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Abstract 
An increasing number of gene expression quantitative trait locus (QTL) studies have made 
summary statistics publicly available, which can be used to gain insight into human complex 
traits by downstream analyses such as fine-mapping and colocalisation. However, differences 
between these datasets in their variants tested, allele codings, and in the transcriptional 
features quantified are a barrier to their widespread use. Here, we present the eQTL Catalogue, 
a resource which contains quality controlled, uniformly re-computed QTLs from 19 eQTL 
publications. In addition to gene expression QTLs, we have also identified QTLs at the level of 
exon expression, transcript usage, and promoter, splice junction and 3ʹ end usage. Our 
summary statistics can be downloaded by FTP or accessed via a REST API and are also 
accessible via the Open Targets Genetics Portal. We demonstrate how the eQTL Catalogue 
and GWAS Catalog APIs can be used to perform colocalisation analysis between GWAS and 
QTL results without downloading and reformatting summary statistics. New datasets will 
continuously be added to the eQTL Catalogue, enabling systematic interpretation of human 
GWAS associations across a large number of cell types and tissues. The eQTL Catalogue is 
available at https://www.ebi.ac.uk/eqtl/. 
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Introduction 
Gene expression and splicing QTLs are a powerful tool to link disease-associated genetic 
variants to putative target genes. Despite efforts by large-scale consortia such as GTEx [1] and 
eQTLGen [2] to provide comprehensive eQTL annotations for a large number of human tissues, 
most eQTL datasets are still scattered across individual publications. Multiple databases have 
been developed that collect eQTL summary statistics [3–9]; however, these efforts have relied 
on the heterogeneous set of summary statistics calculated by the original authors.  
 
Relying on publicly available eQTL summary statistics has several limitations. First, many 
downstream use cases such as fine-mapping [10,11] and colocalisation [12,13] require full 
summary statistics from the region of interest, but some studies have only released either eQTL 
lead variants or variants below a certain p-value threshold. Second, studies often test a different 
subset of variants in the cis region of each gene, meaning that variants tested in one study 
might be missing from another study. Third, even though the eQTL effect direction relative to a 
GWAS signal is critical for interpreting disease associations, information about the effect allele 
is often either missing or ambiguous. Finally, even though both splicing [1,14] and other 
transcript-level QTLs [15] contribute to complex traits, these analyses have not been performed 
on many earlier RNA-seq-based eQTL datasets. Where splicing or transcript-level QTL 
summary statistics have been released, these are still difficult to compare between studies due 
to large differences in analysis strategy and the types of transcript-level changes captured by 
different methods [15].  
 
To overcome these limitations, we have reprocessed the raw data from 19 eQTL studies. We 
have applied uniform data analysis and quality control procedures to all of these datasets. In 
addition to gene expression QTLs, we have identified QTLs at the level of exons, transcripts and 
transcriptional events covering alternative promoters, splicing events and transcript 3ʹ ends. This 
allowed us to detect novel QTLs in existing datasets that would have otherwise remained 
hidden. Our full summary statistics are available on the eQTL Catalogue FTP server and via a 
REST API. As an example, we use the eQTL Catalogue and GWAS Catalog APIs to identify a 
transcript usage QTL in stimulated macrophages at the CD40 locus which colocalises with a 
rheumatoid arthritis GWAS signal. Access to individual-level data will enable us to recompute 
QTL summary statistics as improved RNA-seq analysis methods become available. 

Results 

Data analysis workflow 
To uniformly process a large number of eQTL studies, we designed a modular and robust data 
analysis workflow (Figure 1). We first downloaded the raw gene expression and genotype data 
and converted the data to common input formats (VCF for genotypes and fastq for RNA-seq). 
We performed extensive quality control of genotypes (see Methods) and imputed them to the 
1000 Genomes Phase 3 [16] reference panel. For RNA sequencing data, we started with the nf-
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core [17] RNA-seq pipeline written in the Nextflow [18] framework and modified it to support the 
quantification of four different molecular phenotypes: gene expression, exon expression [19], 
transcript usage, and promoter, splicing and 3ʹ end usage events defined by txrevise [15] 
(Supplementary Figure 3). Using the same quantification workflow ensured that molecular 
phenotype identifiers (genes, transcripts, exons and events) were consistent between individual 
studies. Furthermore, we harmonised sample metadata between studies and mapped all 
biological samples (cell types and tissues) to a common set of 24 distinct ontology terms from 
UBERON [20], Cell Ontology [21] and Experimental Factor Ontology [22]. This will allow users 
to easily find if the same cell types or tissues has been profiled in multiple studies (Table 1). The 
normalised molecular phenotype matrices and imputed genotypes were fed into our QTL 
mapping workflow that was also developed using the Nextflow framework. The full association 
summary statistics have been made publicly available via the eQTL Catalogue FTP site as well 
as the REST API. All our data analysis workflows have been released under a permissive 
licence (see Software Availability). 

