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ABSTRACT

Expertise enables humans to achieve outstanding performance on domain-specific tasks, and pro-
gramming is no exception. Many have shown that expert programmers exhibit remarkable differences
from novices in behavioral performance, knowledge structure, and selective attention. However, the
underlying differences in the brain are still unclear. We here address this issue by associating the
cortical representation of source code with individual programming expertise using a data-driven de-
coding approach. This approach enabled us to identify seven brain regions, widely distributed in the
frontal, parietal, and temporal cortices, that have a tight relationship with programming expertise. In
these brain regions, functional categories of source code could be decoded from brain activity and the
decoding accuracies were significantly correlated with individual behavioral performances on source-
code categorization. Our results suggest that programming expertise is built up on fine-tuned cortical
representations specialized for the domain of programming.

1. Introduction
Programming expertise is one of the most notable ca-

pabilities in the current computerized world. Since human
software developers keep playing a central role in every soft-
ware project and directly impact its success, this relatively
new type of expertise is attracting increasing attention from
modern industries (Li et al., 2015; Baltes and Diehl, 2018)
and educations (Heintz et al., 2016; Papavlasopoulou et al.,
2018). Moreover, huge productivity variations were repeat-
edly found even between programmerswith the same level of
experience (Boehm and Papaccio, 1988; DeMarco and Lis-
ter, 2013). Previous studies showed the psychological char-
acteristics of expert programmers in their behaviors (Vessey,
1985; Koenemann and Robertson, 1991), knowledge struc-
tures (Fix et al., 1993; VonMayrhauser and Vans, 1995), and
eye movements (Uwano et al., 2006; Busjahn et al., 2015).
Although these studies clearly illustrate the behavioral speci-
ficity of expert programmers, it remains unclear what neural
bases differentiate expert programmers from novices.

Recent studies have investigated the brain activity of pro-
grammers using fMRI to examine their cognitive mecha-
nisms. Siegmund et al. contrasted brain activity during pro-
gram output estimations against syntax error searches and
showed that the processes of program output estimations ac-
tivated left-lateralized brain regions (Siegmund et al., 2014,
2017). Several studies have tried to investigate neural cor-
relates of subject-wise programming expertise but failed to
find a systematic trend (Peitek et al., 2018a). Although
an exploratory study argued the correlation between activ-
ity pattern discriminability and students’ GPA score (Floyd
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et al., 2017), the assumed relationship of GPA scores to pro-
gramming expertise was ambiguous and not empirically val-
idated. Further, the main limitation of these prior studies is
the use of a single homogeneous subject group that only cov-
ered a small range of programming expertise. Recruitment
of more diverse subjects in terms of their programming ex-
pertise may enable us to elucidate the potential differences
of brain functions related to the expertise (Bilalić, 2017).

Here we aim to identify the neural bases of programming
expertise that contribute outstanding performances of expert
programmers and provide a clue to describe how the brain
accommodates such behavioral superiority in programming.
To do this, we defined two fundamental factors in our experi-
ment: An objective indicator of programming expertise and
a laboratory task that efficiently exhibits experts’ superior
performances under the general constraints of fMRI experi-
ments. For the first factor, we adopted programmers’ ratings
in competitive programming contests (AtCoder), which are
objectively determined by the relative positions of their ac-
tual performances among thousands of programmers (Wasik
et al., 2018). We recruited top- and middle-rated program-
mers as well as novice controls to cover a wide range of pro-
gramming expertise in our fMRI experiment. For the second
factor, we developed the program categorization task and
confirmed that behavioral performances of this task were
significantly correlated with the programming expertise in-
dicator. This confirmation allows us to expect the tight asso-
ciation between individual programming expertise and the
brain activity patterns recorded by fMRI while subjects per-
formed this laboratory task.

To examine the brain activity patterns underlying expert
programmers’ behavioral superiority, we employ a decod-
ing framework that learns the relationship between multi-
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voxel activity patterns in the brain and functional categories
of source code. Our hypothesis is that higher programming
expertise relates to specific multi-voxel pattern representa-
tions, potentially influenced by their domain-specific knowl-
edge and training experiences. This framework is motivated
by prior studies that contrasted multi-voxel activity patterns
of experts against novices and demonstrated that domain-
specific expertise generally associates with representational
changes in the brain (Bilalić et al., 2016; de Borst et al., 2016;
Martens et al., 2018; Gomez et al., 2019). In the present
study we adopt whole-brain searchlight analysis (Kriegesko-
rte et al., 2006) to explore the potential loci of programming
expertise in a data-driven manner.

Here we demonstrate that functional categories of pro-
gram source code can be decoded from programmers’ brain
activity and decoding accuracies in seven distinct brain re-
gions are significantly correlated with individual behavioral
performances that reflect programming expertise. Further-
more, we show that decoding accuracies of subordinate-
level categories on two brain regions are significantly corre-
lated with individual behavioral performance, even though
such discriminations are not explicitly required by the tasks.
These results suggest that expert programmers’ outstanding
performances depend on fine-tuned cortical representations
of source code and such cortical representation refinements
might be related to the acquisition of advanced-level pro-
gramming expertise.

