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Abstract: 

Cardiac myosin binding protein C (cMyBP-C) is a phosphorylation-dependent 

force regulator and plays an important role in controlling myosin and actin dynamic 

interaction. Point-mutations of cMyBP-C that interfere with cMyBP-C threonine/serine 

phosphorylation resulted in hypertrophic cardiomyopathy and cardiac failure. However, it 

remains largely unknown how cMyBP-C tyrosine phosphorylation is regulated during 

cardiac hypertrophy and heart failure. Integrins are receptors of extracellular matrix and 

are the sensors of cardiac mechanical stretch. Focal adhesion kinase (FAK) plays an 

essential role in integrin-initiated signal transduction and regulates multiple cellular 

functions in various types of cells including cardiomyocytes. To identify the regulatory 

mechanism of cMyBP-C tyrosine phosphorylation during cardiac hypertrophy, we 

examined the effect of FAK on phosphorylation of cMyBP-C. Immunoprecipitation 

analysis showed that FAK and cMyBP-C are associated within the intact mouse heart. 

Results from our mutagenesis experiments demonstrated that the FAK kinase domain 

was required for FAK to associate with cMyBP-C. Our data also documented that the 

FAK Y397 site is required for FAK and cMyBP-C association. Importantly, 

overexpression dominant active Src Y527F with FAK significantly enhanced cMyBP-C 

phosphorylation. Interestingly, overexpression of cMyBP-C inhibited FAK 

phosphorylation. Taken together, cMyBP-C is one of effectors of Src/FAK complex in 

cardiomyocyte. 

 
Key words: Myosin binding protein c (cMyBP-C), focal adhesion kinase (FAK), 
cardiomyopathy, tyrosine phosphorylation 
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Introduction 

Cardiac contraction and relaxation rely on actin and myosin cross-bridge cycling, 

and deregulated cross-bridge cycling impairs cardiac pump functions (1, 2). Cardiac 

myosin binding protein C3 (cMyBP-C) is a myosin-associated protein and plays an 

important role in regulating cardiac contraction and relaxation through affecting kinetic 

interactions between myosin and actin (3). Dephosphorylated cMyBP-C prefer binds to 

myosin and inhibits the interaction between myosin and actin (4-7). Consistently, the 

overall phosphorylation levels of cMyBP-C in the heart are decreased in heart failure and 

cardiomyopathy patients (8-10). In mammalian cells, phosphorylation usually occurs on 

serine, threonine and tyrosine residues. The importance of serine/threonine 

phosphorylation of cMyBP-C has been well documented and more than five 

serine/threonine phosphorylation sites have been identified (11). Recently, newly 

available information indicates that tyrosine phosphorylation of cMyBP-C may also be 

involved in cardiomyopathy formation. Mass spectrometry (MS) analysis documented 

that Tyr79 of cMyBP-C can be phosphorylated (12). Moreover, the Tyr237Ser mutant 

was reported in hypertrophic cardiomyopathy patients (13). Unlike the important effect of 

serine/ threonine phosphorylation of cMyBP-C on cardiac function, it remains unclear the 

physiological functions of cMyBP-C tyrosine phosphorylation during cardiomyopathy 

formation. 

 

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and is critical 

mediator in integrin-initiated signal transduction (14, 15). FAK contains a centrally 

located catalytic tyrosine kinase domain and large non-catalytic N- and C-terminal 
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domains (14, 16, 17). Once FAK get activated, the FAK FERM domain, which is located 

at the N-terminus of FAK, moves away from the kinase domain and induces FAK to 

switch from an inactive state to an active state (18-20). Tyr397 is the binding site of Src 

SH2 domain and numerous FAK functions rely on FAK and Src to form a complex (14). 

In addition, FAK has three proline-rich domains that are important for FAK binding to 

endophalin A2 and other effector proteins (21).  

