54 in the WT/HETs compared with MUT cells. In the presence of
210	OCT4, EPI cells express NANOG and FGF4 (Fig.3F). FGF4 drives PrE fate
211	transition and restriction55 by triggering ERK signalling, suppressing NANOG
212	and activating PrE markers SOX17, GATA4 and SOX7. However, in MUT
213	cells ERK signal is disrupted and generally downregulated (Fig.S3G) and
214	consequently PrE markers are absent (Fig.3G).
215	Having identified normal expression of some pluripotency factors in
216	early MUT blastocysts we examined the role of OCT4 in late blastocysts by
217	inspecting expression of EPI-enriched genes (n=814, Fig.3E) and
218	pluripotency markers. Ternary plots represent expression density between
219	three different conditions. We reasoned that if MUT cells fail to express EPI-
220	enriched genes globally, a bias in the density distribution would be expected.
221	Indeed, the EPI/ICM sides of the triangle showed the highest density for EPI
222	enriched genes when compared with MUT (Fig.3H). We then explored how
223	pluripotency and TE associated factors were distributed along the ternary plot.
224	Genes not expressed in MUT cells are located on the axis connecting ICM
225	and EPI; these include Utf1, Pou5f1, Lefty2 and Tdgf1. Overall, most
226	pluripotency factors cluster at the ICM/EPI side, indicating lower but
227	detectable expression in the E4.5 MUT cells (Fig.3I) or TE cells (Fig.S3H).
228	Conversely, genes associated with TE identity, Gata2, Gata3, Eomes, Id2,

229	Elf5 and the Notch signalling pathway35,56-60 are located on the side specific
230	for MUT (Fig.3I) and TE cells (Fig.S3H). Interestingly we found that Tead4,
231	which is a crucial transcriptional regulator of mitochondrial function in TE, is
232	not upregulated in MUT cells, suggesting impairment of mitochondrial function
233	not directly associated with transition of MUT cells to TE (Fig.3I).
234	
235	OCT4 MUT cells acquire TE-like identity but exhibit specific differences
236	compared with normal TE
237	To understand how OCT4 represses TE transcription factors during normal
238	ICM development, we sought to identify specific and common gene
239	expression between WT TE and MUT cells. We consulted published TE single
240	cell data from E3.5 and E4.0 embryos61 Diffusion component analysis,
241	coupled with pseudotime reconstruction and non-linear regression, allowed us
242	to identify different developmental trajectories (Fig.4A). Loss of OCT4 and
243	subsequent activation of TE genes drives E4.5 MUT cells towards WT TE.
244	Deconvolution of heterogeneous populations62 is an analysis designed to
245	estimate percentage identity of distinctive cells towards a specific endpoint.
246	To quantify similarities between TE and WT/HET/MUT late blastocyst cells we
247	performed quadratic programming to resolve a non-negative least-squares
248	constraint problem (Fig.4B). Similarity between TE and MUT cells was
249	highest, with a median value of ~0.6 (60%), compared to ~0.2 (20%) and
250	~0.25 (25%) with EPI and PrE cells respectively. We further validated this
251	result with Gene Set Enrichment Analysis (GSEA) by comparing the rank of
252	differentially expressed genes between E4.5 EPI (PrE)/E4.0 TE and E4.5 EPI
253	(PrE)/E4.5 MUT (Fig.S4A,B). Together, these results indicate that late

254 blastocyst MUT cells share a significant portion of the TE transcriptional 255 program. Since our embryos were recovered from nascent implantation sites, 256 they are likely more advanced than those exhibiting non-TE identity profiled 257 previously₂₄. We performed a two-way hierarchical analysis with published 258 TE-enriched genes63 (Fig.4C,D). Transcripts enriched in early and late TE 259 cells, such as Krt18, Krt8, Gata3 and Id234,59,64,65 were also upregulated in 260 MUT cells. Interestingly we also detected co-expression of Fabp3 and Cldn4 261 (Fig.4E). Fabp3 regulates fatty acid transport in trophoblast cells and plays a 262 central role in fetal development₆₆. *Cldn4* is essential for tight junction 263 formation between TE cells during blastocyst formation67. We also identified 264 genes expressed in early and late TE not consistently detected in MUT cells, 265 indicating aberrant establishment of the TE transcriptional network. As 266 suggested by pseudotime and diffusion component analysis (Fig.4A), E4.5 267 MUT cells fail to express a proportion of late TE markers. 268 HIPPO signalling promotes the first lineage decision in mouse 269 embryos_{10,68}. The three major components of this pathway are the upstream 270 modulators, the core kinase components and the downstream mediators69. 271 Amotl2, expressed in human and mouse TE and required for TE cell 272 morphology70, is also upregulated in MUT cells. Moreover, STK3, a 273 component of the HIPPO core kinase, phosphorylates LATS1/2, which in turn 274 phosphorylates YAP1. Phosphorylated YAP1 is inhibited from entering the 275 nucleus, thus activating HIPPO. Consistent with the role of STK3, AMOTL2 276 and LATS2 in modulation of the HIPPO pathway, their transcripts were co-277 expressed in TE and MUT cells (Fig.4F). This suggests a potential role for 278 OCT4 in regulating the balance of HIPPO signalling in MUT cells and

therefore initiating the differentiation to TE. MUT cells thus differentiate by

expressing a combination of specific early TE transcription factors, signalling

281 pathways and metabolic genes.

282

283 Role of OCT4 in regulation of metabolism

284 It was previously suggested that OCT4 null embryos exhibit defective

metabolism by the mid-late blastocyst stage₂₄ and that changes in acetyl-

286 CoA, mediated by glycolysis, control early differentiation71. We performed

287 principal component analysis with glycolytic genes. Dimension 1, which

explains the largest variability, segregates MUT from EPI/PrE cells (Fig. 5A).

289 The majority of enzymes were downregulated in MUT cells (Fig.5B,C,

Fig.S5A) and, interestingly, the rate limiting glycolytic enzymes *Hk*² and *Pkm*

together with *Eno1* and *Pgk1* are also putative targets of OCT4 (Fig.5D).

292 KATS enzymes rely on acetyl-CoA, a product of glycolysis, to acetylate the

293 lysine residues on histone proteins and maintain the open chromatin structure

associated with pluripotency. We observed a significant downregulation of

several KATS enzymes (Fig.5E) in MUT cells, suggesting that OCT4, by

regulating glycolysis⁷² indirectly provides sufficient acetyl-CoA to support an

297 open chromatin state.

298 To assess systematically the modulated biological processes and

299 pathways we identified 419 common variable genes between E4.5 MUT/E4.5

300 EPI and E4.5 MUT/E4.5 PrE (Fig.5F) and computed KEGG pathway

and "regulation", "cell adhesion molecule" and "regulation"

302 of actin cytoskeleton" processes suggest that OCT4 regulates important

303 components of biophysical properties of ICM cells. Interestingly, the most

304 significant enriched process was "Lysosome", indicating a strong and pivotal

305 role of this pathway in MUT cells. Accordingly, processes related to

306 "Lysosome" were also significantly enriched, including "Peroxisome",

307 "Glycerophospholipid Metabolism", "Endocytosis", "PPAR signalling pathway"

- 308 and "Vali, leu and ile degradation".
- 309

310 TFEB translocates into the nucleus in cells lacking OCT4

311 To determine whether the activation of the lysosomal pathway was a TE

312 characteristic we explored differentially expressed genes and found that only

313 MUT cells, but not WT TE, upregulated a significant proportion of lysosomal

genes (Fig.6A). Lysosome is essential for recycling, recruitment of lipids via

autophagy and hydrolases, for redistribution of catabolites to maintain cellular

316 function₇₃. Autophagy is a catabolic response to starvation₇₄. Most autophagy-

related genes, such as *Atg*, were upregulated in MUT cells (Fig.6B).

318 Moreover, MUT cells undergo a significant upregulation of fatty acid

degradation genes (Fig.6C). The master regulator of lysosomal biogenesis

and autophagy is TFEB₇₄. TFEB is dissociated by inactive mTORC1 and

321 migrates into the nucleus to activate lysosomal/autophagy genes. The positive

322 regulator of mTORC1 (*Rptor*) is downregulated in MUT cells and, consistently,

323 we found upregulation of *Deptor*, a known negative regulator of mTORC175

324 (Suppl.Table5). To confirm activation of the lysosomal pathway via TFEB, we

325 performed IHC on *Oct4* conditionally deleted ESC. In OCT4-positive cells,

326 TFEB is localized mainly in the cytoplasm. After OCT4 deletion, a significant

327 translocation of TFEB from cytosol to nucleus occurs (Fig.6D, Fig.S6A).