2. Materials and methods
2.1. Subjects

Thirty healthy subjects (two females, aged between 20
and 24 years) participated in the experiment; see Table.1 for
the detailed demographic information. Ten subjects were
top 20% rankers (Expert) and another ten were 21-50%
rankers (Middle) in AtCoder (https://atcoder.jp/), based on
the ranking at July 1 2017. Ten control subjects (Novice)
with four years or less programming experience and no ex-
perience on competitive programming were also included.
All were right-handed (assessed by the Edinburgh Handed-
ness Inventory (Oldfield, 1971), laterality quotient = 83.6 ±
24.0, ranged between +5.9 and +100) and understood ba-
sic Java grammars with at least half of year experience on
Java programming. The averaged AtCoder rates (1,967 in
Expert and 894 inMiddle) were equivalent to the top 6.5%
and 34.1% positions among 7,671 registered players, respec-
tively. Seven additional subjects were scanned but not in-
cluded in the analysis because one showed neurological ab-
normality in MRI images, three retired the experiment with-
out full completion, three showed strongly-biased behavioral
responses judged when the behavioral performance of one
or more choices did not reach chance-level in the training
experiments, signaling the strong response bias sticking to a
specific choice. This study was approved by the Ethics Com-
mittees of NICT and NAIST and subjects gave written in-
formed consent for participation. The sample size was cho-
sen to match previous fMRI studies on human expertise with

similar behavioral protocols (Amalric and Dehaene, 2016;
Bilalić et al., 2016; de Borst et al., 2016).

2.2. Stimuli
For this study 72 code snippets written in Java were

collected from an open codeset provided by AIZU ON-
LINE JUDGE (http://judge.u-aizu.ac.jp/onlinejudge/); an
online judge system where lots of programming problems
are listed and everyone can submit their own source code
to answer those online. We selected four functional cat-
egories (category) and eleven subordinate concrete algo-
rithms (subcategory) based on two popular textbooks about
computer algorithms (Cormen et al., 2009; Sedgewick and
Wayne, 2011); see Fig.1a and Supplementary Table 1 and 2
for the detailed descriptions. We first searched in the open
codeset for Java code snippets implementing one of the se-
lected algorithms and found 1251 candidates. The reasons
why we focused on Java in this study were because the lan-
guage has been one of the most famous programming lan-
guages and prior fMRI studies on programmers also used
Java code snippets as experimental stimuli (Siegmund et al.,
2014, 2017; Peitek et al., 2018a). To meet the screen size
constraint in the MRI scanner, we excluded code snippets
with lines of code (LOC) more than 30 and characters per
line (CPL) more than 120. From all remaining snippets, we
created a set of 72 code snippets with minimum deviations of
LOC and CPL to minimize visual variation as experimental
stimuli; the mean and standard deviation of LOC and CPL
were 26.4 ± 2.4 and 59.3 ± 17.1, respectively. In the code-
set, 18 snippets each belonged to one of the category classes
and six snippets each belonged to one of the subcategory
classes except for “linear search” class with twelve snippets
(see Supplementary Table 3 for statics of the codeset). The
indentation styles of all code snippets were normalized by
replacing a tab-space with two white-spaces and all user-
defined functions were renamed to neutral like “function1”
because some of them indicated their algorithms explicitly
(see Supplementary Figure 1 for example snippets used in
the experiment). We verified all code snippets had no syn-
tax error and run correctly without run-time error.

2.3. Experimental design
The fMRI experiment consisted of six separate runs (9

min 52 sec for each run). Each run contained 36 trials of the
program categorization task (Fig.1b) plus one dummy trial
to avoid undesirable effects of MRI signal instability. We
used 72 code snippets as stimuli and each snippet was pre-
sented three times through the whole experiment (216 trials
in total), but the same snippet appeared only once in a run.
We employed PsychoPy (Peirce, 2007) (version 1.85.1) to
display the code snippets in white text and gray background
without any syntax highlighting to minimize visual varia-
tions. In each trial of program categorization tasks, a Java
code snippet was displayed for ten seconds after a fixation-
cross presentation for two seconds. Subjects then responded
via pressing buttons placed under the right hand to indicate
which category class was most plausible for the code snip-
pet and all response data were automatically collected for
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Table 1
Demographic information of recruited subjects. Numerics from 4th (Age) to last columns denote ’MEAN ± SD’. Abbreviations:
PE, programming experience; JE, Java experience; CPE, competitive programming experience [Year]. Significant differences were
observed between PE of Expert - Novice, Middle - Novice; CPE of Expert - Middle (two-sample t-test, p < 0.05 FDR-corrected).

N Sex (M/F) Age AtCoder rate PE JE CPE

Expert 10 10 / 0 22.6 ± 1.1 1969 ± 467 6.9 ± 2.8 2.8 ± 2.4 4.1 ± 2.6
Middle 10 9 / 1 22.5 ± 0.8 894 ± 175 4.8 ± 1.7 1.1 ± 0.8 1.3 ± 0.8
Novice 10 9 / 1 21.7 ± 1.2 NA 2.8 ± 0.6 1.4 ± 1.0 NA

the calculation of individual behavioral performance. To
clarify classification criteria, a brief explanation about each
category class was provided before the experiment started
(see Supplementary Table 1). The presentation order of the
code snippets was randomized under balancing the number
of exemplars for each category class across runs. The corre-
sponding buttons for each answer choice were also random-
ized across trials to avoid linking a specific answer choice
with a specific finger movement. Subjects were allowed to
take a break between runs and to quit the fMRI experiment
at any time.

