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Abstract.—The phylogenetic information contained in sequence data is partly determined by the 22 

overall rate of nucleotide substitution in the genomic region in question. However, phylogenetic 23 

signal is affected by various other factors, such as heterogeneity in substitution rates across 24 

lineages. These factors might be able to predict the phylogenetic accuracy of any given gene in a 25 

data set. We examined the association between the accuracy of phylogenetic inference across 26 

genes and several characteristics of branch lengths in phylogenomic data. In a large number of 27 

published data sets, we found that the accuracy of phylogenetic inference from genes was 28 

consistently associated with their mean statistical branch support and variation in their gene tree 29 

root-to-tip distances, but not with tree length and stemminess. Therefore, a signal of constant 30 

evolutionary rates across lineages appears to be beneficial for phylogenetic inference. Identifying 31 

the causes of variation in root-to-tip lengths in gene trees also offers a potential way forward to 32 

increase congruence in the signal across genes and improve estimates of species trees from 33 

phylogenomic data sets. 34 
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The phylogenetic signal in a molecular sequence alignment is influenced by a number of 38 

factors, including the substitution rate at which the sequences have evolved relative to the 39 

timescale of the process. In principle, the amount of information in the sequence alignment 40 

depends on the overall substitution rate of the gene (Goldman 1998; Xia et al. 2003; Townsend 41 

and Leuenberger 2011; Klopfstein et al. 2017; Steel and Leuenberger 2017). However, the 42 

substitution rate might be a poor predictor of the accuracy of the inferred tree topology (Aguileta 43 

et al. 2008). This is because the phylogenetic signal in a gene can be obscured by various forms 44 

of heterogeneity, such as variation in rates across sites (Su and Townsend 2015; Dornburg et al. 45 

2019). Substantial rate heterogeneity can also be found across branches (Bromham and Penny 46 

2003), but there is a still a limited understanding of the association between this form of rate 47 

variation and the topological signal in phylogenomic data sets. 48 

Substitution rates can vary across genes and across lineages because of differences in 49 

selective pressures or limits on mutation rates (Gillespie 1991; Gaut et al. 2011). The factors that 50 

drive rate variation across genes and lineages can interact in what are known as “residual effects” 51 

(Gillespie 1991), potentially creating complex patterns of substitution rates across genes (Ho 52 

2014; Duchêne and Ho 2015). Genes can also differ in their evolutionary histories, including 53 

their coalescence times, due to recombination breaking the linkage between sections of the 54 

genome (Maddison 1997). In addition to varying in their signals of rates and times, estimates of 55 

substitution rates in individual genes can be misled by a number of methodological factors, 56 

including model misspecification (Sullivan and Joyce 2005) and errors in alignment, orthology 57 

assignment, or sequencing (Wilkinson 1996; Sanderson and Shaffer 2002). 58 

Any differences in evolutionary rates across genes will be reflected in the estimates of 59 

gene tree branch lengths. In statistical phylogenetic inference, branch lengths are closely linked 60 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923805
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

to the estimate of tree topology. For example, long branches can have negative impacts on 61 

phylogenetic accuracy because of their tendency to be grouped together (“long-branch 62 

attraction”; Anderson & Swofford 2004). Even a single long branch can drastically change the 63 

phylogenetic signal in the data (Su and Townsend 2015). Meanwhile, low substitution rates can 64 

lead to a lack of phylogenetic information and even to a greater amount of phylogenetic error 65 

than in sequences that have evolved with very high substitution rates (Yang 1998). Although 66 

most research has focused on the differences in overall substitution rates across genes, the 67 

variation in the signal of rates across lineages is likely to provide a more nuanced and accurate 68 

predictor of the topological signal across the genome. 69 

One potential predictor of phylogenetic accuracy is the degree of variation in the inferred 70 

distances from the root to each of the tips in a given gene tree. If substitution rates have been 71 

constant across lineages, the root-to-tip distances are expected to be proportional to time. 72 

Therefore, root-to-tip distances should all be identical in a data set where the samples come from 73 

the present and the sequences have evolved under a strict molecular clock. In theory, it is 74 

unlikely that any poor estimation in branch lengths will produce identical root-to-tip distances. 75 