328 Together, these results indicate that, in response to an altered and energy

- 329 insufficient metabolism, MUT cells upregulate lysosomal and autophagy
- 330 pathways to provide cellular energy.

331 Discussion

332 Apart from the known direct targets of OCT4, such as *Utf1*₄₀ expression of 333 most other pluripotency-associated factors, including the essential embryonic 334 pluripotency factors NANOG, SOX2 and ESRRB, is not significantly different 335 between MUT cells and WT/HETs at the mid blastocyst stage (E3.5) at both 336 the mRNA and protein level. Detection of most pluripotency-associated 337 factors in OCT4 MUT mid blastocysts suggests independence from OCT4 at 338 this stage, confirming that the state of naïve pluripotency, as captured in the 339 form of ESCs in vitro, is not yet attained by the ICM, as reported previously76. 340 Down-regulation of *Utf1* suggests an indirect role for OCT4 in 341 governing epigenetic structure of pluripotent cells, which may account for the 342 precocious expression of some TE factors in MUT cells, preceding changes in 343 expression of most pluripotency factors. Another putative OCT4 target, *ll6st*, 344 is a co-receptor essential for STAT3 signalling in ESCs77. We observed 345 significant downregulation of STAT3 target genes in MUT cells as well as 346 reduced P-STAT3 protein and its pluripotency-associated targets, TFCP2L1 347 and KLF4_{45,46}. Diversion of ICM cells to TE has been observed in a proportion 348 of embryos following maternal/zygotic deletion of Stat3, which was attributed 349 to loss of activation of Oct443. The diminution of Socs3 exhibited by MUT cells 350 is an expected direct consequence of reduced STAT3 activity. 351 Signalling pathways related to matrix organization, including regulation 352 of actin cytoskeleton and cell adhesion molecules are significantly affected in 353 MUT cells. Such processes are associated with exit from pluripotency78;

354 cytoskeletal conformational changes inducing cell spreading are associated

355 with differentiation. Our results therefore implicate OCT4 as a mediator for

regulation of the biophysical properties of undifferentiated cells.

357 In this study we dissected the role of metabolism in OCT4 MUT cells.

- 358 We linked the reduction of glycolysis with the downregulation of most *Kats*
- assessment and the set of the set
- 360 acetylate the lysine residues on histone proteins and maintain an open
- 361 chromatin structure, associated with pluripotency. *Kats* enzymes are lower in
- 362 MUT cells, suggesting that OCT4, by regulating glycolysis₇₂, indirectly

363 provides sufficient acetyl-CoA to support an open chromatin state. We

364 revealed that most enzymes in glycolytic pathways are downregulated in MUT

365 cells. This may be because some of the rate-limiting enzymes (*Hk2, Pgk1,*

366 *Pkm* and *Eno1*) are putative targets of OCT4. We also noted downregulation

in MUT cells of genes associated with cell respiration. This is likely to be a

368 downstream effect of reduced STAT3 signalling in MUT cells, consistent with

369 the recent report that STAT3 promotes oxidative respiration for maintenance

and induction of pluripotency₇₉ (Fig. 7A,B). Consequently, respiration

371 processes are disrupted in OCT4 MUT cells where STAT3 is strongly

downregulated.

Our scRNAseq data indicates that TFEB pathway is specifically activated in MUT cells as they transition to TE. We provide functional evidence for the requirement for OCT4 in lysosomal activity by demonstrating TFEB translocation into the nucleus during conditional deletion of *Oct4* in ESCs. We propose that MUT cells upregulate lysosomal gene expression and autophagy to counteract the downregulation of glycolysis and the tricarboxylic

- acid cycle. Thus, OCT4 is required to maintain the metabolic state needed for
- 380 survival of pluripotent cells.
- 381 In summary, our systematic analysis at the single cell level reveals an
- *in vivo* function for OCT4 in regulating metabolic and biophysical cellular
- 383 properties via energy metabolism, cell morphology and chromatin accessibility
- for establishment of pluripotency in the developing mouse embryo (Fig.7).

386 Acknowledgements

387	We are grateful to Lawrence Bates, Kevin Chalut, Rosalind Drummond, Peter
388	Humphreys, Kenneth Jones, Masaki Kinoshita, Carla Mulas and Maike
389	Paramor for material, intellectual and technical contribution to the project.
390	This work was supported by the University of Cambridge, BBSRC project
391	grant RG74277, MRC PhD studentships for AK and HS and a core support
392	grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical
393	Research Council Cambridge Stem Cell Institute.
394	
395	Author contributions
396	JN, AK and GGS conceived the project; AK, AY, HS, TEB and JN carried out
397	experiments; GGS performed data analysis; AK and SES performed imaging
398	analysis; all authors contributed to writing the manuscript.
399	
400	Competing interests
401	The authors have no competing interests
402	
403	
404	
405	
406	
407	
408	
409	
410	

411 **Figure Legends**

412 Figure1: (A) Schematic of number of single cells per embryo (E3.5 stages) and their genotype. Barplot shows FPKM expression of *Pou5f1* for each 413 414 single cell. (B) t-SNE plot for early blastocyst cells. Sample colour represents 415 the different genotypes. (C) One-way hierarchical cluster of eigengenes value 416 computed from WGCNA (power 10; dist=0.35, size =30). (D) FPKM 417 expression of genes associated with Pluripotency. (E) Confocal images and 418 normalized expression of OCT4 HET and MUT embryos stained for SOX2 419 and (F) ESRRB. (G) FPKM expression of trophectoderm markers.

420

Figure2: (A) FPKM expression of genes in STAT3 pathway. (B) Confocal
images and normalized expression of OCT4 HET and MUT embryos stained
for p-STAT3, (C) TFCP2L1, and (D) KLF4. (E) PCA computed with genes in
KEGG JAK/STAT signalling pathway. (F) Cumulative sum of relative
percentages between the expression of genes in STAT3 pathway (KEGG);
student's t-test p.val < 0.05.

427

428 Figure3: (A) Diffusion plot of early and late blastocyst cells; color represents 429 the different genotypes and lineages. (B) Dendrogram (agglomeration 430 method: ward.D2) for late blastocyst ICM WT/HET cells and (C) schematic 431 representation of number of late ICM single cells per embryo and their 432 genotype. (D) Single cell FPKM expression of PrE markers (Pdgfra, Sox17, 433 Gata4, Sox7) in PrE and MUT cells. (E) Top: Venn diagram showing the 434 number of significant (padj<0.05) and enriched PrE and EPI genes. Bottom: 435 Boxplot of log₂FPKM in late blastocyst PrE and MUT cells of 667 genes and

late blastocyst EPI and MUT cells of 517 genes. (F) Network of genes
associated with PrE specification in WT cells and (G) mutant cells. (H)
Ternary plot of early WT/HET early blastocyst cells, WT/HET EPI and MUT
cells. Axes show the relative fraction of expression of 814 EPI enriched genes
or (I) pluripotent and trophectoderm associated genes.

441

442 Figure4: (A) Left panel: diffusion component plot for E3.5/E4.5 WT/HET/MUT 443 cells (this study) and E3.5 and E4.0 TE cells from Deng et al., 2014. Color 444 represents the different genotypes/lineages. Trajectory lines were fitted with 445 cubic line (lambda =0.01). Right panel: diffusion component and pseudotime 446 expression. (B) Fraction of similarities between E4.5 EPI (WT/HET)/E4.5 PrE 447 (WT/HET)/E4.5 MUT and E4.0 TE cells computed using all expressed genes 448 (log₂FPKM > 0). (C) Heatmap of TE markers identified by Blakeley et al., 2015 449 between ICM and TE single cells. (D) Identification of lineage trajectories and 450 loess curve fitting between pseudotimes and log₂FPKM for *Id*₂. *Krt*₁₈. *Krt*₈. 451 Gata3. (E) Loess curve fitting between pseudotimes and log₂FPKM for Fabp3 452 and Cldn4. (F) Boxplot of FPKM expression of genes in HIPPO signalling 453 pathway.