To mitigate potential noises caused by task unfamiliar-
ity, every subject conducted a training experiment within ten
days before the fMRI experiment. The training experiment
consisted of three separate runs with the same settings as
the fMRI experiment. A different set of 72 Java code snip-
pets implementing the same algorithms was used as stim-
uli; each snippet was presented one or two times but the
same snippet appeared only once in a run. In addition, all
subjects took a post-MRI experiment within ten days after
the fMRI experiments for assessment of individual ability
to subcategory categorizations. Before the post-MRI ex-
periments started, we revealed the existence of subcategory
and assessed whether the subjects recognized subcategory
classes during the fMRI experiment using a questionnaire.
The post-MRI experiment consisted of two separate runs us-
ing the same codeset as the fMRI experiment. Subjects were
provided brief descriptions about each subcategory class
(see Supplementary Table 2) and classified the given code
snippet from two or three choices of subcategory classes ac-
cording to its superordinate category, e.g. ’bubble sort’, ’in-
sertion sort’, ’selection sort’ were displayed when the snip-
pet in ’sort’ category was presented. The training and post-
MRI experiments were performed outside of the MRI scan-
ner. For all experiments, we calculated behavioral perfor-
mance as a ratio of correct-answer-trials in all-trials; unan-
swered trials were regarded as ‘incorrect’ for this calcu-
lation. Chance-level behavioral performance was 25% in
the training and fMRI experiments and 37.25% in the post-
MRI experiment adjusted for imbalanced numbers of answer
choices.

2.4. MRI data acquisition
MRI data were collected using 3-Tesla Siemens MAG-

NETOMPrisma scanner with a 64-channel head coil located
at CiNet. T2⋆-weighted multiband gradient echo-EPI se-
quences were performed to acquire functional images cov-

ering the entire brain (repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, flip angle = 75◦, field of view (FOV) =
192 × 192 mm, slice thickness = 2 mm, slice gap = 0 mm,
voxel size = 2 × 2 × 2.01 mm, multi-band factor = 3). A
T1-weighted magnetization-prepared rapid acquisition with
gradient-echo sequence was also performed to acquire fine-
structural images of the entire head (TR = 2530 ms, TE =
3.26 ms, flip angle = 9◦, FOV = 256 × 256 mm, slice thick-
ness = 1 mm, slice gap = 0 mm, voxel size = 1×1×1mm).

2.5. MRI data preprocessing
We used the Statistical Parametric Mapping toolbox

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) for preprocess-
ing. The first eight scans in dummy trials for each run
were discarded to avoid MRI signal instability. The func-
tional scans were aligned to the first volume in the fourth
run to remove movement artifacts. They were then slice-
time corrected and co-registered to the whole-head T1 struc-
tural image. Both anatomical and functional images were
spatially normalized into the standard Montreal Neurolog-
ical Institute 152-brain average template space and resam-
pled to a voxel size of 2 × 2 × 2 mm. MRI signals at each
voxel were high-pass–filteredwith a cutoff period of 128 sec-
onds to remove low-frequency drifts. A thick gray matter
mask was obtained from the normalized anatomical images
of all subjects to select the voxels within neuronal tissue us-
ing the SPM Masking Toolbox (Ridgway et al., 2009). For
each subject independently, we then fitted a general linear
model (GLM) to estimate voxel-level parameters (�) linking
recorded MRI signals and conditions of source code presen-
tations in each trial. The fixation and response phases in each
trial were not explicitly modeled. The model also included
motion realignment parameters to regress-out signal varia-
tions due to head motion. Finally, 216 beta estimate maps
(36 trials × 6 runs) per subject were yielded and used as in-
put for the following multivariate pattern analysis.

2.6. Multi-voxel pattern analysis
We used whole-brain searchlight analysis (Kriegeskorte

et al., 2006) to examine where significant decoding accura-
cies exist using the Decoding Toolbox (Hebart et al., 2015)
(version 3.99) and LIBSVM (Chang and Lin, 2011) (version
3.17). A four-voxel-radius sphered searchlight, covering 251
voxels at once, was systematically shifted throughout the
brain and decoding accuracy was quantified on each search-
light location. A linear-kernel SVM classifier was trained
and evaluated using a leave-one-run-out cross-validation

Y. Ikutani et al.: Preprint submitted to Elsevier Page 3 of 12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.01.28.923953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923953
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert programmers have fine-tuned cortical representations of source code

procedure, which iteratively treated data in a single run for
test and others for training. In each fold, training data was
first scaled to zero-mean and unit variance by z-transform
and test data was scaled using the estimated scaling parame-
ters. We then applied outlier reduction using [-3, +3] as cut-
off values and all scaled signals larger than the upper cut-off
or smaller than the lower cut-off were set to the closest value
of these limits. The SVM classifier was trained with three
cost parameter candidates [0.1, 1, 10] and the best param-
eter was chosen by grid search in nested cross-validations.
We here adopted a relatively small set of parameter candi-
dates due to the constraint of the high computational load
of searchlight analysis. Finally, the trained classifier pre-
dicted category or subcategory of seen source code from
the leave-out test data and decoding accuracy was calculated
as a ratio of correct-classifications out of all-classifications.
Note that corrected misclassification cost weights were used
in subcategory decoding to compensate for the imbalanced
number of exemplars across subcategory classes.