 

FAK regulates multiple cellular functions in various types of cells including 

cardiomyocytes (16, 17). FAK is expressed in both neonatal and adult cardiomyocytes 

and plays an essential role in regulating embryonic heart development and heart 

hypertrophy (22-24). FAK is distributed in the multiple subcellular structures of the 

cardiomyocyte, including the costamere, Z disk and sarcomere (A band) (17). A 

substantial fraction of FAK is associated with myosin in the sarcomeres under the non-

stimulated condition (17). In response to mechanical stress, FAK relocates to the Z-disks 

and costameres (25). Pulsatile stretch induces rapid FAK activation and FAK 

phosphorylation is paralleled to the extent and duration of mechanical stimulation, 

indicating that FAK is involved in mechanical stretch-initiated signal transduction in the 

cardiomyocytes (26, 27). Once activated, FAK binds to Src through the phosphorylated 

Tyr397. The FAK/Src complex results in the phosphorylation of Tyr576 and Tyr577 that 

locate in the FAK kinase domain. Moreover, Src can phosphorylate FAK C-terminal 

Tyr861 and Tyr925 and create binding sites for other proteins containing SH2 domains. It 

was also documented that a sustained pressure overload on in vitro rat heart induced 

tyrosine phosphorylation of FAK, as well as enhanced association of FAK with Src and 
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Grb2 (28). We and others have reported that FAK is involved in cardiac hypertrophy 

formation in response to pressure overload (22, 29, 30). cMyBP-C is an important 

regulator for myosin and actin cross-bridge cycling and the effect of FAK on cMyBP-C 

phosphorylation remains enigmatic. In this manuscript, we examined the effect of 

regulatory mechanisms of FAK on cMyBP-C phosphorylation in cultured cells and 

pressure overloaded mouse heart.  

 

Results 

Mechanical stress increased cMyBP-C tyrosine phosphorylation. 

To determine the effect of pressure overload on cMyBP-C tyrosine 

phosphorylation, we performed transvers aorta constriction (TAC) or sham surgery on 3-

month-old 129/SvJ wild type mice. After 1 hour of TAC surgery, the proximal aorta 

pressure gradient of the ligation site increased approximately tenfold, compared to the 

distal ligated aorta (Fig. 1A). Four weeks later, the heart and body weight ratio in the 

TAC group increased twofold, compared to the sham group (Fig. 1B). To detect the 

phosphorylation status of cMyBP-C in intact sarcomeres, we isolated myofibers from 

TAC and sham mice hearts 1 hour later following the surgery. After running an SDS-

PAGE, we blotted the membrane with PY100 antibodies that recognize the 

phosphorylated tyrosine residues. The membrane was then re-probed with cMyBP-C 

antibodies as a loading control. Our data showed that a pressure overload in the heart 

significantly increased the level of cMyBP-C tyrosine phosphorylation (around 40%) 

(Fig. 1C), indicating that cMyBP-C tyrosine phosphorylation may be involved in cardiac 

hypertrophy in response to pressure overload.  
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FAK and cMyBP-C are associated in the intact heart 

It is well documented that integrin-mediated signal transduction plays an essential 

role in pressure overload-induced cardiac hypertrophy (31, 32). FAK is one of the most 

important tyrosine kinases in integrin-initiated signal transduction, so it is possible that 

TAC induced cMyBP-C phosphorylation is mediated by FAK. To investigate the 

potential regulatory mechanisms of cMyBP-C phosphorylation by FAK, we first 

examined the interaction between FAK and cMyBP-C in the mouse heart. Tissue lysates 

were prepared from 3-month-old adult mouse cardiac ventricles and then precipitated 

with FAK antibodies. In parallel, we incubated the tissue lysates with the same amount of 

control IgG. The Western blot results using cMyBP-C antibody showed that cMyBP-C 

was associated with FAK, and the normal IgG barely precipitated cMyBP-C (Fig. 2A).  

 

To avoid the possibility that the association between FAK and cMyBP-C is 

through other sarcomere proteins, we overexpressed Myc-tagged cMyBP-C with/without 

human influenza hemagglutinin (HA)-tagged FAK in Ad 293 cells. The Western blot 

results showed that the overexpressed cMyBP-C can be detected by the Myc antibody 

(Fig. 2B, left upper panel), and FAK antibodies recognized the overexpressed FAK and 

could not detect the endogenous human FAK in Ad 293 cells (Fig. 2B, left lower panel). 