454

Figure5: (A) PCA plot of E4.5 WT/HET and MUT cells computed with genes in glycolysis/gluconeogenesis KEGG pathway. (B) Glycolysis pathway with the associated enzymes (arrows) colored by the ratio between E4.5 WT/HET and MUT cells and (C) heatmap of the associated enzymes. (D) Volcano plot showing the contribution on principal component 1 (Fig.5A) and OCT4 CHIPseq score in mESC. (E) Boxplot of Kats gene expression value in E4.5

461 EPI/PrE WT/HET, E4.0 TE and E4.5 MUT (Student's t-test; * p<0.05, ** p<0.01, ***p<0.001). (F) Number of variable genes between E4.5 WT 462 EPI/MUT and E4.5 WT PrE/MUT. (G) Enrichment of KEGG pathways 463 464 computed with 419 common variable genes between MUT and E4.5 EPI/PrE. 465 466 Figure6: (A) Volcano plot of lysosomal genes variable between E4.5 WT/HET and E4.5 MUT and between WT TE and WT ICM (Blakeley et al., 2015). (B) 467 468 Scatter plot of autophagy related genes (Atgs) between E4.5 WT/HET ICM 469 and E4.5 MUT. (C) Enzymes in fatty acid oxidation and synthetase; color 470 represents the ratio between E4.5 WT/HET and MUT cells. (D) TFEB 471 localization in OCT4+/+ and OCT4-/- cells cultured in CHIR+LIF. 472 473 Figure7: Scheme of OCT4 function in pre-implantation embryo development. 474 475 Supplementary figures 476 FigureS1: (A) t-SNE plot for early blastocyst cells. Sample colors represent 477 Pou5f1 log₂ expression. (B) Barplots for Nanog, Klf4 and Esrrb expression. (C) Genes dendrogram computed with WGCNA. (D) Heatmap showing the 478 479 top co-regulated genes between E3.5 MUT and E3.5 WT/HET (> 5 480 interaction; n=346 MUT genes and n=398 WT/HET genes). 481 FigureS2: Barplot of total Stat3 expression for E3.5 WT, HET and MUT cells. 482 483 **FigureS3:** (A) Diffusion plot of early and late blastocyst cells; color represents 484

485 *Pou5f1* expression. (B) Barplot shows FPKM expression of *Pou5f1* for each

486 single cell at E4.5 stage. (C) One-way hierarchical cluster of eigengenes 487 value computed from WGCNA (power 8; dist=0.35, size =30) (D) Density 488 distribution of log₂FPKM in late blastocyst PrE and MUT cells of 667 genes and late blastocyst EPI and MUT cells of 517 genes. (E) Scatter plot of Nanoq 489 490 and Gata6 FPKM expression values for E4.5 EPI (WT/HET), E4.5 PrE 491 (WT/HET) and E4.5 MUT cells. (F) log₂FPKM expression of Fgf4, Fgfr1 and 492 Fgfr2 in WT/HET EPI/PrE and MUT cells. (G) log₂FPKM scatter plot of MAPK 493 signalling genes between late PrE and MUT blastocyst cells. (H) Ternary plot 494 of early WT/HET blastocyst cells, WT/HET EPI and TE cells. Axes show the 495 density of the relative fraction of expression.

496

497 FigureS4: (A) GSEA analysis computed with log₂FC between E4.5 EPI498 WT.HET/E4.0 TE and (B) E4.5 MUT/E4.0 TE.

499

FigureS5: TCA associated enzymes (arrows) color by the ratio between E4.5
WT and MUT cells and heatmap of the associated enzymes.

502

503 **FigureS6:** TFEB localization in OCT4+/+ and OCT4-/- cells cultured in 504 CHIR+LIF.

505

507 References

508	1	Trimarchi, J. R., Liu, L., Porterfield, D. M., Smith, P. J. & Keefe, D. L.
509		Oxidative phosphorylation-dependent and -independent oxygen
510		consumption by individual preimplantation mouse embryos. Biol Reprod
511		62 , 1866-1874 (2000).
512	2	Gardner, D. K. Changes in requirements and utilization of nutrients during
513		mammalian preimplantation embryo development and their significance
514		in embryo culture. <i>Theriogenology</i> 49 , 83-102 (1998).
515	3	Johnson, M. T., Mahmood, S. & Patel, M. S. Intermediary metabolism and
516		energetics during murine early embryogenesis. J Biol Chem 278, 31457-
517		31460, doi:10.1074/jbc.R300002200 (2003).
518	4	Benos, D. J. & Balaban, R. S. Energy metabolism of preimplantation
519		mammalian blastocysts. Am J Physiol 245, C40-45,
520		doi:10.1152/ajpcell.1983.245.1.C40 (1983).
521	5	Lane, M. & Gardner, D. K. Selection of viable mouse blastocysts prior to
522		transfer using a metabolic criterion. <i>Hum Reprod</i> 11 , 1975-1978 (1996).
523	6	Houghton, F. D. Energy metabolism of the inner cell mass and
524		trophectoderm of the mouse blastocyst. <i>Differentiation</i> 74 , 11-18,
525		doi:10.1111/j.1432-0436.2006.00052.x (2006).
526	7	Leese, H. J. Metabolism of the preimplantation embryo: 40 years on.
527		Reproduction 143, 417-427, doi:10.1530/REP-11-0484 (2012).
528	8	Kaneko, K. J. & Depamphilis, M. L. TEAD4 establishes the energy
529		homeostasis essential for blastocoel formation. Development 140 , 3680-
530		3690, doi:10.1242/dev.093799

531 dev.093799 [pii] (2013).

532	9	Kumar, R. P. et al. Regulation of energy metabolism during early

533 mammalian development: TEAD4 controls mitochondrial transcription.

534 *Development* **145**, doi:10.1242/dev.162644 (2018).

- 535 10 Nishioka, N. *et al.* The Hippo signaling pathway components Lats and Yap
- pattern Tead4 activity to distinguish mouse trophectoderm from inner
- 537 cell mass. *Dev Cell* **16**, 398-410, doi:10.1016/j.devcel.2009.02.003 (2009).
- 538 11 Yagi, R. *et al.* Transcription factor TEAD4 specifies the trophectoderm
- 539 lineage at the beginning of mammalian development. *Development* **134**,
- 540 3827-3836, doi:dev.010223 [pii]
- 541 10.1242/dev.010223 (2007).
- 542 12 Palmieri, S. L., Peter, W., Hess, H. & Scholer, H. R. Oct-4 transcription factor
- 543 is differentially expressed in the mouse embryo during establishment of
- 544the first two extraembryonic cell lineages involved in implantation. Dev.

545 *Biol.* **166**, 259-267 (1994).

- Nichols, J. *et al.* Formation of pluripotent stem cells in the mammalian
 embryo depends on the POU transcription factor Oct4. *Cell* 95, 379-391
 (1998).
- 549 14 Mulas, C. *et al.* Oct4 regulates the embryonic axis and coordinates exit
 550 from pluripotency and germ layer specification in the mouse embryo.

551 *Development* **145**, doi:10.1242/dev.159103 (2018).

Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4
defines differentiation, dedifferentiation or self-renewal of ES cells. *Nat Genet* 24, 372-376 (2000).

- 555 16 Masui, S. *et al.* Pluripotency governed by Sox2 via regulation of Oct3/4
- expression in mouse embryonic stem cells. *Nat Cell Biol* **9**, 625-635,
- 557 doi:ncb1589 [pii]
- 558 10.1038/ncb1589 (2007).
- 559 17 Osorno, R. *et al.* The developmental dismantling of pluripotency is
- reversed by ectopic Oct4 expression. *Development* **139**, 2288-2298,
- 561 doi:139/13/2288 [pii]
- 562 10.1242/dev.078071 (2012).
- 563 18 Kuroda, T. *et al.* Octamer and Sox elements are required for
- transcriptional cis regulation of Nanog gene expression. *Mol Cell Biol* **25**,
- 565 2475-2485, doi:25/6/2475 [pii]
- 566 10.1128/MCB.25.6.2475-2485.2005 (2005).
- 567 19 Loh, Y. H. *et al.* The Oct4 and Nanog transcription network regulates
- 568 pluripotency in mouse embryonic stem cells. *Nat Genet* **38**, 431-440,
- 569 doi:ng1760 [pii]
- 570 10.1038/ng1760 (2006).
- 571 20 Rodda, D. J. *et al.* Transcriptional regulation of nanog by OCT4 and SOX2. J
- 572 *Biol Chem* **280**, 24731-24737, doi:M502573200 [pii]
- 573 10.1074/jbc.M502573200 (2005).
- 574 21 Chambers, I. & Tomlinson, S. R. The transcriptional foundation of
- 575 pluripotency. *Development* **136**, 2311-2322, doi:136/14/2311 [pii]
- 576 10.1242/dev.024398 (2009).
- 577 22 Tomioka, M. *et al.* Identification of Sox-2 regulatory region which is under
- the control of Oct-3/4-Sox-2 complex. *Nucleic Acids Res* **30**, 3202-3213
- 579 (2002).