The training and evaluation procedures were performed
independently for each subject and a whole-brain decoding
accuracy map was obtained per subject. We then conducted
second-level analyses to examine the significance of decod-
ing accuracies and correlations between individual decoding
and behavioral performances. For this purpose, the decod-
ing accuracy maps were spatially smoothed using a Gaus-
sian kernel of 6 mm full-width at half maximum (FWHM)
and submitted to random effects analysis as implemented in
SPM12. The analysis tested the significance of group-level
decoding accuracy and Pearson’s correlation coefficient be-
tween individual decoding accuracies and behavioral per-
formances. A relatively strict statistical threshold of voxel-
level p < 0.05 FWE-corrected was used for decoding accu-
racy tests and a standard threshold of voxel-level p < 0.001
uncorrected and cluster-level p < 0.05 FWE-corrected was
used for correlation tests. The chance-level accuracy (25%
in category decoding and 9.72% in subcategory decoding;
adjusted for imbalanced numbers of exemplar) and zero cor-
relation were adopted as null hypotheses.

2.7. Data and code availability
The experimental data and code used in the present

study are available from our repository: https://github.com/
Yoshiharu-Ikutani/DecodingCodeFromTheBrain.

3. Results
3.1. Behavioral data

We evaluated the relationship between the programming
expertise indicator and behavioral performance on the pro-
gram categorization task. A significant correlation was ob-
served between AtCoder rate (M = 954.3, SD = 864.6) and
behavioral performance in the fMRI experiments (M= 76.0,
SD = 13.5 [%]), r = 0.593, p = 0.0059, n = 20 (Fig.2a). The
correlation was kept if we included behavioral performances
of non-rate-holders (i.e. novices) as zero-rated subjects; r
= 0.722, p = 0.000007, n = 30. We additionally found a

positive correlation between AtCoder rate and behavioral
performance on subcategory categorization in the post-MRI
experiments (M = 65.9, SD = 17.0 [%]), r = 0.688, p =
0.0008, n = 20 (Fig.2b). The significant correlation was also
kept if we included non-rate-holder subjects; r = 0.735, p =
0.000004, n = 30. This result was consistent with the self-
reporting data indicating that subjects with higher program-
ming expertise recognized more subcategory classes during
the fMRI experiments (Supplementary Table 4). From all
behavioral data, we certainly concluded that behavioral per-
formances on the program categorization task significantly
correlated with programming expertise. The behavioral evi-
dence allowed us to expect that individual programming ex-
pertise was reflected in the brain activity patterns measured
using fMRI while subjects performed this laboratory task.

3.2. Expertise-related mutli-voxel patterns
We first examined where we could decode the functional

categories of source code from programmers’ brain activity.
Fig.3 visualizes the searchlight centers that showed signifi-
cantly high decoding accuracy than chance estimated from
all subject data using a relatively strict whole-brain statistical
threshold (voxel-level p < 0.05 FWE-corrected). The figure
shows that significant decoding accuracies were observed in
the broad areas of bilateral occipital cortices, parietal cor-
tices, posterior and ventral temporal cortices, as well as the
bilateral frontal cortices around inferior frontal gyri. Given
the result, we confirmed that functional categories of source
code were represented in the widely distributed brain areas
and the cortical representations of each category class were
linearly separable by a simple SVM classifier.

To associate the cortical representation of source code
with individual programming expertise, we investigated a
linear correlation between behavioral performances and de-
coding accuracies for each searchlight location. Fig.4a vi-
sualizes the searchlight centers that showed significantly
high correlation coefficients using thresholds of voxel-level
p < 0.001 uncorrected and cluster-level p < 0.05 FWE-
corrected. We observed significant correlations in the areas
of bilateral inferior frontal gyri pars triangularis (IFG Tri),
right superior frontal gyrus (SFG), left inferior parietal lob-
ule (IPL), left middle and inferior temporal gyrus (MTG /
IT); see the slice-width visualization shown as Fig.4b and
Supplementary Table 5 for the list of significant clusters. In
this correlation analysis, the right IFG Tri showed the high-
est peak correlation coefficient (r = 0.79, p < 10−6, Fig.4c).
These results provided evidence that cortical representations
in the distinct brain areas mainly located in frontal, pari-
etal, and temporal cortices were significantly associated with
experts’ outstanding performances on the program catego-
rization task. In contrast, cortical representations in the
bilateral occipital cortices including early visual areas did
not show a significant correlation to individual behavioral
performances, while significant decoding accuracies were
broadly observed in the cortices shown as Fig.3a.