 
Figure 1. High-level representation of the uniform eQTL mapping process. The txrevise [15] 
events capture alternative promoters, splicing events and transcript 3ʹ ends. Schematic 
illustration of the different quantification methods is provided in Supplementary Figure 3.  

Datasets included in the eQTL Catalogue 
We downloaded raw gene expression and genotype data from 14 RNA-seq and 5 microarray 
studies from various repositories. This included 8,115 RNA-seq samples and 4,631 microarray 
samples from 4,685 unique donors (Table 1), covering 24 cell types or tissues (Table 1) and 13 
stimulated conditions (Supplementary Material 1) (called ‘biological contexts’). Even though 
these samples were profiled in different laboratories using a wide range of RNA-seq protocols 
(Supplementary Tables 2 and 3) and sequencing depth (Supplementary Figure 2), they 
predominantly clustered by cell type or tissue of origin in multidimensional scaling analysis 
(MDS) (Figure 2A). Projecting the genotype data of the donors to 1000 Genomes Phase 3 [16] 
reference panel, we found that although 88% of the donors were of European origin, the 
datasets also included 487 (~10%) donors from African populations and a small number of 
samples from other populations (Table 2, Supplementary Table 1). 
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Table 1. Overview of the cell types and tissues included in the eQTL Catalogue. For each cell 
type or tissue, the table highlights the studies that profiled it as well as the total sample size 
across studies. Cell types and tissues were mapped to common ontology terms (Supplementary 
Material 1). *Some cell types (monocytes, macrophages, CD4+ and CD8+ T cells) were profiled 
in multiple conditions, described in Supplementary Material 1. DLPFC - dorsolateral prefrontal 
cortex, iPSC - induced pluripotent stem cell, LCL - lymphoblastoid cell line. 

Cell type or tissue RNA-seq studies 

RNA-seq 
sample 

size Microarray studies 

Microarray 
sample 

size Total 

monocyte* 

BLUEPRINT [23], 
Quach_2016 [24], 
Schmiedel_2018 [25] 1251 

CEDAR [26], 
Fairfax_2014 [27] 1657 2908 

DLPFC BrainSeq [28], ROSMAP [29] 1055 - 0 1055 

LCL 
GENCORD [30], GEUVADIS 
[31], TwinsUK [32] 1053 - 0 1053 

CD4+ T cell* 
BLUEPRINT [23], 
Schmiedel_2018 [25] 344 

CEDAR [26], 
Kasela_2017 [33] 570 914 

macrophage* 
Alasoo_2018 [34], 
Nedelec_2016 [35] 829 - 0 829 

CD8+ T cell* Schmiedel_2018 [25] 177 
CEDAR [26], 
Kasela_2017 [33] 546 723 

blood 
Lepik_2017 [36], TwinsUK 
[32] 666 - 0 666 

B cell Schmiedel_2018 [25] 91 
CEDAR [26], 
Fairfax_2012 [37] 543 634 

neutrophil BLUEPRINT [23] 196 
CEDAR [26], 
Naranbhai_2015 [38]   373 569 

adipose TwinsUK [32] 381 - 0 381 

skin TwinsUK [32] 370 - 0 370 

iPSC HipSci [39] 322 - 0 322 

fibroblast GENCORD [30] 186 - 0 186 

T cell GENCORD [30] 184 - 0 184 

Th17 cell Schmiedel_2018 [25] 177 - 0 177 

pancreatic islet van_de_Bunt_2015 [40] 117 - 0 117 

sensory neuron Schwartzentruber_2018 [41] 98 - 0 98 

CD16+ monocyte Schmiedel_2018 [25] 90 - 0 90 

NK cell Schmiedel_2018 [25] 90 - 0 90 

Tfh cell Schmiedel_2018 [25] 89 - 0 89 

Th2 cell Schmiedel_2018 [25] 89 - 0 89 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924266
http://creativecommons.org/licenses/by/4.0/


5 

Treg memory Schmiedel_2018 [25] 89 - 0 89 

Treg naive Schmiedel_2018 [25] 89 - 0 89 

Th1 cell Schmiedel_2018 [25] 82 - 0 82 

Total: 8115 - 3689 11804 
 
Our quality control of the gene expression and genotype datasets included removing outlier 
samples from the gene expression datasets, ascertaining the genetic sex of the samples using 
the expression of sex-specific genes, detecting genotype concordance between RNA-seq and 
genotype samples, and detecting cross-contamination between samples within a study using 
both sex-specific gene expression as well as genotype data (see Methods, Supplementary 
Figure 4). We excluded a total of 2,418 samples during the quality control procedure 
(Supplementary Table 3).  

Table 2. Number of unique donors assigned to the four major superpopulations in the 1000 
Genomes Phase 3 reference dataset. Detailed assignment of donors to the four 
superpopulations in each study is presented in Supplementary Table 1. Visual explanation of 
the population assignment is provided in Supplementary Figure 5. Superpopulation codes: EUR 
- European, AFR - African, EAS - East Asian, SAS - South Asian. 