- 580 23 Chambers, I. *et al.* Functional expression cloning of Nanog, a pluripotency
- 581 sustaining factor in embryonic stem cells. *Cell* **113**, 643-655 (2003).
- 582 24 Frum, T. *et al.* Oct4 cell-autonomously promotes primitive endoderm
- 583 development in the mouse blastocyst. *Dev Cell* **25**, 610-622,
- 584 doi:10.1016/j.devcel.2013.05.004
- 585 S1534-5807(13)00278-5 [pii] (2013).
- Le Bin, G. C. *et al.* Oct4 is required for lineage priming in the developing
- inner cell mass of the mouse blastocyst. *Development* **141**, 1001-1010,
- 588 doi:10.1242/dev.096875
- 589 dev.096875 [pii] (2014).
- Ralston, A. *et al.* Gata3 regulates trophoblast development downstream of
 Tead4 and in parallel to Cdx2. *Development* 137, 395-403, doi:137/3/395
 [pii]
- [F--]
- 593 10.1242/dev.038828 (2010).
- 594 27 Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a
- 595 unified transcriptome signature for the human pre-implantation epiblast.
- 596 *Development* **145**, doi:10.1242/dev.158501 (2018).
- 597 28 Karwacki-Neisius, V. et al. Reduced Oct4 expression directs a robust
- 598 pluripotent state with distinct signaling activity and increased enhancer
- 599 occupancy by Oct4 and Nanog. *Cell Stem Cell* **12**, 531-545,
- 600 doi:10.1016/j.stem.2013.04.023 (2013).
- 601 29 Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type
- 602 of POU domain in germ line-specific protein Oct-4. *Nature* **344**, 435-439,

603 doi:10.1038/344435a0 (1990).

604	30	Clark, A. T. et al. Human STELLAR, NANOG, and GDF3 genes are expressed	
605		in pluripotent cells and map to chromosome 12p13, a hotspot for	
606		teratocarcinoma. <i>Stem Cells</i> 22 , 169-179, doi:10.1634/stemcells.22-2-169	
607		(2004).	
608	31	Palmqvist, L. et al. Correlation of murine embryonic stem cell gene	
609		expression profiles with functional measures of pluripotency. Stem Cells	
610		23, 663-680, doi:10.1634/stemcells.2004-0157 (2005).	
611	32	Cross, J. C. et al. Hxt encodes a basic helix-loop-helix transcription factor	
612		that regulates trophoblast cell development. <i>Development</i> 121 , 2513-	
613		2523 (1995).	
614	33	Emerson, J. A. Disruption of the cytokeratin filament network in the	
615		preimplantation mouse embryo. <i>Development</i> 104 , 219-234 (1988).	
616	34	Baribault, H., Price, J., Miyai, K. & Oshima, R. G. Mid-gestational lethality in	
617		mice lacking keratin 8. Genes Dev 7, 1191-1202,	
618		doi:10.1101/gad.7.7a.1191 (1993).	
619	35	Home, P. et al. GATA3 is selectively expressed in the trophectoderm of	
620		peri-implantation embryo and directly regulates Cdx2 gene expression. J	
621		<i>Biol Chem</i> 284 , 28729-28737, doi:M109.016840 [pii]	
622	10.10	074/jbc.M109.016840 (2009).	
623	36	Lou, X., Kang, M., Xenopoulos, P., Munoz-Descalzo, S. & Hadjantonakis, A.	
624		K. A rapid and efficient 2D/3D nuclear segmentation method for analysis	
625		of early mouse embryo and stem cell image data. <i>Stem Cell Reports</i> 2 , 382-	
626		397 doi:10.1016/i.stemer.2014.01.010 (2014)	

626 397, doi:10.1016/j.stemcr.2014.01.010 (2014).

- 627 37 van den Boom, V. *et al.* UTF1 is a chromatin-associated protein involved in
- 628 ES cell differentiation. J Cell Biol **178**, 913-924,
- 629 doi:10.1083/jcb.200702058 (2007).
- 630 38 Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the
- 631 embryonic stem cell coactivator UTF1 carries a regulatory element which
- 632 selectively interacts with a complex composed of Oct-3/4 and Sox-2. *Mol*
- 633 *Cell Biol* **19**, 5453-5465 (1999).
- 634 39 Boroviak, T. *et al.* Single cell transcriptome analysis of human, marmoset
- and mouse embryos reveals common and divergent features of
- 636 preimplantation development. *Development* **145**,
- 637 doi:10.1242/dev.167833 (2018).
- 638 40 Okuda, A. *et al.* UTF1, a novel transcriptional coactivator expressed in
- 639 pluripotent embryonic stem cells and extra-embryonic cells. *EMBO J* **17**,

640 2019-2032, doi:10.1093/emboj/17.7.2019 (1998).

- 641 41 Kooistra, S. M., Thummer, R. P. & Eggen, B. J. Characterization of human
- 642 UTF1, a chromatin-associated protein with repressor activity expressed
- 643 in pluripotent cells. *Stem Cell Res* **2**, 211-218,
- 644 doi:10.1016/j.scr.2009.02.001 (2009).
- 645 42 Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent
 646 embryonic stem cells is mediated via activation of STAT3. *Genes Dev* 12,
 647 2048-2060 (1998).
- 648 43 Do, D. V. *et al.* A genetic and developmental pathway from STAT3 to the
- 649 OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo.
- 650 *Genes Dev* **27**, 1378-1390, doi:10.1101/gad.221176.113 (2013).

	651	44	Nichols, J., Chambers, I., Taga, T. & Smith, A. Physiological rational	e fo
--	-----	----	--	------

- responsiveness of mouse embryonic stem cells to gp130 cytokines.
- 653 *Development* **128**, 2333-2339. (2001).
- 45 Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF
- 655 signalling pathways maintains pluripotency of mouse ES cells. *Nature*
- 656 **460**, 118-122, doi:nature08113 [pii]
- 657 10.1038/nature08113 (2009).
- 658 46 Martello, G., Bertone, P. & Smith, A. Identification of the missing
- 659 pluripotency mediator downstream of leukaemia inhibitory factor. *EMBO*
- 660 *J* **32**, 2561-2574, doi:10.1038/emboj.2013.177 (2013).
- 661 47 Nicholson, S. E. *et al.* Suppressor of cytokine signaling-3 preferentially
- binds to the SHP-2-binding site on the shared cytokine receptor subunit
- 663 gp130. Proc Natl Acad Sci U S A **97**, 6493-6498,
- 664 doi:10.1073/pnas.100135197 (2000).
- 665 48 Artus, J., Piliszek, A. & Hadjantonakis, A. K. The primitive endoderm
- lineage of the mouse blastocyst: sequential transcription factor activation
- and regulation of differentiation by Sox17. *Dev Biol* **350**, 393-404,
- 668 doi:S0012-1606(10)01248-0 [pii]
- 669 10.1016/j.ydbio.2010.12.007 (2011).
- 670 49 Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A. K.
- Distinct sequential cell behaviours direct primitive endoderm formation
- 672 in the mouse blastocyst. *Development* **135**, 3081-3091 (2008).
- 673 50 Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage
- 674 segregation between epiblast and primitive endoderm in mouse

- blastocysts through the Grb2-MAPK pathway. *Dev Cell* **10**, 615-624,
- 676 doi:S1534-5807(06)00125-0 [pii]
- 677 10.1016/j.devcel.2006.02.020 (2006).
- 678 51 Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. &
- 679 Goldfarb, M. Requirement of FGF-4 for postimplantation mouse
- 680 development. *Science* **267**, 246-249 (1995).
- 681 52 Kang, M., Garg, V. & Hadjantonakis, A. K. Lineage Establishment and
- 682 Progression within the Inner Cell Mass of the Mouse Blastocyst Requires
- 683 FGFR1 and FGFR2. *Dev Cell* **41**, 496-510 e495,
- 684 doi:10.1016/j.devcel.2017.05.003 (2017).
- 685 53 Molotkov, A., Mazot, P., Brewer, J. R., Cinalli, R. M. & Soriano, P. Distinct
- 686 Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development

and Exit from Pluripotency. *Dev Cell* **41**, 511-526 e514,

688 doi:10.1016/j.devcel.2017.05.004 (2017).

- 689 54 Parfitt, D. E. & Shen, M. M. From blastocyst to gastrula: gene regulatory
- 690 networks of embryonic stem cells and early mouse embryogenesis. *Philos*
- 691 *Trans R Soc Lond B Biol Sci* **369**, doi:10.1098/rstb.2013.0542 (2014).
- 692 55 Kang, M., Piliszek, A., Artus, J. & Hadjantonakis, A. K. FGF4 is required for

693 lineage restriction and salt-and-pepper distribution of primitive

694 endoderm factors but not their initial expression in the mouse.