Previous two analyses separately showed where signif-
icant decoding accuracies exist and whether the decoding
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public static void main(String[] args) {
long m = scan.nextLong();

long n = scan.nextLong();
System.out.println(function1(m, n, 100));

}
private static long function1(long m) {

long result = 1;

for (long i = 1; i <= n; i++) {
result *= m;

if (result >= M) {
result = result % M;
result = function1(result, (long) n / i, 100);

i = n - (n % i);
}

}
return result;

}

Sort
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Search
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Math
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Response
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Source code
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tButton press
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Figure 1: Experimental design. (a) Hierarchy of categories used in this study. Category and Subcategory represent abstract
functionality and concrete algorithms, respectively, based on two popular textbooks of programming. Every code snippet used
in this study belonged to one subcategory class and its corresponding category class. (b) Program categorization task. After a
fixation-cross presentation for two seconds, a Java code snippet was displayed for ten seconds in white text without any syntax
highlight. Then, subjects responded the category of given code snippet by pressing a button. (c) Overview of the decoding
framework. MRI data was collected from 30 subjects with different levels of programming expertise while they performed the
program categorization task. Whole-brain searchlight analysis (Kriegeskorte et al., 2006) was employed to explore the potential
loci of programming expertise. For each searchlight location, a linear-kernel SVM classifier (decoder) was trained on multi-voxel
patterns to classify category or subcategory of given Java code snippets.

accuracies significantly correlate with behavioral perfor-
mances. To achieve more validated evidence for the corti-
cal representations associated with programming expertise,
we integrated these two analyses and identified searchlight
centers that had sufficient information to represent func-
tional categories of source code and their decoding accura-
cies significantly correlated with individual behavioral per-

formance. As a result, we found 1,205 searchlight centers
(equal to 0.79%) that survived from both statistical thresh-
olds of decoding accuracy and correlation to behavioral per-
formances; shown as red-colored dots in Fig.5a. The sur-
vived searchlight centers were mainly observed in the bilat-
eral IFG Tri, left IPL, left supramarginal gyrus (SMG), left
MTG/IT, and right middle frontal gyrus (MFG) as shown
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Figure 2: Correlations between behavioral performance and
programming expertise indicator. (a) Scatter plot of behav-
ioral performances of category classifications against the val-
ues of expertise indicator (i.e. AtCoder rate). (b) Scatter
plot of behavioral performances of subcategory classifications
against the values of expertise indicator. Each dot represents
an individual subject. One-sample t-tests were used to check
significance of the correlation coefficients (r) between the ex-
pertise indicator and behavioral performances; *, p < 0.05 and
**, p < 0.005. The solid lines indicate a fitted regression line
estimated from all subject data.

in Fig.5b. The complementary sensitivity analysis (Etzel
et al., 2013) using a five-voxel-radius searchlight showed the
almost same tendency, indicating that the results were not
limited to a specific searchlight radius parameter (see Sup-
plementary Figure 4 and Supplementary Table 6). Since we
have demonstrated that individual behavioral performances
were significantly correlated with the expertise indicator in
competitive programming contests (Fig.2a), this result re-
vealed a tight association between high-level programming
expertise and the improvement of decoding accuracy in these
seven brain regions.

Figure 3: Decoding accuracy for functional category of source
code. (a) Significant searchlight locations estimated from all
subject data (N = 30). Heat colored voxels denote the centers
of searchlights with significant decoding accuracy (voxel-level p
< 0.05, FWE corrected). See Supplementary Figure 2a for the
distribution of voxel-level peak decoding accuracies. The brain
surface visualizations were performed using BrainNet viewer,
version 1.61 (Xia et al., 2013).

3.3. Representations of subcategory information
We next investigated where we could decode the

subcategory of source code from programmers’ brain ac-
tivity to examine finer-level cortical representations. In our
experiment, subjects responded ‘sort’ when he/she has been
presented with the code snippets implementing one of three
different sorting algorithms; i.e. bubble, insertion, and se-
lection sorts (Fig.1a). This cognitive process could be con-
sidered as a generalization process that incorporates differ-
ent but similar algorithms (subcategory) into a more gen-
eral functionality class (category). Additionally, several
psychologists indicated that experts specifically show high
performances in subordinate-level categorizations as well
as basic-level categorizations (Tanaka and Taylor, 1991).
In fact, we have observed that the ability to differenti-
ate subcategory classes significantly correlated to the pro-
gramming expertise indicator in competitive programming
(Fig.2b). This evidence implies that programmers’ brain
activity patterns may automatically respond to the detailed
functional difference of source code. The decoding accu-
racy of subcategory may be correlated with programming
expertise, even though they classified only category classes,
not subcategory, of given code snippets and the existence of
subcategory classes had never been revealed until the end of
fMRI experiment.