An immunoprecipitation experiment presented that cMyBP-C was associated with FAK, 

but not with the pKH3 vector alone (Fig. 2B, right panel). In line with this result, a 

reciprocal immunoprecipitation experiment showed that FAK was found in anti-Myc 

immunoprecipitates (Fig. 2C, line 4), but could not be detected in the precipitates by the 
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control normal IgG (Fig. 2C, line 1). Taken together, these results demonstrated that FAK 

and cMyBP-C are associated in the heart and that this association is not mediated by 

other sarcomere proteins.  

 

FAK kinase domain is required for FAK and cMyBP-C interaction 

FAK is a non-receptor tyrosine kinase with a central kinase domain flanked by 

large N- and C-terminal domains (Fig. 3A). To define the cMyBP-C binding domains 

within FAK, Ad 293 cells were cotransfected with Myc-tagged cMyBP-C with the full-

length HA-tagged FAK, HA-FAK N-terminal domain (1-400), HA-FAK-kinase domain 

(401-664), HA-FAK C-terminal domain (676-1052), and HA-FAK with N-terminus 

deletion (Δ 1-125). Immunoprecipitations were performed with anti-HA antibodies and 

were followed by western blotting with anti-cMyBP-C antibodies. Consistent with our 

previous result (Fig. 2B), cMyBP-C was coprecipitated with the full-length FAK. FAK 

N-terminus did not associate with cMyBP-C, but the FAK kinase domain was strongly 

associated with cMyBP-C. Interestingly, we found that the association between FAK 

mutant (Δ 1-125) and cMyBP-C was increased as compared to the full-length FAK. 

Similar expression levels of cMyBP-C were verified by blotting of whole cell lysates 

with anti-cMyBP-C antibodies (Fig. 3B, bottom panel). All these data indicate that the 

FAK kinase domain is the major binding site for FAK and cMyBP-C association. 

 

As an important signal transduction regulator, FAK binds to different downstream 

effectors and then regulates various cellular functions. To investigate the potential 

cMyBP-C binding sites in FAK, Ad 293 cells were cotransfected with cMyBP-C 
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containing different FAK point mutations. Whole cell lysates were precipitated with HA 

antibodies and followed by western blotting with cMyBP-C antibodies. Our results 

showed that FAK Tyr397 and kinase activity were required for the associations between 

cMyBP-C and FAK. However, the FAK Pro878/881Ala mutant and the FAK 

Pro715/718Ala mutant did not affect the association between FAK and cMyBP-C (Fig. 

3C).   

 

cMyBP-C association with FAK through multiple domains 

To determine the regions of cMyBP-C necessary for association with FAK, we 

created a series of cMyBP-C truncation mutations as shown in Fig. 4A. The Myc tagged 

cMyBP-C mutants and the full-length of FAK were cotransfected into Ad 293 cells. 

Three days later, whole cell lysates were precipitated with Myc antibodies and then 

blotted with FAK antibodies. Our results showed that the full-length cMyBP-C was 

associated with FAK and that the association of cMyBP-C fragment 4 (F4) with FAK 

was significantly increased. In addition, we detected that cMyBP-C F5 and F1 fragments 

were also associated with FAK, indicating that cMyBP-C could associate with FAK 

through multiple domains (Fig. 4B).  

 

FAK-mediated Src phosphorylation on cMyBP-C 

It was reported that Src and FAK can form a complex and then phosphorylate 

their downstream effector proteins. To investigate the potential physiological significance 

of association between FAK and cMyBP-C, we examined the effect of Src, FAK and Src 

plus FAK on cMyBP-C tyrosine phosphorylation. Ad 293 cells were cotransfected 
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cMyBP-C with FAK, V-Src, Src Tyr537Phe, Src plus FAK, and Src Tyr527Phe and 

FAK. cMyBP-C and FAK expression was confirmed by western blotting using Myc and 

FAK antibodies, respectively. PY 100 blotting showed that neither v-Src and FAK alone 

nor v-Src plus FAK could phosphorylate cMyBP-C. The Src Tyr527Phe mutant increased 

a 150 kD protein phosphorylation. Interestingly, FAK plus Src Tyr527Phe significantly 

enhanced a 150 kD protein phosphorylation, indicating that FAK and dominant active Src 

can phosphorylate cMyBP-C (Fig. 5A). To further confirm these results, we performed 

immunoprecipitation experiments. FAK, v-Src, Src Tyr527Phe with FAK were 

cotransfected with cMyBP-C into Ad 293 cells. Whole cell lysates were precipitated with 

Myc antibodies. Western blotting with Myc antibodies showed that the same amount 

cMyBP-C were precipitated. PY100 blotting showed that the FAK plus Src Tyr527Phe 

mutant resulted in cMyBP-C phosphorylation (Fig. 5B). Taken together, FAK and 

dominant active Src formed a complex to induce cMyBP-C phosphorylation. 