695 *Development* **140**, 267-279, doi:10.1242/dev.084996 (2013).

696 56 Donnison, M. *et al.* Loss of the extraembryonic ectoderm in Elf5 mutants

leads to defects in embryonic patterning. *Development* **132**, 2299-2308,

698 doi:dev.01819 [pii]

699 10.1242/dev.01819 (2005).

700	57	Pettersson, K. et al. Expression of a novel member of estrogen response
701		element-binding nuclear receptors is restricted to the early stages of
702		chorion formation during mouse embryogenesis. <i>Mech Dev</i> 54, 211-223,
703		doi:0925477395004793 [pii] (1996).
704	58	Cormier, S., Vandormael-Pournin, S., Babinet, C. & Cohen-Tannoudji, M.
705		Developmental expression of the Notch signaling pathway genes during
706		mouse preimplantation development. Gene Expr Patterns 4, 713-717,
707		doi:10.1016/j.modgep.2004.04.003 (2004).
708	59	Ma, G. T. et al. GATA-2 and GATA-3 regulate trophoblast-specific gene
709		expression in vivo. <i>Development</i> 124 , 907-914 (1997).
710	60	Rayon, T. <i>et al.</i> Notch and hippo converge on Cdx2 to specify the
711		trophectoderm lineage in the mouse blastocyst. <i>Dev Cell</i> 30 , 410-422,
712		doi:10.1016/j.devcel.2014.06.019 (2014).
713	61	Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq
714		reveals dynamic, random monoallelic gene expression in mammalian
715		cells. <i>Science</i> 343 , 193-196, doi:10.1126/science.1245316 (2014).
716	62	Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for
717		deconvolution of heterogeneous tissue samples based on mRNA-Seq data.
718		Bioinformatics 29 , 1083-1085, doi:10.1093/bioinformatics/btt090
719		(2013).
720	63	Blakeley, P. et al. Defining the three cell lineages of the human blastocyst
721		by single-cell RNA-seq. Development 142, 3151-3165,
722		doi:10.1242/dev.123547 (2015).

723	64	Song, G. X. et al.	Overexpression of F.	ABP3 promotes apoptosis	through

inducing mitochondrial impairment in embryonic cancer cells. *J Cell*

Biochem **113**, 3701-3708, doi:10.1002/jcb.24243 (2012).

- Guo, G. *et al.* Resolution of cell fate decisions revealed by single-cell gene
- expression analysis from zygote to blastocyst. *Dev Cell* **18**, 675-685,
- 728 doi:S1534-5807(10)00110-3 [pii]
- 729 10.1016/j.devcel.2010.02.012 (2010).
- 730 66 Islam, A. *et al.* Fatty Acid Binding Protein 3 Is Involved in n-3 and n-6

731 PUFA transport in mouse trophoblasts. *J Nutr* **144**, 1509-1516,

- 732 doi:10.3945/jn.114.197202 (2014).
- 733 67 Moriwaki, K., Tsukita, S. & Furuse, M. Tight junctions containing claudin 4

and 6 are essential for blastocyst formation in preimplantation mouse

735embryos. Dev Biol **312**, 509-522, doi:10.1016/j.ydbio.2007.09.049

- 736 (2007).
- 737 68 Hirate, Y. *et al.* Polarity-dependent distribution of angiomotin localizes
- Hippo signaling in preimplantation embryos. *Curr Biol* 23, 1181-1194,
- 739 doi:10.1016/j.cub.2013.05.014
- 740 S0960-9822(13)00577-0 [pii] (2013).

Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein

- kinase that restricts cell proliferation and promotes apoptosis in
- 743 conjunction with salvador and warts. *Cell* **114**, 445-456,
- 744 doi:10.1016/s0092-8674(03)00549-x (2003).
- 745 70 Hildebrand, S. *et al.* The E-cadherin/AmotL2 complex organizes actin
- filaments required for epithelial hexagonal packing and blastocyst
- 747 hatching. *Sci Rep* **7**, 9540, doi:10.1038/s41598-017-10102-w (2017).

748	71	Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and
749		histone acetylation control the early differentiation of embryonic stem
750		cells. <i>Cell Metab</i> 21 , 392-402, doi:10.1016/j.cmet.2015.02.002 (2015).
751	72	Kim, H. et al. Core Pluripotency Factors Directly Regulate Metabolism in
752		Embryonic Stem Cell to Maintain Pluripotency. Stem Cells 33, 2699-2711,
753		doi:10.1002/stem.2073 (2015).
754	73	Jaishy, B. & Abel, E. D. Lipids, lysosomes, and autophagy. J Lipid Res 57,
755		1619-1635, doi:10.1194/jlr.R067520 (2016).
756	74	Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science
757		332 , 1429-1433, doi:10.1126/science.1204592 (2011).
758	75	Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently
759		overexpressed in multiple myeloma cells and required for their survival.
760		<i>Cell</i> 137 , 873-886, doi:10.1016/j.cell.2009.03.046 (2009).
761	76	Boroviak, T., Loos, R., Bertone, P., Smith, A. & Nichols, J. The ability of
762		inner-cell-mass cells to self-renew as embryonic stem cells is acquired
763		following epiblast specification. <i>Nat Cell Biol</i> 16 , 516-528,
764		doi:10.1038/ncb2965 (2014).
765	77	Yoshida, K. et al. Maintenance of the pluripotential phenotype of
766		embryonic stem cells through direct activation of gp130 signalling
767		pathways. <i>Mech. Dev.</i> 45 , 163-171 (1994).
768	78	Wells, N. et al. The geometric control of E14 and R1 mouse embryonic
769		stem cell pluripotency by plasma polymer surface chemical gradients.
770		<i>Biomaterials</i> 30 , 1066-1070, doi:10.1016/j.biomaterials.2008.10.027
771		(2009).

772	79	Carbognin, E., Betto, R. M., Soriano, M. E., Smith, A. G. & Martello, G. Stat3
773		promotes mitochondrial transcription and oxidative respiration during
774		maintenance and induction of naive pluripotency. <i>EMBO J</i> 35 , 618-634,
775		doi:10.15252/embj.201592629 (2016).
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
		35

797 Materials and Methods

- 798 Experiments were performed in accordance with EU guidelines for the care
- and use of laboratory animals and under the authority of appropriate UK
- governmental legislation. Use of animals in this project was approved by the
- 801 Animal Welfare and Ethical Review Body for the University of Cambridge and
- 802 relevant Home Office licences are in place.
- 803

804 Mice and husbandry

- 805 All embryos were generated from transgenic mouse strains with mixed
- genetic backgrounds. They were: Oct4+/-1, ZP3CreTg/+2, R26::CreERT23 and
- 807 Oct4LoxP/LoxP4. Compound transgenic mice were generated from crosses of
- 808 these lines. Genotyping was performed by PCR analysis using DNA extracted
- 809 from ear biopsies or trophectoderm lysate following isolation of ICMs by
- 810 immunosurgery_{1,5}. Primer sequences are as follows:
- 811 Oct4LoxP: CTCAAACCCCAGGTGATCTTCAAAAC;
- 812 GGATCCCATGCCCTCTTCTGGT
- 813 Oct4 null: GCCTTCCTCTATAGGTTGGGCTCCAACC;
- 814 GGGCTGACCGCTTCCTCGTGCTTTACG;
- 815 GAGCTTATGATCTGATGTCCATCTCTGTGC
- 816 Cre transgene: GCGGTCTGGCAGTAAAAACTATC;
- 817 GTGAAACAGCATTGCTGTCACTT
- 818 Amplification was carried out on around 5 µL of lysate for 35 cycles (following
- 819 95°C hot start for 10 minutes) of 94°C, 15 seconds; 60°C, 12 seconds; 72°C,
- 820 60 seconds, with a final extension at 72°C for 10 minutes. Reaction products
- 821 were resolved by agarose gel electrophoresis. Mice were maintained on a

828 829	ESCs and culture	
827	isolated in M2 medium (Sigma) at E3.5 or E4.5.	
826	following natural mating indicated embryonic day (E) 0.5. Embryos were	
825	ZP3CreTg/+ stud males and Oct4LoxP/LoxP dams. Detection of a copulation plu	
824	mating; those for IHC were compound transgenics derived from Oct4LoxP/-;	
823	libitum. Embryos for RNAseq were generated from Oct4+/- inter se natural	
822	lighting regime of 14:10 hours light:dark with food and water supplied ad	