Variation in root-to-tip distances might be caused by variation in rates across lineages, but 76 

critically, it is also diagnostic of the presence of factors causing inaccurate estimates of branch 77 

lengths. 78 

Variation in root-to-tip distances will not be informative in cases where low information 79 

content is due to fast diversification events (over short time-periods) or where multiple lineages 80 

have changed in evolutionary rate simultaneously (an “epoch” model of rate variation). An 81 

alternative predictor of phylogenetic accuracy is the ratio of the lengths of internal branches to 82 

terminal branches, also known as stemminess (Fiala and Sokal 1985). Low stemminess is 83 
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typically associated with a poor topological signal (e.g., Penny et al. 2001; Duchêne et al. 84 

2018c), yet it is frequently observed in phylogenetic trees (e.g., Phillimore & Price 2008). Some 85 

explanations for low stemminess include rapid diversification events (McPeek 2008), sparse 86 

taxon sampling (Penny et al. 2001; Cusimano and Renner 2010), underparameterization of the 87 

substitution model (Revell et al. 2005), and deep gene coalescences relative to species 88 

divergence times (Maddison 1997; Degnan and Rosenberg 2009). 89 

Testing the link between characteristics of branch lengths and estimates of tree topology 90 

across genes has potential benefits for the design of phylogenomic studies. One approach to 91 

carrying out a phylogenomic study is to employ a criterion to select genes for analysis, a practice 92 

known as “data filtering” or “gene shopping” (Molloy and Warnow 2018). Some of the criteria 93 

that have previously been used for data filtering include phylogenetic branch supports (Blom et 94 

al. 2016), the amount of missing data (Molloy and Warnow 2018), measures of substitution 95 

model adequacy (Duchêne et al. 2018c; Richards et al. 2018), and base composition (Dávalos 96 

and Perkins 2008; Martijn et al. 2018). It not clear which of these criteria is the most effective 97 

(Molloy and Warnow 2018), but it is likely that no single criterion is universally applicable 98 

(Reddy et al. 2017). Nonetheless, branch lengths provide an estimate of the amount of genetic 99 

change that is captured in a data set, so it is reasonable to surmise that they present a general 100 

predictor of the accuracy of estimates of tree topology (Klopfstein et al. 2017). 101 

In this study, we explore the association between three branch-length metrics and 102 

estimates of tree topology across a collection of 34 phylogenomic data sets. When examining 103 

individual data sets, we find that the tree length is not the best predictor of phylogenetic 104 

information content among genes. Across the 34 data sets, we observe an association between 105 

the performance of phylogenetic inference and the variation in root-to-tip distances. 106 
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Phylogenomic studies are likely to benefit from considering the heterogeneity in rates across 107 

lineages for describing the signal of tree topology across loci. 108 

 109 

MATERIALS AND METHODS 110 

We collected a set of 34 phylogenomic data sets covering a wide range of taxa and data 111 

types (Table 1), including intron and exon regions, ultraconserved elements, and anchor-enriched 112 

regions. The original studies varied widely in their treatment of these data sets. For instance, 113 

some studies considered the trees from each of the codon positions of protein-coding genes 114 

independently. We followed the data treatments used in the original studies so that our analyses 115 

would reflect the approaches that have been used in practice.  116 

For each data set, we inferred the phylogeny using IQ-Tree (Nguyen et al. 2015) with the 117 

best-fitting substitution model from the GTR+Γ family. We then identified a set of gene trees 118 

from each data set that contained the same set of taxa. The taxon set was selected to maximize 119 

the product of the number of taxa and the number of genes, while maintaining full occupancy of 120 

the data matrix (for details see github.com/duchene/branch_length_influence_topology). 121 

We calculated three test statistics that described the branch-length signal in each gene 122 

tree. These statistics included: (i) the coefficient of variation (CoV) in distances from the 123 

midpoint-root to the tips, which provides a measure of rate heterogeneity across lineages; (ii) tree 124 

length calculated as the sum of all branch lengths; and (iii) tree stemminess (Fiala and Sokal 125 

1985). In addition, we calculated for each gene the mean of the statistical support across 126 

branches, using the Shimodaira-Hasegawa-like approximate likelihood-ratio test (aLRT; 127 

described in Anisimova and Gascuel 2006). 128 
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We assessed whether the four branch statistics could explain two different measures of 129 

the accuracy of tree topology estimates. The first measure was the topological distance from the 130 

species tree as estimated using a multispecies coalescent analysis in ASTRAL-III (Zhang et al. 131 