 
 
FAK kinase activity is required for cMyBP-C phosphorylation 

Previous data showed that FAK and Src Tyr527Phe forming a complex and 

inducing cMyBP-C phosphorylation. In addition, FAK kinase activity is required for 

FAK interacting with cMyBP-C. To determine the importance of FAK kinase activity for 

cMyBP-C phosphorylation, we overexpressed cMyBP-C, Src Tyr527Phe with wild type 

FAK or FAK kinase dead mutant. In line with previous data, overexpression of wild type 

FAK or FAK kinase dead mutant alone cannot phosphorylate cMyBP-C. Src Tyr527Phe 

can weakly phosphorylate cMyBP-C. Overexpression of FAK kinase dead protein and 

Src Tyr527Phe induced cMyBP-C phosphorylation. Moreover, the phosphorylation level 
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of cMyBP-C was significantly increased when wild type FAK and Src Tyr527Phe were 

coexpressed with cMyBP-C (Fig. 6A).  

Because the FAK kinase domain is required for the association between cMyBP-

C and FAK, we next examined the effect of cMyBP-C on FAK activity. FAK or the 

pKH3 vector alone was cotransfected with cMyBP-C and followed by western blot using 

PY100 antibodies. We found that overexpression of cMyBP-C, instead of the pKH3 

vector alone, decreased a 120 kD fragments phosphorylation, indicating that the 

overexpression of cMyBP-C inhibited FAK phosphorylation (Fig. 6B).  

 

FAK and Src phosphorylated cMyBP-C in vitro 

To further determine the role of FAK and Src on cMyBP-C phosphorylation, we 

overexpressed FAK, Src and FAK plus Src in Ad 293 cells. Immunoprecipitation 

experiments were then performed using anti-HA antibodies. The purified cMyBP-C was 

incubated with FAK, Src or the FAK plus Src complex for two hours and then separated 

by SDS-PAGE. Western blotting results showed that both FAK and Src can 

phosphorylate cMyBP-C, but the FAK and Src complex did not further enhance cMyBP-

C phosphorylation in vitro (Fig. 7). 

 

Discussion 

Sarcomere is the contraction unit of cardiomyocyte and its contraction and 

relaxation functions depend on the dynamic interactions between myosin and actin, 

which is regulated by cMyBP-C (33). Previous studies have documented that protein 

kinase A (PKA)-mediated cMyBP-C serine phosphorylation is essential for sarcomere 
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contraction and relaxation (34). However, the regulatory mechanisms of cMyBP-C 

tyrosine phosphorylation in response to mechanical stretch in the heart remain unclear. In 

the current manuscript, we have demonstrated that pressure overload enhances cMyBP-C 

tyrosine phosphorylation in the mice hearts. In addition, we found that the Src/FAK 

complex phosphorylates cMyBP-C and that the FAK kinase domain is needed for FAK 

and cMyBP-C association. Moreover, FAK kinase activity is required for the association 

between FAK and cMyBP-C. We also found that cMyBP-C has multiple domains that 

bind to FAK and the association between FAK and cMyBP-C inhibited FAK 

phosphorylation. 

 

Integrin-FAK mediated signal transduction plays an important role in cardiac 

development and cardiac hypertrophy (22, 23). Previously, we have reported that the 

inactivation of FAK in cardiomyocytes enhanced TAC-induced cardiac hypertrophy (22). 

FAK Tyr397 locates at the junction of The FAK N-terminus and the kinase domain and is 

the binding site for Src and PI3K, etc. (16). Our results showed that the FAK Tyr397Phe 

mutant disrupted the association between FAK and cMyBP-C. It is possible that cMyBP-

C competes with Src and directly binds to FAK Tyr397. This competition may interfere 

with the association between FAK and Src and decrease FAK phosphorylation. In line 

with this result, we found that overexpression of cMyBP-C inhibits FAK phosphorylation. 