Indole-3-acetic acid (IAA, Sigma) inducible Oct4 deletable induced pluripotent

830

831 stem cells (iPSC) were kindly provided by Lawrence Bates. Neural stem cells 832 (NSCs) derived from brains of E13.5 Oct4fl/- Rosa26::CreER embryos, as 833 previously reported6 were treated with 500 nM 4-hydroxytamoxifen to induce 834 deletion of the floxed Oct4 allele. Oct4-/- NSCs were transduced with 835 retroviral Oct4, Klf4 and cMyc. Retroviruses were produced in PLAT-E cells; 836 briefly, cells were transfected with pMXs-Oct3/4, pMXs-Klf4 and pMXs-cMyc 837 using FuGENE 6 reagent (Promega). Polybrene (Sigma) was added to a final 838 concentration of 4 µg/ml. 24 hours later NSCs were nucleofected with pPB-839 CAG-Oct4AID-PGK-hygro (Piggybac transposon containing a constitutive 840 Oct4AID fusion protein expression cassette and a constitutive hygromycin 841 resistance expression cassette), pPB-CAG-Tir1-IRES-bsd (Piggybac 842 transposon containing a constitutive Tir1 IRES blasticidin resistance 843 expression cassette) and pPBase (a non-integrating Piggbac transposase 844 expression vector) using Amaxa Nucleofection Technology (Lonza AG) 845 according to the manufacturer's instructions. Program T-020 was used for 846 NSC nucleofections. Cells were plated in NSC medium for 2 days then

847	switched to medium (GMEM [Sigma] containing 10% FCS [Sigma], 1× NEAA
848	[PAA], 1× penicillin/streptomycin [PAA], 1 mM sodium pyruvate [PAA], 0.1 mM
849	2-mercaptoethanol [Gibco] and 2 mM L-glutamine [Gibco], supplemented with
850	20 ng/ml LIF). Medium was switched to KSR medium (GMEM containing 10%
851	KSR [Invitrogen], 1% FCS, 1× NEAA, 1× penicillin/streptomycin, 1 mM sodium
852	pyruvate, 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine) supplemented with
853	2iL (20 ng/ml LIF, 3 μM CHIR99021 [CHIR], and 1 μM PD0325901 [PD03]),
854	and selection was added for expression of the endogenous (floxed) Oct4
855	locus on the ninth day in KSR-2iL. Expanded colonies were passaged into
856	N2B27 + 2iL. 0.8 µg of pPB-CAG-GFP-IRES Zeocin (gift from Masaki
857	Kinoshita) and 0.4 μ g of pPy-CAG Pbase were transfected into IAA inducible
858	Oct4 deletable iPSCs using lipofectamine 2000 (Thermo Fisher Scientific).
859	The transfected cells were picked after selection with Zeocin (100mg/ml) and
860	expanded. The resulting iPSCs were routinely maintained on 0.1% gelatin
861	(Sigma)-coated 6-well plates (Falcon) in N2B27 + 2iL and passaged every
862	three days following dissociation with Accutase.
062	

863

864 **Cell differentiation**

865 IAA inducibly deletable Oct4 cells were seeded (1.5 x 104) on fibronectin-

coated (12.5µg/ml; Millipore) Ibidi-dishes (μ-Dish, 35mm) and cultured in

867 N2B27 + 2iL for one day. The next day, medium was switched to N2B27 +

868 100U/ml LIF, 3 μM CHIR and 500 μM IAA for Oct4 deletion (or 0.1% ethanol

869 for controls) and cells were cultured for another day.

870

871

872 Immunohistochemistry

873 Embryos

874	The zona pellucida was removed from all non-hatched embryos using acid
875	tyrodes solution (Sigma). Embryos were fixed in 4% PFA (paraformaldehyde;
876	Thermo Fisher Scientific) in PBS at room temperature for 15 minutes. After
877	rinsing in PBS/PVP (3mg/ml PVP in PBS) they were permeabilised in 0.25%
878	Triton X (Sigma) in PBS/PVP for 30 minutes, then incubated in 2% donkey
879	serum, 0.1% BSA and 0.01% Tween 20 in PBS (blocking buffer) for at least
880	15 minutes and incubated overnight at 4°C in primary antibodies diluted in
881	blocking buffer (Suppl.Table 7). After 3 x 15 min washes in blocking buffer
882	they were incubated at room temperature in the dark in secondary antibody
883	(Alexa dye, Life Sciences) and DAPI (4',6-diamidino-2-phenylindole/
884	Invitrogen) 1:500 in blocking solution. After 3 x 15 minute washes, the
885	embryos were taken through 25%, 50%, 75% then 100% VectaShield
886	mounting medium (Vector Laboratories) in blocking solution. The embryos
887	were placed in a drop of Vectashield on coverslips and surrounded by spots
888	of Vaseline on which the upper coverslip was gently pressed. To avoid drying
889	out the coverslip was surrounded by nail polish. Images were acquired using
890	a Leica TCS SP5 confocal microscope.

891

892 **Cells**

893 Oct4-deleted and control ESCs were fixed with 4% PFA in PBS at room

- temperature for 15 minutes, then rinsed in PBS and blocked in PBS
- containing 3% donkey serum (Sigma), 0.1%TritonX at 4_oC for 2-3 hours.
- 896 Primary antibodies (Suppl.Table 7) were diluted in blocking buffer, and

897	samples were incubated in the appropriate antibody solution at 4 ₀ C overnight.
898	They were rinsed three times in PBST, compromising PBS + 0.1% TritonX, for
899	15 minutes each. Secondary antibodies were diluted in blocking buffer with or
900	without 500 ng/ml DAPI and samples were incubated in the appropriate
901	secondary antibody solution at room temperature for 1 hour in the dark. They
902	were rinsed three times in PBST for 15 minutes each, then stored in PBS at
903	4°C in the dark until imaging.
904	

- 905 Imaging
- 906 Samples were observed using a spinning disk microscope (Andor Revolution
- 907 XD System with a Nikon Eclipse Ti Spinning Disk) or a Leica TCS Sp5
- 908 confocal. 40x objective lens was used with Type F immersion liquid. The
- 909 images were analysed by Fiji as described previously7.
- 910

911 Preparation of samples for RNA-sequencing

- 912 For E3.5 blastocysts, zona pellucidae were removed using acid tyrode's
- solution (Sigma) and embryos subjected to immunosurgery_{1,5} using 20% anti-
- 914 mouse whole antiserum (Sigma) in N2B27 in at 37_oC, 7% CO₂ for 30 minutes,
- followed by 3 rinses in M2, then 15 minutes in 20% non-heat inactivated rat
- serum (made in house) in N2B27 in at 37_oC, 7% CO₂. After 30 minutes in
- 917 fresh N2B27 lysed trophectoderm was removed and placed in lysis buffer for
- 918 genotyping. ICMs were incubated in 0.025% trypsin (Invitrogen) plus 1% chick
- serum (Sigma) for 5-10 minutes in small drops and dissociated by repetitive
- 920 pipetting using a small diameter mouth-controlled flame-pulled Pasteur
- 921 pipette. Individual ICM cells were transferred into single cell lysis buffer and

- 922 snap frozen on dry ice. Smart-seq2 libraries were prepared as described
- 923 previously₈ and sequenced on the Illumina platform in a 125 bp paired-end
- 924 format.
- 925

926 RNA-seq data processing

- 927 Early/mid and late blastocyst annotated cell data was downloaded from
- 928 GSE45719 and selected only cells expressing trophectoderm markers₉.
- 929 Genome build GRCm38/mm10 and STAR 2.5.2a10 were used for aligning
- reads and ensembl release 8711 was used to guide gene annotation. After
- removal of inadequate samples according to filtering criteria described₁₂, we
- 932 quantified alignments to gene loci with htseq-count₁₃ based on annotation
- 933 from Ensembl 87.
- 934

935 **Transcriptome analysis**

- 936 Principal component and cluster analyses were performed based on
- 937 log₂FPKM values computed with custom scripts, in addition to the
- 938 Bioconductor packages DESeq14 or FactoMineR. Diffusion maps and T-
- 939 distributed stochastic neighbor embedding (t-SNE) were produced with
- 940 *destiny*¹⁵ and *Rtsne* packages.
- 941 Default parameters were used unless otherwise indicated. Differential
- 942 expression analysis was performed with Single Cell Differential Expression R
- 943 *package, scde*₁₆, which has the advantage of fitting individual error models for
- the assessment of differential expression between sample groups. For global
- analyses, we considered only genes with FPKM > 0 in at least one condition,
- not expressed genes were always omitted. Euclidean distance and average