We employed searchlight analysis with the same setting
as used in the previous analysis to reveal the spatial distri-
bution of significant subcategory decoding accuracies and
significant correlations to behavioral performances. Fig.6
illustrates the searchlight centers that showed significantly
high subcategory decoding accuracy than chance (9.72%;
corrected for imbalanced exemplars) using a threshold of
voxel-level p < 0.05 FWE-corrected. Linear correlation be-
tween subcategory decoding accuracies and individual be-
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Figure 4: Searchlight-based correlation analysis between be-
havioral performances and decoding accuracies. (a) Locations
of searchlight showing significant correlations. Significance
was determined by a threshold of voxel-level p < 0.001 and
cluster-level p < 0.05, FWE corrected for the whole brain. (b)
Slice-wise visualizations of the significant clusters using bsp-
mview (http://www.bobspunt.com/software/bspmview). (c)
Scatter plots of peak correlations between decoding accuracies
and behavioral performances. Each dot represents an individ-
ual subject data. Correlation coefficients (r) and uncorrected
p values are shown in bottom-right of each plot. See Sup-
plementary Table 5 and Supplementary Figure 3 for all sig-
nificant clusters and peak correlations. Abbreviations: SMG,
Supramarginal gyrus; IPL, Inferior parietal lobule; MTG, Mid-
dle temporal gyrus; IT, Inferior temporal gyrus; SFG, Supe-
rior frontal gyrus; MFG, middle frontal gyrus; IFG Tri, Inferior
frontal gyrus pars triangularis; IFG Orb, Inferior frontal gyrus
pars orbitalis; MCC, medial cingulate cortex.

havioral performances was then assessed using thresholds
of voxel-level p < 0.001 uncorrected and cluster-level p <
0.05 FWE-corrected (Fig.7). As a result, only a cluster on
the left SMG and superior temporal gyrus (STG) showed a
significant correlation; the peak correlation coefficient was
observed in the left STG (r = 0.72, p < 10−5; Fig.7c). Fi-
nally, we integrated the results from decoding and correla-
tion analysis of subcategory and confirmed that 120 search-
light centers (equal to 0.08%) on the left SMG and STG sur-
vived from both statistical thresholds of decoding accuracy
and correlation to behavioral performances; shown as red-
colored dots in Fig.8a. The complementary sensitivity anal-
ysis using a five-voxel-radius searchlight indicated that these
results were consistently observed across the two searchlight
radius parameters (see Supplementary Figure 5 and Supple-
mentary Table 7). These results suggest that cortical repre-
sentations of fine functional categories on the left SMG and
STGmay play an important role in achieving advanced-level
programming expertise, even though the representations are

Figure 5: Identifying searchlight centers that showed both sig-
nificant decoding accuracy and significant correlation to indi-
vidual behavioral performances. (a) Scatter plot of searchlight
results. X-axis shows t-values calculated from all subjects’ de-
coding accuracies on each searchlight locations. Y-axis in-
dicates correlation coefficients between decoding accuracies
and behavioral performances. Red-colored dots denote the
searchlights showing both significant decoding accuracy and
correlation, while blue and black denote those only showed
significant decoding accuracy or correlations. Non-significant
searchlights were colored in gray. The observed distributions of
decoding accuracies and correlations are respectively shown on
top- and right-sides of the figure accompanied with null distri-
butions calculated by randomized simulations. (b) Locations
of searchlight centers that showed both significant decoding
accuracy and significant correlations to individual behavioral
performances.

not explicitly required by the tasks.

4. Discussion
We have shown that functional categories of source code

can be decoded from programmers’ brain activity measured
using fMRI. Decoding accuracies on the bilateral IFG Tri,
left IPL, left SMG, left MTG, left IT, and right MFG were
significantly correlated with individual behavioral perfor-
mances on the program categorization task. Furthermore,
decoding accuracies of subcategory on the left SMG and
STG were also strongly correlated with the behavioral per-
formances while the subordinate-level representations were
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Figure 6: Decoding accuracy for subcategory of source code.
(a) Searchlight locations showing significant subcategory de-
coding accuracy than chance estimated from all subject data
(N = 30). Heat colored voxels denote the centers of search-
lights with significant subcategory decoding accuracy (voxel-
level p < 0.05, FWE corrected). See Supplementary Figure 2b
for the distribution of voxel-level peak subcategory decoding
accuracies.

not directly induced by the performing tasks. Since we
have demonstrated the behavioral performances were cor-
related with the expertise indicator in competitive program-
ming contests, our results revealed a tight association be-
tween advanced-level programming expertise and domain-
specific cortical representations in these brain areas widely
distributed in the frontal, parietal, and temporal cortices.

Previous fMRI studies on programmers have aimed at
characterizing how programming-related activities, such as
program comprehension and bug detection, take place in
the brain (Siegmund et al., 2014, 2017; Floyd et al., 2017;
Castelhano et al., 2019; Peitek et al., 2018a,b). Exception-
ally, an exploratory study reported that BOLD signal dis-
criminability between code and text comprehensions was
negatively correlated with participants’ GPA scores in a uni-
versity (Floyd et al., 2017). However, the relationship be-
tween GPA scores and programming expertise was ambigu-
ous and the observed correlation was relatively small (r =
-0.44, p = 0.016, n = 29). Our aim in the present study
was substantially different: We sought the neural bases of
programming expertise that contribute expert programmers’
outstanding performances. To address the goal, we adopted
an objective indicator of programming expertise and re-
cruited a population of subjects covering wide range of pro-
gramming expertise. It is worth noting that the expertise
indicator and behavioral/neural data obtained in this study
were completely independent from each other. Because our
novel laboratory task well bridged between them, we suc-
ceeded to associate programming expertise with program-
mers’ cortical representations in a reasonable way.