Another possibility is that cMyBP-C does not bind to FAK Y397 directly but can only 

bind to the active FAK kinase domain. In the inactivated stage, the FAK kinase domain 

was covered by FAK N-terminus. The FAK Tyr397Phe mutant causes FAK to lose its 

interaction with Src, which resulted in its inability to be fully phosphorylated and expose 
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to the centrally located FAK kinase domain. In this case, cMyBP-C cannot access the 

FAK kinase domain, which then inhibits FAK and cMyBP-C association. 

 

The cMyBP-C-F4 fragment strongly associates with FAK and its association is 

even stronger than that of full-length cMyBP-C, suggesting that the C0-C1 fragment 

inhibits cMyBP-C form association with FAK. We also noted that the association 

between C5-C10 is much weaker than that of the M-C10 fragment, indicating that M-C4 

is required for FAK and cMyBP-C association. Intriguingly, we found C0-C4 fragments 

do not associate with FAK. A possible explanation is that the C0-C1 fragment inhibits the 

association between FAK and cMyBP-C. 

 

In response to shear stretch stimulation, FAK relocates to the costermere and Z-

disks in cardiomyocyte (35). The Franchini group reported that Myosin binds to the FAK 

N-terminus and inhibits FAK phosphorylation (36). In another word, the association of 

Myosin and FAK inhibits FAK activity. Our data shows that cMyBP-C binds to the FAK 

kinase domain and the FAK/Src complex can then phosphorylate cMyBP-C. Based on 

this available information, we speculate that pressure overload stimulates FAK to move 

to the costamere and to form a complex with Src. The Src/FAK complex causes FAK N-

terminus move away from its kinase domain. Subsequently, the exposed kinase domain 

binds to cMyBP-C and stimulates cMyBP-C phosphorylation. The phosphorylated 

cMyBP-C may change its structure, accelerate myosin and actin interaction and promote 

cardiac contraction and relaxation. After FAK is dephosphorylated by phosphatases or 

inhibited by cMyBP-C directly, FAK disassociates from cMyBP-C and then binds to 
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myosin. The interaction between myosin and FAK enhances FAK N-terminus to interact 

with its kinase domain and then inhibits FAK phosphorylation.  

 

 In conclusion, we have demonstrated that FAK can associate with cMyBP-C and 

that this association is required for the Src/FAK complex to phosphorylate cMyBP-C. 
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Legend. 

Fig.1. Pressure overload induced cMyBP-C tyrosine phosphorylation in the heart. 

(A). Measurement of aortic pressure before and 1 hour later after transverse aortic 

constriction (TAC) or sham surgery. (B). The heart weight to body weight ratio was 

determined 4 weeks later after TAC or sham surgery. (C). The hearts from TAC and 

sham mice were harvested and the myofibers were then isolated. The myofibers separated 

by SDS-PAGE and blotted with Py20 antibodies.  

 

Fig.2. Association of FAK and cMyBP-C. (A). The whole tissue lysates were prepared 

from 3-month-old wild-type heart. The tissue lysates were incubated with either anti-

FAK antibodies or control normal mouse Ig G, as indicated. The precipitates were 

analyzed by Western blotting with anti-cMyBP-C. (B). Ad 293 cells were co-transfected 

with Adtrack-Myc-cMyBP-C with/without pKH3-HA-FAK. Whole cell lysates were 

blotted with anti-Myc and anti-FAK antibodies, as indicated. Ad 293 whole cell lysates 

were precipated with HA antibodies and analyzed with anti-Myc or anti-FAK antibodies. 

(C). Ad 293 cell lysates were precipated with anti-Myc antibodies and blotted with anti-

FAK and anti-Myc antibodies, as indicated. 