Assigned population Sample Size Percent 

EUR 4138 0.883 

AFR 487 0.104 

EAS 21 0.004 

SAS 5 0.001 

Unassigned 34 0.007 

TOTAL 4685 1 
 
For RNA-seq datasets, we performed QTL mapping for four different molecular phenotypes 
described above (Figure 1, Supplementary Figure 3). The QTL analysis was performed 
separately in each biological context of each study. In general, we found the largest number of 
QTLs at the level of gene expression, but for all molecular phenotypes, the number of significant 
associations scaled approximately linearly with the sample size (Figure 2B, Supplementary 
Material 1). For microarray datasets, we performed the analysis only at the gene level, but found 
the same linear trend (Figure 2B, Supplementary Material 1).    
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Figure 2. Overview of the datasets included in the eQTL Catalogue. (A) Multidimensional 
scaling (MDS) analysis of the RNA-seq samples. To improve clarity, only 6,587 samples from 
the unstimulated conditions passing quality control are included in the plot. Various T cell 
subsets from Table 1 have been grouped together. A similar MDS plot for the microarray 
samples can be found in Supplementary Figure 1. (B) The relationship between the sample size 
of each study and the number of associations detected using each quantification method. The x-
axis represents sample size of a biological context in a study. The y-axis represents number of 
significant associations (FDR < 0.05) found in each biological context. 
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Example use case  
To demonstrate the utility of the eQTL Catalogue and REST API for interpreting disease-
associated genetic variants, we explored the CD40 locus associated with rheumatoid arthritis 
(RA) [42]. We have previously demonstrated that the RA GWAS signal at this locus colocalises 
with a promoter usage QTL for CD40 in macrophages stimulated with interferon-gamma [34]. To 
assess whether this association could be detected in other tissues and cell types, we queried 
the eQTL Catalogue API using the GWAS lead variant from the CD40 RA locus (rs4239702). 
We found a number of molecular phenotypes strongly associated with the lead variant (nominal 
p-value < 10-4) (Figure 3A). In particular, there was a strong association with the total 
expression level of CD40 in four independent monocyte eQTL studies covering both RNA-seq 
and microarrays studies [23,24,26,27] (Figure 3A).  
 
To test if these eQTLs are likely to share the same causal variant with the RA GWAS signal, we 
used colocalisation analysis [12]. We fetched the full association summary statistics from the 
CD40 locus (GRCh38 chr20:45,980,000-46,200,000). This analysis replicated the previously 
reported colocalisation with CD40 promoter usage in stimulated macrophages [15] (Figure 3B); 
however, the same analysis applied to monocyte-specific eQTLs strongly supported a model of 
distinct causal variants underlying the eQTL and GWAS association in all four studies (Figure 
3C). This was consistent with the low linkage disequilibrium (LD) of r2 = 0.13 between the 
monocyte eQTL (rs745307) and RA GWAS lead variants (rs4239702). This highlights the 
importance of having access to full summary statistics from the region. Although the GWAS 
variant was strongly associated with CD40 expression in monocytes, this was likely due to a 
very strong independent eQTL signal nearby (nominal p-value < 10-50 in the Fairfax_2014 
dataset) that was in low LD with the GWAS lead variant. It is possible that the promoter usage 
QTL detected in stimulated macrophages (Figure 3B) is a weak secondary eQTL in the 
monocyte samples, but this would still indicate that CD40 expression in naive monocytes does 
not directly contribute to RA disease risk, because a much stronger eQTL in that context is not 
associated with the disease [43]. The complete RMarkdown document to reproduce this 
analysis is available from GitHub (see Software Availability). 
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Figure 3. Example colocalisation with a transcript/gene QTLs and disease using eQTL 
Catalogue and GWAS Catalog APIs. (A) Strong gene expression and transcript usage QTL 
associations with rheumatoid arthritis (RA) GWAS lead variant (rs4239702) from the CD40 
locus. The significant eQTLs (nominal p-value < 10-4) are from three quantification methods and 
eight distinct cell types or tissues. (B) Colocalisation analysis between RA GWAS and CD40 
transcript usage QTL in macrophages stimulated with interferon-gamma from the Alasoo_2018 
study. The GWAS lead variant is shown in orange and the QTL lead variant is shown in purple. 
(C) Colocalisation analysis between RA GWAS and CD40 eQTL in naive monocytes from two 
RNA-seq (BLUEPRINT, Quach_2016) and two microarray studies (CEDAR, Fairfax_2014). 
PP3, posterior probability of a model with two distinct causal variants; PP4, posterior probability 
of a model with one common causal variant.  
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Comparison with existing databases 
The largest collection of eQTLs is currently hosted by the QTLbase [5] database. Although 
QTLbase contains some splicing QTLs, this is limited to the summary statistics provided by the 
original study authors. Secondly, although QTLbase has harmonized variant identifiers and 
effect sizes across studies, these are not accessible programmatically and the downloadable 
files only contain p-values of nominally significant associations (p < 0.05) without the effect 
sizes. Thus, QTLbase summary statistics are not suitable for fine-mapping and colocalisation 
applications. Both QTLizer [4], PhenoScanner [7] provide programmatic access to their 
summary statistics, but the QTLizer summary statistics have not been harmonized and 
PhenoScanner contains data from only ten studies. Finally, both FUMA [6] and 
ImmuneRegulation [8] provide access to some eQTL summary statistics via their web interface, 
but the full data cannot be downloaded for local computational analyses. 