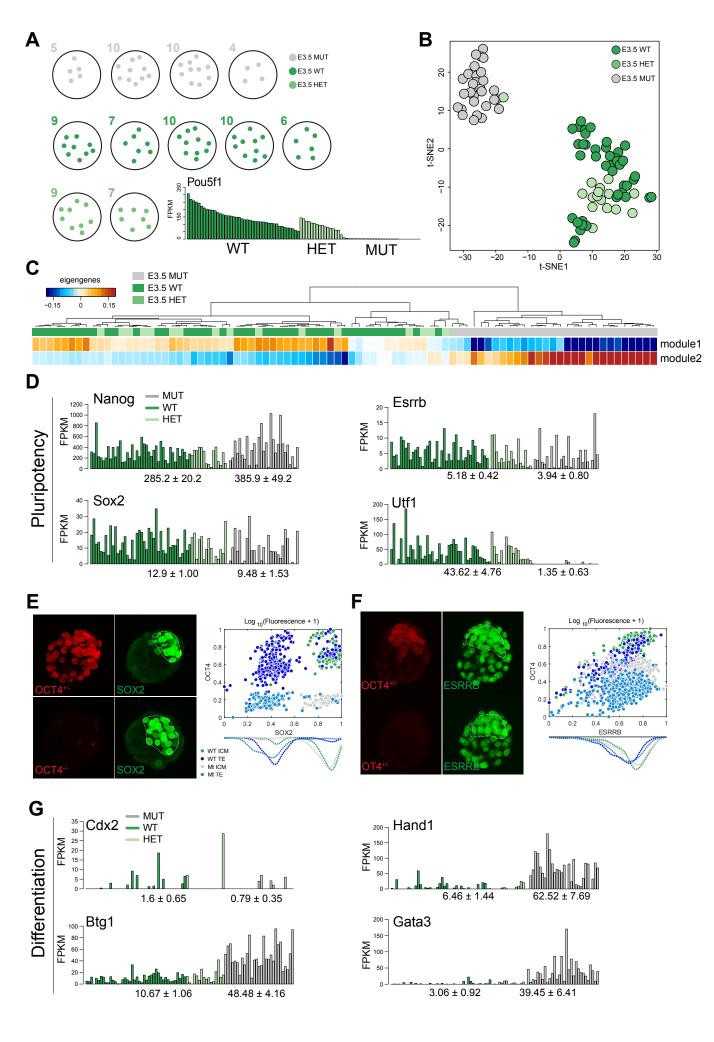
agglomeration methods were used for cluster analyses unless otherwise

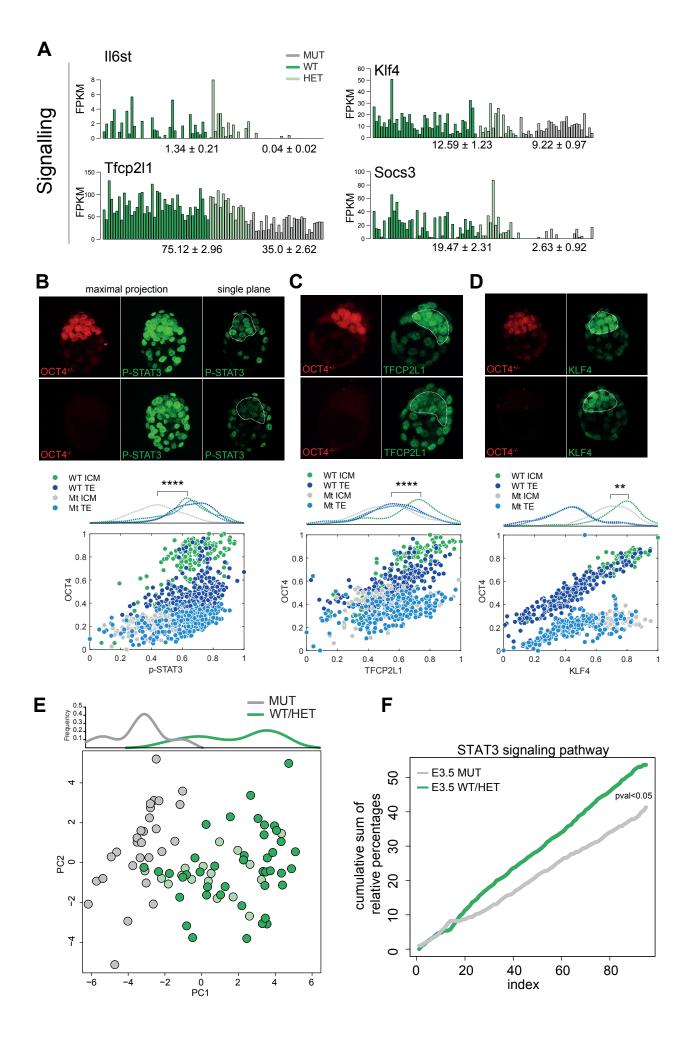
- 948 indicated. Expression data are made available in Supplemental Tables and
- through a web application to visualise transcription expression and fitted curve
- 950 with temporal pseudotime of individual genes in embryonic lineages
- 951 (https://giulianostirparo.shinyapps.io/pou5f1/). High variable genes across
- 952 cells were computed according to the methods described 12,17. A non-linear
- 953 regression curve was fitted between average log₂ FPKM and the square of
- 954 coefficient of variation (log CV₂); then, specific thresholds were applied along
- 955 the x-axis (average log₂ FPKM) and *y*-axis (log CV₂) to identify the most
- 956 variable genes.
- To assess the accuracy of the identified lineages, we used the Weighted
- 958 Gene Co-Expression Network Analysis unsupervised clustering method
- 959 (WGCNA₁₈ to identify specific modules of co-expressed genes in each
- 960 developmental lineage/genotype. R package ggtern was used to compute and
- 961 visualize ternary plots. Kyoto Encyclopedia of Genes and Genomes (KEGG)
- 962 was used to compute pathway enrichment and to download genes in
- 963 glycolysis/gluconeogenesis and tricarboxylic acid cycle pathways.
- 964