2018) of the complete set of genes for the corresponding study. This evaluates the concordance 132 

between the phylogenetic signal in each gene tree and the underlying species history. The second 133 

measure of accuracy was the mean topological distance between the gene tree and all other gene 134 

trees from the corresponding data set. This evaluates the concordance of the signal in each gene 135 

tree with the remainder of the phylogenetic signals in the genome. All topological distances were 136 

calculated using the Robinson-Foulds topological distance (Robinson and Foulds 1981; Penny 137 

and Hendy 1985). 138 

We used multiple linear regression to test whether the two measures of topological 139 

accuracy are explained by the four branch statistics. For each of the two response variables 140 

(topological distance of the gene tree to the species tree and mean topological distance to other 141 

gene trees), we first tested a model that included the complete data set of the genes from across 142 

the 34 studies (N = 36,075). We included the four branch statistics as explanatory variables in the 143 

regression models. 144 

Since we aimed to identify the correlates of phylogenetic signal within each study, we 145 

attempted to account for the differences across studies in their results and their sample size. We 146 

included a random factor in each regression model that indicated the source study of each gene, 147 

this way accounting for the differences in patterns that might occur among studies. In this large 148 

model, we corrected tree length for the number of taxa by dividing it by the number of branches 149 

in the study (leading to the mean of branch lengths) to make the values fall on a similar scale 150 

across studies. We also explored the model when weighting each gene by the number of taxa in 151 
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its source study, such that studies with a greater number of genes have a greater contribution to 152 

the model. 153 

To focus further on the results within studies, we performed a second set of regression 154 

models where each study was examined independently. For each study, we tested whether our 155 

two response variables were explained by our four branch statistics. Therefore, this second set of 156 

analyses included two regression tests for each of the 34 studies that we examined. Tree length 157 

was left uncorrected for the number of branches in the regression models for individual studies. 158 

 159 

RESULTS 160 

The regression analyses that included the 34 complete data sets showed that some of our 161 

explanatory variables had a significant association with both measures of topological accuracy 162 

(topological distance to the species tree and topological distance to other gene trees; Fig. 1). 163 

Specifically, we found that topological accuracy has a positive association with the CoV in root-164 

to-tip distances, and a negative association with mean aLRT branch support (Fig. 1). Mean aLRT 165 

branch support had the strongest association with both topological distance to the species tree 166 

and to other gene trees. Strikingly, we find limited evidence for an association between 167 

topological accuracy and tree length or stemminess. Results were comparable across regression 168 

models in which samples (genes) were weighted by number of branches or by number of taxa in 169 

respective studies (Supplementary Fig. S1). 170 

The regression models that explored individual data sets supported the results from our 171 

larger regression models. Only a small minority of data sets showed an effect opposite to those 172 

observed for the CoV in root-to-tip distances and branch support. Meanwhile, there was 173 

substantial variation in terms of the association between topological accuracy and tree length or 174 
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stemminess. As expected, the results of individual regression analyses showed greater t-statistics 175 

(smaller P-values) for data sets with large numbers of genes than for data sets with few genes. 176 

The t-statistics were comparable among regression models with each of the two measures of 177 

topological accuracy (Supplementary Fig. S2). 178 

 179 

Figure 1. Summary t-statistic for multiple regression tests of the association between five 180 

explanatory variables describing branch lengths and each of two response variables: (a) 181 

topological distance between gene trees and the inferred species tree; and (b) mean distance from 182 

each gene tree to all other gene trees. The legend lists the source studies in ascending order of 183 

number of genes in the data set (see Table 1 for details). 184 

 185 

DISCUSSION 186 

Our analyses of a collection of phylogenomic data sets have shown that low variation in 187 

root-to-tip distances and strong branch support in gene trees have a strong association with 188 

phylogenetic accuracy. Strikingly, tree length is a poor predictor of the accuracy of topological 189 

inference across gene trees. This is surprising because tree length is proportional to the overall 190 
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substitution rate in a gene (Yang 1998), and is a prominent form of variation in the phylogenetic 191 

information across gene trees (Duchêne et al. 2020). These results are consistent with recent 192 

work that emphasized the importance of heterogeneity in the data rather than the overall 193 

substitution rate as an indicator of phylogenetic accuracy (Su and Townsend 2015; Dornburg et 194 

al. 2019). 195 

Phylogenomic analysis can potentially be improved by focusing analyses and 196 

interpretation of results according to loci with particular patterns of rate variation across lineages. 197 