All eQTL Catalogue summary statistics are available under the Creative Commons Attribution 
4.0 International License, enabling third parties to build their own tools and services on top of 
the released summary statistics and the REST API. To avoid downloading large text files, slices 
of the summary statistics can be accessed using tabix [44] (see Data Availability).  

Discussion 
The eQTL Catalogue provides a resource of uniformly processed human gene-level and 
transcript-level QTL summary statistics, with the aim of supporting biomedical genetic research. 
This resource will be progressively expanded to all accessible human datasets. We are 
currently analysing raw data from GTEx v8 [1], the CommonMind Consortium [45] and the 
FUSION study [46]. We are also setting up data access agreements for additional datasets on 
an ongoing basis.  
 
We have paid particular attention to making the summary statistics as usable as possible. By 
mapping cell types and tissues to common ontology terms, we make it easy to discover which 
studies contain the tissues and cell types of interest for the users. This will also enable 
summary-level meta-analysis [2] across studies containing the same cell types and tissues. We 
have imputed most genotype datasets to the same reference panel and reference genome 
version, ensuring that similar set of genetic variants is present in most studies. Finally, we use a 
consistent set of molecular phenotype identifiers (genes, exons, transcripts, events) across all 
datasets, ensuring that genetic effects can directly be compared across datasets. Our summary 
statistics have already been used to interpret GWAS associations for Alzheirmer’s disease [47]. 
 
We welcome feedback on ways to improve our methods. In the next release planned for June 
2020, we plan to include LeafCutter [48] splice junction usage QTLs as the fifth molecular 
phenotype quantified from RNA-seq data. We are also exploring ways to systematically fine-
map [10,11] the QTL signals to identify multiple independent associations for each gene and 
make the credible sets of causal variants publicly available. This can help to further characterise 
loci with multiple independent signals, such as the CD40 locus described above (Figure 3). 
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Finally, we are exploring approaches to handle related samples and population stratification by 
using either linear mixed models or performing eQTL analysis in each population separately. 
These modifications would not be possible without access to individual-level genotype and 
RNA-seq data. 
 
We are always looking for additional datasets to be included in the eQTL Catalogue. 
Unfortunately, we were unable to obtain access to all of the datasets that we would have liked to 
include in the analysis due to consent limitations or restrictions on sharing individual-level 
genetic data (Supplementary Table 4). These limitations could be overcome in the future by 
federated data analysis approaches, where the eQTL analysis is performed at remote sites 
using our analysis workflows, and only summary statistics are shared with the eQTL Catalogue. 
To this end, we will continue to improve the usability and portability of our data analysis 
workflows and will make them available via community efforts such as the nf-core [17] 
repository. Researchers interested in contributing their datasets to the eQTL Catalogue should 
contact us at eqtlcatalogue@ebi.ac.uk.  

Methods 

Data access and informed consent 
Gene expression and genotype data from two studies (GEUVADIS and CEDAR) were available 
for download without restrictions from ArrayExpress. For all other datasets, we applied for 
access via the relevant Data Access Committees. The database accessions and contact details 
of the individual Data Access Committees can be found on the eQTL Catalogue website 
(http://www.ebi.ac.uk/eqtl/Datasets/). In our applications, we explained the project and our intent 
to publicly share the association summary statistics. Although this was acceptable for the 19 
studies currently included in the eQTL Catalogue, some of our data access requests were 
rejected either because informed consent obtained from the study participants did not allow the 
sharing of genotype data with other researchers or the data were restricted for research into 
specific diseases (Supplementary Table 4). Ethical approval for the project was obtained from 
the Research Ethics Committee of the University of Tartu (approval 287/T-14). 

Genotype data 
Pre-imputation quality control. We aligned the strands of the genotyped variants to 1000 
Genomes Phase 3 reference panel using Genotype Harmonizer [49]. We excluded genetic 
variants with Hardy-Weinberg p-value < 10-6, missingness > 0.05 and minor allele frequency < 
0.01 from further analysis. We also excluded samples with more than 5% of their genotypes 
missing. 
 
Genotype imputation and QC. We imputed the genotypes to the 1000 Genomes Phase 3 
reference panel [16] using a local installation of the Michigan Imputation Server v1.0.4 [50]. 
After imputation, we converted the coordinates of genetic variants from GRCh37 reference 
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genome to GRCh38 using CrossMap v0.2.8 [51]. We used bcftools v1.9.0 to exclude variants 
with minor allele frequency (MAF) < 0.01 and imputation quality score R2 < 0.4 from 
downstream analysis.  
 