Despite the difference in research aims, a subset of brain
regions specified in this study was similar to those speci-
fied by prior fMRI studies on programmers (Siegmund et al.,
2014, 2017; Peitek et al., 2018a). In particular, this study as-
sociated the left IFG, MTG, IPL, SMG with programming

Figure 7: Searchlight-based correlation analysis between be-
havioral performances and subcategory decoding accuracies.
(a) Locations of searchlight showing significant correlations.
Significance was determined by a threshold of voxel-level p <
0.001 and cluster-level p < 0.05, FWE corrected for the whole
brain. (b) Slice-wise visualizations of the significant clusters.
(c) Scatter plots of peak correlations between decoding accu-
racies and behavioral performances. Each dot represents an
individual subject data. Correlation coefficients (r) and uncor-
rected p values are shown in bottom-right of each plot. Only
one cluster (extent = 501 voxels) had significant correlation
in this analysis and three peak correlations in the cluster were
shown here. Abbreviations: STG, Superior temporal gyrus.

expertise while previous studies related them with program
comprehension processes. This commonality is remarkable
because these results jointly suggest that both program com-
prehension processes and its related expertise may depend
on the same set of brain regions. Providing interpretations
of their potential roles in programming expertise would be
beneficial for orienting future researches. First, the left IFG
Tri and the left posterior MTG are frequently involved in se-
mantic selecting and retrieving tasks (Demonet et al., 1992;
Thompson-Schill et al., 1997; Simmons et al., 2005; Price,
2012). Several studies indicated that these two regions are
sensitive to cognitive demands for directing semantic knowl-
edge retrieval in a goal-oriented way (Rodd et al., 2005; Kuhl
et al., 2007; Whitney et al., 2010). The involvements of the
two regions in our findings may be induced by similar de-
mands specialized for retrieval of program functional cate-
gory and suggest that higher programming expertise is re-
lated to abilities of goal-oriented knowledge retrieval.

Second, many neuroscientists have shown the left IPL
and SMG to be functionally related to visual word reading
(Bookheimer et al., 1995; Philipose et al., 2007; Stoeckel
et al., 2009) and episodic memory retrieval (Wagner et al.,
2005; Vilberg and Rugg, 2008; O’Connor et al., 2010). Both
cognitive functions potentially relate to the program catego-
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Figure 8: Identifying searchlight centers that showed both sig-
nificant subcategory decoding accuracy and significant cor-
relation to individual behavioral performances. (a) Scatter
plot of searchlight results. X-axis shows t-values calculated
from all subjects’ decoding accuracies on each searchlight loca-
tions. Y-axis indicates correlation coefficients between subcat-
egory decoding accuracies and behavioral performances. Red-
colored dots denote the searchlights showing both significant
decoding accuracy and correlation, while blue and black de-
note those only showed significant decoding accuracy or cor-
relations. Non-significant searchlights were colored in gray.
The observed distributions of subcategory decoding accuracies
and correlations are respectively shown on top- and right-sides
of the figure accompanied with null distributions calculated
by randomized simulations. (b) Locations of searchlight cen-
ters that showed both significant subcategory decoding accu-
racy and significant correlations to individual behavioral per-
formances.

rization task used in our experiment. Visual word reading
can be naturally engaged since source code is comprised of
many English-like words and subjects may have actively rec-
ollected previously-acquiredmemories to compensate for in-
sufficient clues because they had only ten seconds to catego-
rize the given code snippet. The involvements of the left
IPL and SMG in programming expertise suggest that ex-
pert programmers might possess different reading strategies
and/or depend more on domain-specific memory retrieval
than novices.

Other novel findings in the present study were potential
involvement of the left IT, rightMFG, and right IFG Tri with

programming expertise. Importantly, these regions were not
specified by previous studies focusing on the relationship be-
tween brain activity and program comprehension processes
(Siegmund et al., 2014, 2017; Floyd et al., 2017; Peitek et al.,
2018a), suggesting that the regions might be more related
to programming expertise than program comprehension pro-
cesses. Because the left IT is well known for the function in
high-level visual processing including word recognition and
categorical object representations (Chelazzi et al., 1993; No-
bre et al., 1994; Kriegeskorte et al., 2008), our results may
suggest that the high-level visual cortex in expert program-
mers could be fine-tuned by their training experience to real-
ize faster program comprehension process. In contrast, the
primary visual area showed significant decoding accuracy
but no correlation to programming expertise. The evidence
suggests that programming expertise could bemainly associ-
ated with high-level visual perception, although the snippets
gave rise to significant activation in primary visual area.