A formal method of identifying genes with constant rates across lineages is to compare a model 198 

of rate constancy versus one allowing rate variation (Felsenstein 1981). However, not all forms 199 

of rate variation across lineages are problematic for phylogenetics. One approach that might 200 

benefit phylogenomic studies is to identify the loci that have extreme patterns of rate variation 201 

among lineages and exclude them from analyses. Loci can then be retained for analysis when 202 

they contain patterns of rate variation across lineages that are mild and recurrent across multiple 203 

regions in the genome. Methods of describing the diversity of patterns of rate variation can be 204 

useful for this purpose (Duchêne et al. 2014). 205 

Some of the extreme forms of variation in root-to-tip distances that lead to poor 206 

phylogenetic accuracy might be unrelated to variation in evolutionary rates across lineages. For 207 

example, sequence evolution might be heterogeneous across the tree, with variation in base 208 

composition or in transition probabilities among nucleotides (e.g., Dávalos & Perkins 2008; 209 

Foster et al. 2009; Martijn et al. 2018). Therefore, methods of assessing model adequacy are 210 

likely to be useful complementary diagnostics for improving the accuracy of topological 211 

inferences (Brown and ElDabaje 2009; Doyle et al. 2015; Höhna et al. 2017; Duchêne et al. 212 

2018b, 2018c). 213 
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Variation in root-to-tip distances might also be an artefact of data preparation, rather than 214 

model performance. If model performance was a primary driver of phylogenetic accuracy, then 215 

we expect poor accuracy to be strongly associated with low stemminess (Revell et al. 2005). One 216 

wide-ranging solution to errors in data preparation is to identify and remove any taxa that have a 217 

highly variable position in a each given gene tree, also known as “rogue taxa” (Aberer et al. 218 

2013) or which sit on extremely long terminal branches (Mai and Mirarab 2018). Similarly, 219 

phylogenomic studies of the relationships at a specific branch of the tree can benefit from 220 

identifying genes with a highly decisive signal (Fong et al. 2012) or those with the signal of a 221 

long branch separating the taxa in question (Chen et al. 2015). Given that multiple factors can 222 

affect branch-length estimates, using a mixture of methods that identify possibly misleading 223 

genes as well as lineages is likely to be effective for data filtering in phylogenomics. 224 

We found that branch support strongly explains our measures of topological accuracy. 225 

Previous work has shown that gene trees with high bootstrap branch supports are associated with 226 

greater nodal support values in species-tree inferences (Blom et al. 2016). The branch-support 227 

metric used in our analyses, SH-aLRT support (Anisimova and Gascuel 2006), reflects the 228 

consistency in the signal of a given branch across the sites in the data set. High values indicate 229 

that there is a concordant signal across a large number of the informative sites. Low values can 230 

occur in genes that have few informative sites, have high degrees of rate heterogeneity across 231 

sites, or that are affected by saturation or intragenic recombination. Therefore, mean branch 232 

support is likely to provide another useful diagnostic of phylogenetic accuracy across genes. 233 

However, the relative performance of different branch-support metrics in indicating phylogenetic 234 

accuracy is yet to be explored (e.g., Lemoine et al. 2018; Minh et al. 2018). 235 
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The results of our study offer a basis for developing a framework for phylogenomics that 236 

prioritizes the inclusion of genes with a signal of limited variation in root-to-tip distances and a 237 

signal of topology that is highly concordant across sites. Our results suggest that the overall 238 

substitution rate is of limited importance as long as the evolutionary process has been 239 

homogeneous across lineages from the root of the process to the present. Potential avenues for 240 

future research include exploring the accuracy in the signal of particular types of deviation from 241 

a constant evolutionary rate across lineages, exploring the importance of model adequacy when 242 

estimating branch lengths, or comparing the performance of various metrics of branch support 243 

for predicting phylogenetic accuracy. Further examination of the correlates of reliable 244 

phylogenetic signal will be useful for selecting genes for phylogenomic analyses. 245 

 246 
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Table 1. Phylogenomic data sets for which the association between phylogenetic signal and 457 

branch characteristics was tested. The treatment of data sets was similar to that in the original 458 

studies. Some of the published alignments were excluded because of numerical problems in 459 

phylogenetics software, excessive missing data, or file-format difficulties (such as those caused 460 

by unusual characters). 461 

 462 

Taxon 
Number 

of genes 

Number of 

taxa per gene 

Data type/ 

genomic region 
Source 

Stinging wasps (Aculeata) 807 140–183 UCE Branstetter et al. 2017 

Laurasiatherian mammals (Laurasiatheria) 10,258 8–23 Intron Chen et al. 2017 (a) 