Assigning individuals to reference populations. We used PLINK [52] v1.9.0 to perform LD 
pruning of the genetic variants and LDAK [53] to project new samples to the principal 
components of the 1000 Genomes Phase 3 reference panel [16]. To assign each genotyped 
sample to one of four superpopulations, we calculated the Euclidean distance in the principal 
component space from the genotyped individual to all individuals in the reference dataset. 
Distance from a sample to a reference superpopulation cluster is defined as a mean of 
distances from the sample to each reference sample from the superpopulation cluster. We 
explored distances between samples and reference superpopulation cluster using different 
number of PCs and found that using 3 PCs worked best for inferring superpopulation of a 
sample. Then, we assigned each sample to a superpopulation if the distance to the closest 
superpopulation cluster was at least 1.7 times smaller than to the second closest one 
(Supplementary Figure 5). We used this relatively relaxed threshold, because our aim was to 
get an approximate estimate of the number of individuals belonging to each superpopulation. 
Performing a population-specific eQTL analysis would probably require a much more stringent 
assignment of individuals to populations.  

Microarray data 
Data normalisation. All five microarray datasets currently included in the eQTL Catalogue 
(CEDAR, Fairfax_2012, Fairfax_2014, Naranbhai_2015, Kasela_2017) used the same Illumina 
HumanHT-12 v4 gene expression microarray. The database accessions for the raw data can be 
found on the eQTL Catalogue website (http://www.ebi.ac.uk/eqtl/Datasets/). Batch effects, 
where applicable, were adjusted for with the function removeBatchEffect from the limma 
v.3.40.6 R package [54]. The batch adjusted log2 intensity values were quantile normalized 
using the lumiN function from the lumi v.2.36.0 R package [55]. Only the intensities of 30,353 
protein-coding probes were used. The raw intensity values for the five microarray datasets have 
been deposited to Zenodo (doi: https://doi.org/10.5281/zenodo.3565554). 
 
Detecting sample mixups. We used Genotype harmonizer [49] v1.4.20 to convert the imputed 
genotypes into TRITYPER format. We used MixupMapper [56] v1.4.7 to detect sample swaps 
between gene expression and genotype data. We detected 155 sample swaps in the CEDAR 
dataset, most of which affected the neutrophil samples. We also detected one sample swap in 
the Naranbhai_2015 dataset.  

RNA-seq data 
Pre-processing. For each study, we downloaded the raw RNA-seq data from one of the six 
databases (European Genome-phenome Archive (EGA), European Nucleotide Archive (ENA), 
Array Express, Gene Expression Omnibus (GEO), Database of Genotypes and Phenotypes 
(dbGaP), Synapse). If the data were already in fastq format then we proceeded directly to 
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quantification. If the raw data were shared in BAM or CRAM format, we used samtools v1.6 [57] 
to first collate paired-end reads with samtools collate and then used samtools fastq 
command with ‘-F 2816 -c 6’ flags to convert the CRAM or BAM files to fastq. Since samples 
from GEO and dbGaP were stored in SRA format, we used the fastq-dump command with ‘--
split-files --gzip --skip-technical --readids --dumpbase --clip’ flags to convert 
those to fastq. The pre-proccessing scripts are available from the rnaseq quantification pipeline 
GitHub repository (https://github.com/eQTL-Catalogue/rnaseq).   

Quantification. We quantified transcription at four different levels: (1) gene expression, (2) 
exon expression, (3) transcript usage and (4) transcriptional event usage. Quantification was 
performed with a Nextflow-based [18] pipeline that we developed by adding new quantification 
methods to nf-core rnaseq pipeline [17]. Before quantification, we used Trim Galore v0.5.0 to 
remove sequencing adapters from the fastq files. 

For gene expression quantification, we used HISAT2 v2.1.0 [58] to align reads to the GRCh38 
reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file downloaded from 
Ensembl). We counted the number of reads overlapping the genes in the GENCODE V30 [59] 
reference transcriptome annotations with featureCounts v1.6.4 [60]. To quantify exon 
expression, we first created exon annotation file (GFF) using GENCODE V30 reference 
transcriptome annotations and dexseq_prepare_annotation.py script from the DEXSeq [19] 
package. We then used the aligned RNA-seq BAM files from the gene expression quantification 
and featureCounts with flags ‘-p -t exonic_part -s ${direction} -f -O’ to count the 
number of reads overlapping each exon. 