 

Fig.3. FAK kinase domain and Y397 site are required for the interaction between 

FAK and cMyBP-C. (A). Schematic diagram of FAK and its fragments used in the 

association assay in the panel B and C. (B). Ad 293 were transfected with pAdtrack-Myc-

cMyBP-C with full length FAK and different FAK fragments as indicated. Cell lysates 

were precipitated with anti-HA antibodies and were analyzed by blotting with either 
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cMyBP-C or anti-HA antibodies. Aliqous whole cell lysates were analyzed with anti-

cMyBP-C antibodies. (D). Ad 293 cells were transfected with pAdtrack-Myc-cMyBP-C 

with wild type FAK or different FAK point mutations. Cell lysates were precipated with 

anti-HA antibodies and blotted with either cMyBP-C or FAK antibodies. Aliquots whole 

cell lysates were blotted with anti-cMyBP-C or FAK antibodies to verify cMyBP-C and 

FAK expression levels. 

 

Fig. 4. Analysis of cMyBP-C association with FAK. (A). Schematic diagram of 

cMyBP-C and its fragments used in the association analysis in the panel B. (B). Ad 293 

cells were transfected pKH3-HA-FAK with full length cMyBP-C or different cMyBP-C 

fragments.  Immunoprecipatation experiments were performed with anti-Myc antibodies 

and analyzed with either FAK or Myc antibodies, as indicated. Aliquots whole cell 

lysates was blotted with anti-HA and Myc antibodies. 

 

Fig.5. Tyrosine phosphorylation of cMyBP-C by FAK and Src complex. (A). Ad 293 

cells were co-transfected with pAdtract-Myc-cMyBP-C with/without pKH3-HA-FAK 

and pCDNA3-Src or Src 527F mutant. Whole cell lystates were analyzed by blotting anti-

PY 100, anti-Myc and anti-FAK antibodies. (B). Immunoprecipatation experiments were 

performed by using anti-Myc antibodies and analyzed by blotting with anti-PY100 or 

anti-Myc antibodies, respectively. 

 

Fig. 6. FAK kinase activity is required for cMyBP-C phosphorylation. (A). Ad 293 

cells were co-transfected with pAdtrack-Myc-cMyBP-C, pcDNA3-Src-Y525F and 
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pKH3-HA-FAK or FAK kinase dead mutant. Whole cell lysates were 

immunoprecipatated with anti-Myc antibodies and blotted with anti-PY 100, anti-Myc 

and anti-FAK antibodies, respectively. (B). Ad 293 cells were co-transfected pKH3-HA-

FAK with or without pAdtract-Myc-cMyBP-C. Cell lysates were precipated with anti-

HA antibodies and blotted with PY 100, FAK and cMyBP-C antibodies, as indicated. 

 

Fig. 7. cMyBP-C phosphorylation by FAK and Src. Ad 293 cells were transfected with 

pKH3-HA-FAK, pKH3-v-Src, or pKH3-HA-FAK with pKH3-HA-v-Src. FAK, Src or 

FAK + Src were precipitated with anti-HA antibodies and incubated with recombinant 

cMyBP-C. cMyBP-C phosphorylation was then analyzed by blotting with anti-PY 100 

antibodies. The membrane was reprobed with cMyBP-C antibodies to serve as a loading 

control. 
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Material and Methods 

The Transverse aorta constriction (TAC) surgery 

 Transverse aorta constriction (TAC) surgery was performed on 3-month-old wild-

type 129/SvJ mice. The mice were anesthetized with 2 % isoflurane with pure oxygen. 

Bacitracin Ophthalmic Ointment was applied to the eyes and Burprenorphine (0.05-0.1 

ug/g) was subcutaneous injected 30 min prior to surgery. A 27-gauge needle was 

tightened to the aortic arch between the brachiocephalic trunk and left common carotid 

artery using 6–0 silk suture (CP Medical Portland, OR, USA). Sham-surgery mice 

underwent an identical procedure except for the aortic ligation. Mice were housed in a 

pathogen-free facility and all the procedures were approved by the Institutional Animal 

Care and Use Committee of Texas A&M Health Science Center. 