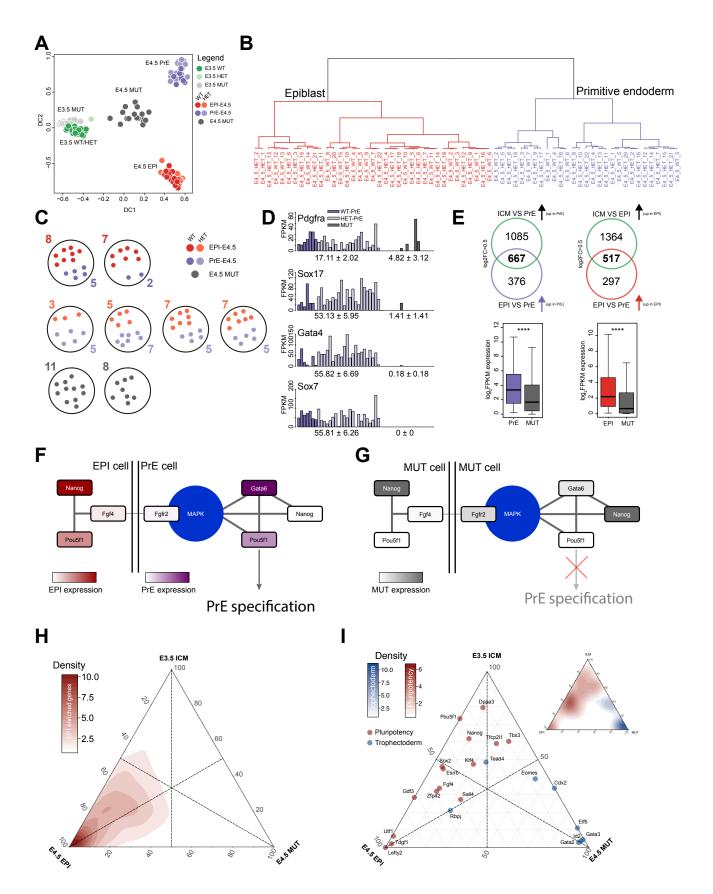
965 **Quadratic programming**

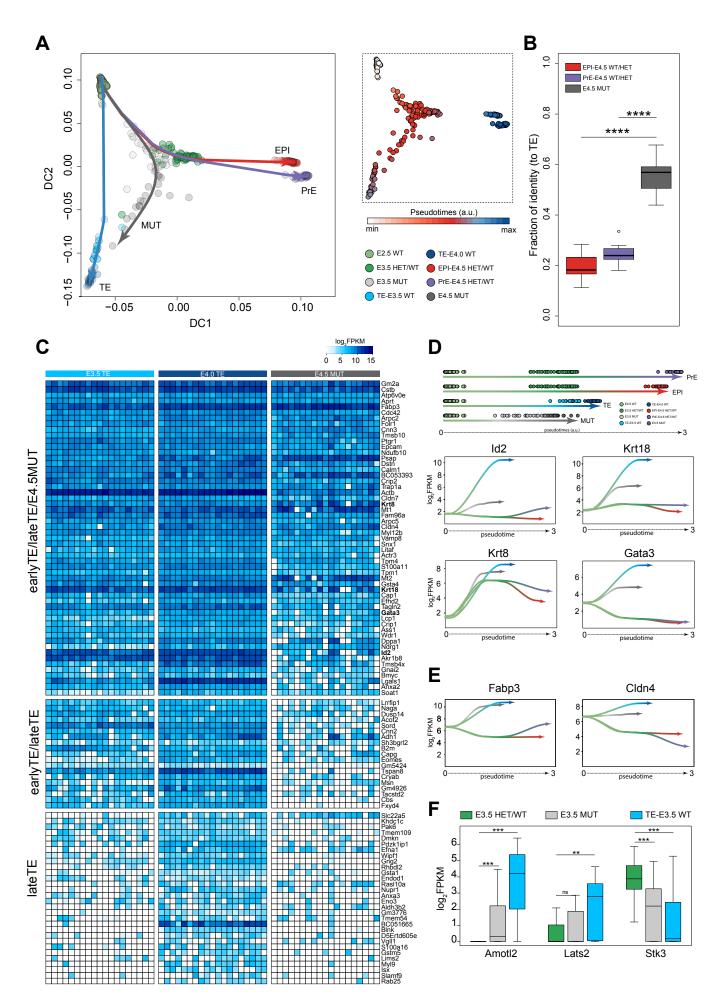
- 966 Fractional identity between pre-implantation stages was computed using R
- 967 package DeconRNASeq19. This package uses quadratic programming
- 968 computation to estimate the proportion of distinctive types of tissue. The
- 969 average expression of pre-implantation stages (E4.5 WT/HET epiblast and
- 970 primitive endoderm, E4.5 MUT cells) were used as "signature" dataset.

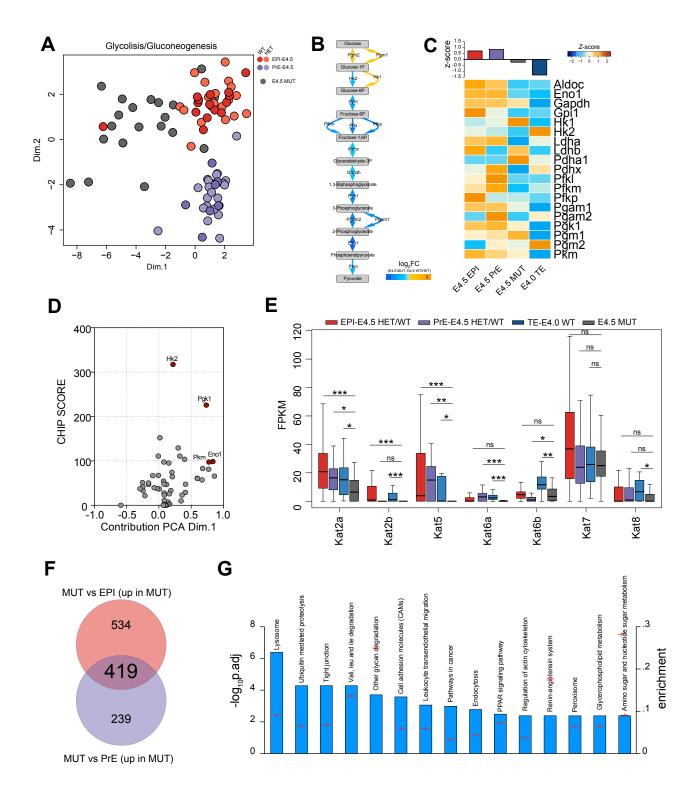
- 971 Finally, the fraction of identity between TE cells and the "signature" dataset
- 972 was computed using the overlapping gene expression data (FPKM > 0).
- 973 Data availability
- 974 GEO submission
- 975
- 976 Code availability
- 977 Code is available upon request
- 978


```
979 References
```


- Nichols, J. *et al.* Formation of pluripotent stem cells in the mammalian
- 981 embryo depends on the POU transcription factor Oct4. *Cell* **95**, 379-
- 982 391 (1998).
- 2 Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3-cre, a
- 984 transgenic mouse line for the activation or inactivation of loxP-flanked
- target genes specifically in the female germ line. *Curr Biol* **7**, 148-151
- 986 (1997).
- 987 3 Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated
- 988 Cre recombinase mouse line shows that LoxP recombination is
- 989 position dependent. EMBO Rep 2, 292-297, doi:10.1093/embo-
- 990 reports/kve064
- 991 2/4/292 [pii] (2001).
- Le Bin, G. C. *et al.* Oct4 is required for lineage priming in the
- developing inner cell mass of the mouse blastocyst. *Development* **141**,
- 994 1001-1010, doi:10.1242/dev.096875
- 995 dev.096875 [pii] (2014).


996	5	Solter, D. & Knowles, B. Immunosurgery of mouse blastocyst. PNAS
997		72 , 5099-5102 (1975).
998	6	Conti, L. et al. Niche-independent symmetrical self-renewal of a
999		mammalian tissue stem cell. PLoS Biol 3, e283 (2005).
1000	7	Lou, X., Kang, M., Xenopoulos, P., Munoz-Descalzo, S. &
1001		Hadjantonakis, A. K. A rapid and efficient 2D/3D nuclear segmentation
1002		method for analysis of early mouse embryo and stem cell image data.
1003		Stem Cell Reports 2, 382-397, doi:10.1016/j.stemcr.2014.01.010
1004		(2014).
1005	8	Picelli, S., Faridani, O. R., Björklund, A. K., Winberg, G., Sagasser, S.
1006		and Sandberg, R. Full-length RNA-seq from single cells using Smart-
1007		seq2. Nature Protocols 9, 171-181, doi:10.1038/nprot.2014.006 (2014).
1008	9	Blakeley, P. et al. Defining the three cell lineages of the human
1009		blastocyst by single-cell RNA-seq. Development 142, 3151-3165,
1010		doi:10.1242/dev.123547 (2015).
1011	10	Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner.
1012		Bioinformatics 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
1013	11	Yates, A. et al. Ensembl 2016. Nucleic Acids Res 44, D710-716,
1014		doi:10.1093/nar/gkv1157 (2016).
1015	12	Stirparo, G. G. et al. Integrated analysis of single-cell embryo data
1016		yields a unified transcriptome signature for the human pre-implantation
1017		epiblast. <i>Development</i> 145 , doi:10.1242/dev.158501 (2018).
1018	13	Anders, S., Pyl, P. T. & Huber, W. HTSeqa Python framework to work


- 1019 with high-throughput sequencing data. *Bioinformatics* **31**, 166-169,
- 1020 doi:10.1093/bioinformatics/btu638 (2015).


1021	14	Anders, S. & Huber, W. Differential expression analysis for sequence
1022		count data. <i>Genome Biol</i> 11 , R106, doi:10.1186/gb-2010-11-10-r106
1023		(2010).
1024	15	Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data
1025		in R. Bioinformatics 32, 1241-1243, doi:10.1093/bioinformatics/btv715
1026		(2016).
1027	16	Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach
1028		to single-cell differential expression analysis. Nat Methods 11, 740-742,
1029		doi:10.1038/nmeth.2967 (2014).
1030	17	Boroviak, T. et al. Single cell transcriptome analysis of human,
1031		marmoset and mouse embryos reveals common and divergent
1032		features of preimplantation development. Development 145,
1033		doi:10.1242/dev.167833 (2018).
1034	18	Langfelder, P. & Horvath, S. WGCNA: an R package for weighted
1035		correlation network analysis. BMC Bioinformatics 9, 559,
1036		doi:10.1186/1471-2105-9-559 (2008).
1037	19	Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework
1038		for deconvolution of heterogeneous tissue samples based on mRNA-
1039		Seq data. Bioinformatics 29, 1083-1085,
1040		doi:10.1093/bioinformatics/btt090 (2013).
1041		