The right MFG and IFG Tri are functionally related
to stimulus-driven attention control (Corbetta et al., 2008;
Japee et al., 2015). The involvement of these two regions
suggests that programmers with high-level programming ex-
pertise may employ different attention strategies than less-
skilled ones. Moreover, additional engagements of right
hemisphere regions in experts are common across expertise
studies. For example, chess experts (Bilalić et al., 2011) and
abacus experts (Tanaka et al., 2002; Hanakawa et al., 2003)
showed additional right hemisphere region involvements
when performing their domain-specific tasks. Several fMRI
studies further suggested that such activation shifts from
left to right hemisphere may be related to experts’ cognitive
strategy changes (Bilalić et al., 2011; Tanaka et al., 2012).
Cognitive strategy changes have been observed repeatedly
in comparisons between expert and novice programmers:
A major characteristic is a transition from bottom-up (or
textual-driven) to top-down (or goal-driven) program com-
prehension, which becomes feasible by experts’ domain-
specific knowledge (Koenemann and Robertson, 1991; Fix
et al., 1993; Von Mayrhauser and Vans, 1995). The involve-
ment of the right MFG and IFG Tri observed in this study
might be related to such cognitive strategy differences be-
tween programmers in the program categorization task.

Our results associated programming expertise with
decoding accuracies of not only category but also
subcategory, even though the subordinate-level cate-
gorizations were not explicitly required by the performing
task. We observed that individual behavioral performances
were significantly correlated with subcategory decoding
accuracies on the left STG and SMG. These two regions
are functionally related to pre-lexical and phonological
processing in natural language comprehension (Demonet
et al., 1992; Moore and Price, 1999; Burton et al., 2001). In-
terestingly, we also found a significant correlation between
behavioral performances and category decoding accuracies
on the temporal regions (left MTG and IT) associated with
more semantical processing (Rodd et al., 2005; Whitney
et al., 2010; Price, 2012). If these functional interpretations

Y. Ikutani et al.: Preprint submitted to Elsevier Page 9 of 12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.01.28.923953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923953
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert programmers have fine-tuned cortical representations of source code

could be adaptable to program comprehension processes,
it would be intuitive that subordinate concrete concepts
(i.e. subcategory) of source code are processed in the left
STG/SMG and more semantically abstract concepts (i.e.
category) are represented in the left MTG/IT. This might
suggest a hypothesis that an expert programmer’s brain
has a hierarchical semantic processing system to obtain
mental representations of source code for multiple levels of
abstraction.

The results obtained via the present study were limited
to a specific type of programming expertise evaluated by the
expertise indicator and laboratory task used in the experi-
ment. We particularly examined the ability to semantically
categorize source code that correlatedwith programming ex-
pertise to win high scores in competitive programming con-
tests. The ability to write efficient SQL programs, for exam-
ple, may be an explicit indicator of another type of program-
ming expertise but this study did not cover. Thus, our results
should not be taken to imply the relationship between the
neural correlates revealed here and other types of program-
ming expertise that could not be examined by this experi-
ment. However, it is also a fact that we cannot investigate
the neural bases of programming expertise without a clear
definition of expertise indicator and laboratory task that well
fit the general constraints of fMRI experiments. To mitigate
the potentially inevitable effects caused by this limitation,
we adopted the objective indicator of programming exper-
tise that directly reflects programmers’ actual performances
and recruited a population of subjects covering a wide range
of programming expertise. This study can be a baseline ex-
ample for future researches to investigate the neural bases of
programming expertise and other related abilities.

Our decoding framework specialized for the functional
category of source code could be extended by the recent
advances of decoding/encoding approaches in combination
with distributed feature vectors (Diedrichsen and Kriegesko-
rte, 2017). Several researchers have demonstrated frame-
works to decode arbitrary objects using a set of computa-
tional visual futures representing categories of target ob-
jects (Horikawa and Kamitani, 2017) and to decode percep-
tual experiences evoked by natural movies using word-based
distributed representations (Nishida and Nishimoto, 2018).
Other studies have also used word-based distributed repre-
sentations to systematically map semantic selectivity across
the cortex (Huth et al., 2016; Pereira et al., 2018). Mean-
while, researchers in the program analysis domain have pro-
posed distributed representations of source code based on
abstract syntax tree (AST) (Alon et al., 2019a; Zhang et al.,
2019). Alon et al., for instance, have presented continuous
distributed vectors representing the functionality of source
code using AST and path-attention neural network (Alon
et al., 2019b). The combination of recent decoding/encoding
approaches and distributed representations of source code
may enable us to build a computational model of program
comprehension that connecting semantic features of source
code to programmers’ perceptual experiences.

5. Conclusion
Our findings reveal a tight association between pro-

gramming expertise and cortical representations of program
source code in a programmer’s brain. We demonstrated
that functional categories of source code can be decoded
from programmer’s brain activity and the decoding accura-
cies on the seven regions in the frontal, parietal, and tem-
poral cortices were significantly correlated with individual
behavioral performances. The results additionally suggest
that cortical representations of fine functional categories
(subcategory) on the left SMG and STG might be associ-
ated with advanced-level programming expertise. Although
research on the neural basis of programming expertise is still
in its infancy, we believe that our study extends the existing
human expertise literature into the domain of programming
by demonstrating that top-level programmers have domain-
specific cortical representations.
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