 

Echocardiography 

 Echocardiographic analysis was performed before and after TAC surgery using a 

VisualSonics Vevo 2100 system (FUJIFILM VisualSonics Inc) to evaluate the pressure 

gradient of aorta. Mice were anesthetized with 0.5% to 2.5% isoflurane with controlled 

echo-table temperature at 37°C and real-time monitored ECG. Two-dimensional long and 

short axis imaging, blood flow Doppler, tissue Doppler, and two-dimensional guided M-

mode measurements were obtained using transducer with a frequency of 550 M. The 

transverse aorta was also visualized with 2-dimensional and color flow imaging. The 

aortic flow velocity was measured by pulsed wave (PW) Doppler to assess the presence 

of artery stenosis by TAC through a transducer with a frequency of 250 M. Digital 

images were analyzed off-line by Vevo2100 software. The pressure gradients were 
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calculated by the Vevo2100 software using the modified Bernoulli equation (pressure 

gradient = 4* velocity 2). For each study, average value was made from at least three 

different measurements. 

 

Immunoprecipitation and Western blotting 

 Immunoprecipitation and Western blotting experiments were performed as 

described previously (37, 38). Ad 293 cells were cultured in 6-well plates with DMEM 

containing 10% fetal bovine serum. Plasmids were transfected into the cells with 

Lipofectamine 2000 following the manufacture’s instruction. Subconfluent cells or 

mouse hearts were lysed with modified RIPA buffer (50 mM Tris–HCl, pH 7.5, 150 mM 

NaCl, 1% NP-40, 1% sodium deoxycholate, 1 mM sodium vanadate, 10 mM sodium 

pyrophosphate, 10 mM NaF, 1% Triton X-100, 0.5% SDS, 0.1% EDTA, 10 μg/ml 

leupepetin, 10 μg/ml aprotinin and 1 mM PMSF). Immunoprecipitation was carried out 

by incubating lysates with various antibodies and protein A beads at 4 °C for overnight. 

The beads were boiled with loading buffer and resolved by SDS–PAGE. 

Immunoprecipitation and Western blotting were performed using the following 

antibodies, rabbit polyclonal FAK antibody (Cell Signaling), HA tag antibody (HA-7, 

Sigma-Aldrich), Myc tag antibody (A7, Abcam; 4A6 Millipore).  

 

Generation of plasmids with different cMyBP-C fragments. 

 Myc-tagged cMyBP-C full length and truncated fragments were generated by 

PCR using the following primers: gag gat cca atg ccg gag cca ggg aag aaa cc and gtg aat 

tca ctg agg aac tcg cac ctc cag (cMyBP-C full-length); gag gat cca atg ccg gag cca ggg 
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aag aaa cc and gtg aat tca gac agt gag gtt gaa gtt aca gc (cMyBP-C-F1); gag gat cca atg 

ccg gag cca ggg aag aaa cc and gtg aat tca gtc aat ctt gac ctc cat gaa gtg (cMyBP-C-F2); 

gag gat cca atg ccg gag cca ggg aag aaa cc and gtg aat tca tgg gac atc gat gac ctt gac tg 

(cMyBP-C-F3); gag gat cct atg cat gag gcc att ggt tct gga gac and gtg aat tca ctg agg aac 

tcg cac ctc cag (cMyBP-C-F4); gag gat cca atg ttt gtg cct agg cag gaa cct ccc and gtg aat 

tca ctg agg aac tcg cac ctc cag (cMyBP-C-F5). PCR products were digested with BamH I 

and EcoR I and then inserted into pCDNA3-Myc vectors. 

 

Myofibril and cytosolic fraction Preparation 

 Hearts were homogenized using a motor-driven homogenizer in 2 ml of ice-cold 

K60 buffer (60 mM KCL, 20 mM MOPS at pH7.4 and 2 mM MgCl2) with protease 

inhibitor (Sigma P8340, 1:100 dilution), 10 uM phosphatase inhibitor (Sigma) and 1mM 

EDTA. The homogenate was then centrifuged at 1000g for 5 minutes at 4°C. After 

incubation the supernatant with 1% Triton-X 100 for 30 minutes on ice, the whole tissue 

lysates were centrifuged again at 1000g for 10 minutes at 4°C. The supernatant was 

transferred to a clean Eppendorf tube and kept as cytosolic fraction. The pellet was 

washed twice with K60 buffer containing protease inhibitor and re-suspended in K60 

with 1ug/ul of BSA. The concentration of protein was evaluated with Piece® BCA 

Protein Assay Kit. 

 

Statistical analysis 

 Data are presented as mean ± standard deviation. Means were compared by 

analysis of variance between groups (ANOVA). P≤0.05 was considered statistically 
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significant. 
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