We quantified transcript and event expression with Salmon v0.13.1 [61]. For transcript 
quantification, we used GENCODE V30 (GRCh38.p12) reference transcript sequences (fasta) 
file to build Salmon index. For transcriptional event usage, we downloaded pre-computed 
txrevise [15] alternative promoter, splicing and alternative 3ʹ end annotations corresponding to 
Ensembl version 96 from Zenodo (https://doi.org/10.5281/zenodo.3232932) in GFF format. We 
then used gffread to generate fasta sequences from the event annotations and built Salmon 
indexes for each event set as we did for transcript usage. Finally, we quantified transcript and 
event expression using salmon quant with ‘--seqBias --useVBOpt --gcBias --libType’ 
flags. All expression matrices were merged using csvtk v0.17.0. The pipeline is publicly 
available at https://github.com/eQTL-Catalogue/rnaseq. Our reference transcriptome 
annotations are available from Zenodo (https://doi.org/10.5281/zenodo.3366280).  

Detecting outliers from gene expression data. We performed the quality control measures 
using only gene expression counts matrix. In all downstream analyses, we only included 35,367 
protein coding and non-coding RNA genes belonging to one of the following Ensembl gene 
types: lincRNA, protein_coding, IG_C_gene, IG_D_gene, IG_J_gene, IG_V_gene, TR_C_gene, 
TR_D_gene, TR_J_gene, TR_V_gene, 3prime_overlapping_ncrna, known_ncrna, 
processed_transcript, antisense, sense_intronic, sense_overlapping. For PCA and MDS 
analyses, we first filtered out invalid gene types (23,458) and genes in sex chromosomes 
(1,247), TPM normalised [62] the gene counts, filtered out genes having median normalised 
expression value less than 1 and log2 transformed the matrix. We performed principal 
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component analysis with prcomp R stats package (center = true, scale = true). For 
multidimensional scaling (MDS) analysis, we used the isoMDS method from MASS R package 
with k=2 dimensions. As a distance metric for isoMDS we used  1 - Pearson correlation as 
recommended previously [63]. We plotted these two-dimensional scatter plots to visually identify 
outliers (Supplementary Figure 4A-B).  

Sex-specific gene expression analysis. Previous studies have successfully used the 
expression of XIST and Y chromosome genes to ascertain genetic sex of RNA samples [64]. In 
our analysis, we extracted all protein coding genes from the Y chromosome and XIST gene 
(ENSG00000229807) expression values and TPM normalised them. Then, we calculated mean 
value of expressions of Y chromosome genes. Finally, we plotted log2 scatter plot of XIST gene 
expression (X axis) against the mean expression of Y chromosome genes (Y axis) 
(Supplementary Figure 4C). In addition to detecting samples with incorrectly labeled genetic 
sex, this analysis also allowed us to identify cross-contamination between samples (XIST and Y 
chromosome genes expressed simultanously, Supplementary Figure 4C).  

Concordance between genotype data and RNA-seq samples. We used the Match Bam to 
VCF (MBV) method from QTLTools [65] which directly compares the sample genotypes in VCF 
to an aligned RNA-seq BAM file. MBV is a good method to detect sample swaps, genotypes 
from the same donor and cross-contaminated genotypes in VCF. In some cases, such cross-
contamination was confirmed by the both sex-specific gene expression and MBV analyses 
(Supplementary Figure 4D). 

Normalisation. We filtered out samples which failed the QC step. We normalised the gene and 
exon-level read counts using the conditional quantile normalisation (cqn) R package v1.30.0 
[66]. We downloaded the gene GC content estimates from Ensembl biomaRt and calculated the 
exon-level GC content using bedtools v2.19.0 [67]. We also excluded lowly expressed genes, 
where 95 per cent of the samples within a biological context had TPM normalised expression 
less than 1. To calculate transcript and transcriptional event usage values, we obtained the TPM 
normalised transcript (event) expression estimates from Salmon and divided those by the total 
expression of all transcripts (events) from the same gene (event group). Subsequently, we used 
the inverse normal transformation to standardise the transcript and event usage estimates. 
Normalisation scripts together with containerised software is publicly available at 
https://github.com/eQTL-Catalogue/qtl_norm_qc. 

Metadata harmonisation 
We mapped all RNA-seq and microarray samples to a minimal metadata model. This included 
consistent sample identifiers, information about the cell type or tissue of origin, biological 
context (e.g. stimulation), genetic sex, experiment type (RNA-seq or microarray) and properties 
of the RNA-seq protocol (paired-end vs single-end; stranded vs unstranded; poly(A) selection vs 
total RNA). To ensure that cell type and tissue names were consistent between studies and to 
facilitate easier integration of additional studies, we used Zooma 
(https://www.ebi.ac.uk/spot/zooma/) to map cell types and tissues to controlled vocabulary of 
ontology terms from Uber-anatomy ontology (Uberon) [20], Cell Ontology [21] or Experimental 
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Factor Ontology (EFO) [22]. We opted to use ad-hoc controlled vocabulary to represent 
biological contexts as those often included terms and combinations of terms that were missing 
from ontologies. 