Laurasiatherian mammals (Laurasiatheria) 3637 5–23 Intron Chen et al. 2017 (b) 

Amniote vertebrates (Amniota) 1145 10 UCE Crawford et al. 2012 

Marsupial mammals (Marsupialia) 1494 38–45 Exon Duchêne et al. 2018a 

Butterflies (Papilionoidea) 350 144–205 Exon Espeland et al. 2018 

Ray-finned fishes (Actinopterygii) 489 5–27 UCE Faircloth et al. 2013 

North American tarantulas (Aphonopelma) 581 63–83 Anchor Hamilton et al. 2016 (a) 

Spiders (Araneae) 326 22–34 Anchor Hamilton et al. 2016 (b) 

North American mygalomorph spiders 

(Euctenizidae) 
403 18–25 Anchor Hamilton et al. 2016 (c) 

Ray-finned fishes (Actinopterygii) 1101 105–298 Exon Hughes et al. 2018 

Cichlid fishes (Cichlidae) 533 57–149 Anchor Irisarri et al. 2018 

Birds (Aves) 8293 42–52 Exon Jarvis et al. 2014 (a) 

Birds (Aves) 8287 42–52 Exon Jarvis et al. 2014 (b) 

Birds (Aves) 2515 39–52 Intron Jarvis et al. 2014 (c) 

Gobioid fishes (Actinopterygii: Gobioidei) 570 43 Exon Kuang et al. 2018 

Iguanas (Phrynosomatidae) 580 4–11 UCE Leaché et al. 2015 

Flowering plants (Angiospermae) 370 29–35 Anchor Léveillé-Bourret et al. 2018 

Mosses (Bryophyta) 105 68–146 Exon Liu et al. 2019 

Birds (Neoaves) 1539 17–33 UCE McCormack et al. 2013 

Songbirds (Passeri) 515 106 UCE Moyle et al. 2016 

Acorn ants (Temnothorax) 2091 44–50 UCE Prebus 2017 

Birds (Aves) 259 164–200 Anchor Prum et al. 2015 
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Snakes (Storeria) 322 70–90 Anchor Pyron et al. 2016 

Gymnosperms (Gymnospermae) 1308 38 Exon Ran et al. 2018 (a) 

Gymnosperms (Gymnospermae) 1308 38 Exon Ran et al. 2018 (b) 

Gymnosperms (Gymnospermae) 1308 38 Exon Ran et al. 2018 (c) 

Harvestmen spiders (Ischiropsalidoidea) 672 5 Exon Richart et al. 2016 (a) 

Harvestmen spiders (Ischiropsalidoidea) 653 5 Exon Richart et al. 2016 (b) 

Harvestmen spiders (Ischiropsalidoidea) 672 5 Exon Richart et al. 2016 (c) 

Squamate reptiles (Squamata) 4175 18–34 UCE Streicher and Wiens 2017 

Squamate reptiles (Squamata) 44 98–167 Exon Wiens et al. 2012 

Decapod crustaceans (Decapoda) 105 57–94 Exon Wolfe et al. 2019 

Squamate reptiles (Squamata) 52 98–2378 Anchor Zheng and Wiens 2016 

  463 
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Supplementary Figure S1. Summary t-statistic for multiple regression tests of the association 464 

between five explanatory variables describing branch lengths and each of two response variables: 465 

(a, c) topological distance between gene trees and the inferred species tree; and (b, d) mean 466 

distance from each gene tree to all other gene trees. Rows of panels indicate the results of 467 

analyses where regression samples (genes) were weighted by the number of branches (a, b) and 468 

number of taxa (c, d) in respective studies. The legend lists the studies in ascending order of 469 

number of genes in the data set (see Table 1 for details). 470 

 471 

 472 

 473 
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Supplementary Figure S2. Relationship between results of multiple regression models in which the response variable was the 474 

distance to the estimated species tree (y-axis) and the mean distance to other gene trees (x-axis). Panels (a-e) show the association for 475 

each of the five explanatory regression terms included. The black point indicates the results of the regression model that included the 476 

complete data set with the source study of each genes included as a random factor. Studies in the legend are shown in ascending order 477 

of number of genes included. 478 
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