Association testing 
We developed a Nextflow based pipeline which takes normalised phenotype expression matrix, 
genotype VCF file and metadata files and produces association summary statistics for all 
molecular phenotypes. We performed association testing separately in each biological context 
(also known as ‘qtl group’) and used a +/- 1 megabase cis window centered around the start of 
each gene. First, we excluded molecular phenotypes that had less than 5 genetic variants in 
their cis window, as these were likely to reside in regions with poor genotyping coverage. We 
also excluded molecular phenotypes with zero variance across all samples and calculated 
phenotype principal components using prcomp R stats package (center = true, scale = true). We 
calculated genotype principal components using plink2 v1.90b3.35. We used the first six 
genotype and phenotype principal components as covariates in QTL mapping. For association 
testing, we used QTLtools v1.1 [68] nominal and permutation passes in cis. For nominal pass, 
we used the ‘--window 1000000 --nominal 1’ flags to find all associations in 1 Mb cis 
window. For permutation pass, we used ‘--window 1000000 --permute 1000 --grp-best’ 
flags in order to calculate empirical p-values based on 1000 permutations. The ‘--grp-best’ 
option ensured that the permutations were performed across all phenotypes within the same 
‘group’ (e.g. multiple probes per gene in microarray data or multiple transcripts or exons per 
gene in the exon-level and transcript-level analysis) and the empirical p-value was calculated at 
the group level.   

Colocalisation 
We used the GWAS Catalog [69] API (https://www.ebi.ac.uk/gwas/docs/api) to download the 
rheumatoid arthritis [42] GWAS summary statistics (accession GCST002318) from the CD40 
locus (GRCh38 coordinates: chr20:45,980,000-46,200,000). We downloaded the eQTL 
summary statistics from the eQTL Catalogue API and performed colocalisation using the coloc 
R package [12] with default prior probabilities. 

Software availability 
Data analysis pipelines: 

● RNA-seq quantification: https://github.com/eQTL-Catalogue/rnaseq 
● Normalisation and QC: https://github.com/eQTL-Catalogue/qtl_norm_qc 
● Genotype QC: https://github.com/eQTL-Catalogue/genotype_qc 
● Association testing: https://github.com/eQTL-Catalogue/qtlmap 

 
Example use cases: 
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● Colocalisation in R using GWAS Catalog and eQTL Catalogue APIs: 
https://github.com/eQTL-Catalogue/eQTL-Catalogue-
resources/blob/master/scripts/eQTL_API_usecase.Rmd 

● Python example for querying the HDF5 files: https://github.com/eQTL-Catalogue/eQTL-
SumStats/blob/master/querying_hdf5_basics.ipynb 

Data availability 
The full association summary statistics in HDF5 and TSV format can be downloaded from the 
eQTL Catalogue website (https://www.ebi.ac.uk/eqtl/Data_access/). Slices of the TSV files can 
be accessed using tabix. All of the summary statistics are also available via the REST API 
(https://www.ebi.ac.uk/eqtl/api-docs/). Database accessions for the raw gene expression and 
genotype datasets are listed on the eQTL Catalogue website 
(https://www.ebi.ac.uk/eqtl/Datasets/). Our summary statistics have also been integrated to the 
Open Targets Genetic Portal (https://genetics.opentargets.org/) and gene expression matrices 
will be made available via the EMBL-EBI Expression Atlas [70] 
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Supplementary Materials 
 
Supplementary Table 1. Samples assigned to the 1000 Genomes Phase 3 reference 
populations in each study. Note that three studies based on HipSci samples (HipSci, 
Alasoo_2018, Schwartzentruber_2018) and two studies based on Estonian Biobank samples 
(Kasela_2017, Lepik_2017) share a subset of donors by design. Furthermore, Fairfax_2012 and 
Naranbhai_2015 studies have been excluded, because donors in these two studies are subset 
of donors in Fairfax_2014. Thus, the total number of donors (n = 4,917) in this table exceeds the 
number of unique donors (n = 4685) presented in Table 2. Superpopulation codes: EUR - 
European, AFR - African, SAS - South Asian, EAS - East Asian. 

Study 
Sample 

size EUR AFR SAS EAS Unassigned Proportion 

Alasoo_2018 84 84 0 0 0 0 0.017 

BLUEPRINT 197 197 0 0 0 0 0.04 

BrainSeq 479 232 226 1 0 20 0.097 

CEDAR 322 322 0 0 0 0 0.065 

Fairfax_2014 423 421 0 0 0 2 0.086 

GENCORD 196 194 0 0 0 2 0.04 

GEUVADIS 445 358 87 0 0 0 0.091 

HipSci 322 320 0 1 0 1 0.065 

Kasela_2017 295 295 0 0 0 0 0.06 

Lepik_2017 471 471 0 0 0 0 0.096 

Nedelec_2016 168 96 64 0 0 8 0.034 

Quach_2016 200 100 100 0 0 0 0.041 

ROSMAP 576 576 0 0 0 0 0.117 

Schmiedel_2018 91 53 4 3 20 11 0.019 

Schwartzentruber_2018 98 98 0 0 0 0 0.02 

TwinsUK 433 432 0 0 0 1 0.088 

van_de_Bunt_2015 117 117 0 0 0 0 0.024 

Total 4917 4366 481 5 20 45 1 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924266
http://creativecommons.org/licenses/by/4.0/


19 

Supplementary Table 2. Overview of the the transcriptomic samples included in the eQTL 
Catalogue. The samples have been classified according to RNA-seq type (single-end vs paired-
end), strandedness (unstranded vs stranded), read length (50bp, 75bp, 100bp), assay type 
(microarray vs RNA-seq) and genotype data type (imputed vs not imputed).    
 

Group Sample size Number of studies Proportion of studies 

Single-end 3180 4 0.267 

Paired-end 4935 11 0.733 

Unstranded 3831 5 0.333 

Stranded 4284 10 0.667 

100bp 3188 7 0.467 

50bp 3726 4 0.267 

75bp 1201 4 0.267 

microarray 4631 5 0.25 

RNA-seq 8115 15 0.75 

Not imputed 2834 5 0.25 

Imputed 9912 15 0.75 
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Supplementary Table 3. Overview of the studies included in the eQTL Catalogue. *TwinsUK 
and HipSci studies contain related individuals by design. These were excluded in the quality 
control step to enable eQTL analysis with a linear model.  
 

Study 
Dataset 

Type Imputed 
Paired-

end Stranded 
Read 

length 

Pre-QC 
sample 

size 

Post-QC 
sample 

size 

Alasoo_2018 RNA-seq YES YES YES 75bp 336 336 

BLUEPRINT_PE RNA-seq NO YES YES 100bp 221 167 

BLUEPRINT_SE RNA-seq NO NO YES 100bp 387 387 

BrainSeq RNA-seq YES YES YES 100bp 495 479 

GENCORD RNA-seq YES YES NO 50bp 567 560 

GEUVADIS RNA-seq NO YES NO 75bp 462 445 

HipSci RNA-seq YES YES YES 75bp 513 322 

Lepik_2017 RNA-seq NO YES YES 50bp 508 471 

Nedelec_2016 RNA-seq YES NO NO 100bp 503 493 

Quach_2016 RNA-seq YES NO NO 100bp 970 969 

ROSMAP RNA-seq YES YES YES 100bp 581 576 

Schmiedel_2018 RNA-seq YES NO YES 50bp 1544 1331 

Schwartzentruber_2018 RNA-seq YES YES YES 75bp 130 98 

TwinsUK RNA-seq NO YES NO 50bp 2505 1364 

van_de_Bunt_2015 RNA-seq YES YES YES 100bp 118 117 

CEDAR microarray YES NA NA NA 2967 2337 

Fairfax_2012 microarray YES NA NA NA 296 281 

Fairfax_2014 microarray YES NA NA NA 1384 1371 

Kasela_2017 microarray YES NA NA NA 576 549 

Naranbhai_2015 microarray YES NA NA NA 101 93 

 

RNA-seq samples 9840 8115 

Microarray 
samples 5324 4631 

Total samples 15164 12746 
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Supplementary Table 4. List of rejected data access applications. While some of the datasets 
were restricted for research into specific diseases (marked with red), others were rejected due 
to restrictions on sharing individual-level genotype data (marked with yellow). We hope to 
include some of the datasets with genotype data sharing restrictions in a future version of the 
eQTL Catalogue by employing federated analysis approaches which do not require the transfer 
of genotype data. 

Study Cell types or tissues Reason for rejection 

Raj_2014 [71] monocyte, T cell "Use of data is limited to research 
studying genetic variation in human 
immune system function." 

Ye_2018 [72] dendritic cell "Use of data is limited to research 
studying genetic variation in human 
immune system function." 

Gate_Cheng_2018 
[73] 

T cell "Use of data is limited to research 
studying genetic variation in human 
immune system function." 

Battle_2014 [74] blood (n = 922) "Study is not related to depression." 

Gillies_2018 [75] kidney (n = 187) "No consent in place to share individual-
level genotype data." 

Fadista_2014 [76] pancreatic islet (n = 89) “Genotype data cannot be shared.” 

Ishigaki_2017 [77] T cell, monocyte, NK cell, B 
cell (n = 100) 

“Genotype data cannot be shared.” 

Qiu_2018 [78] kidney (n = 151) “No consent was obtained to share 
individual-level genotype data.” 

BIOS [79] Blood (n = 2,116) “Genotype data can only be analysed on 
a centralised cloud service in the 
Netherlands.” 
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Supplementary Figure 1. Multidimensional scaling plot of the 4631 microarray samples that 
passed quality control (QC) from the five microarray studies included in the eQTL Catalogue 
(CEDAR, Fairfax_2012, Fairfax_2014, Kasela_2017, Naranbhai_2015). Similar MDS plots for 
individual studies can be found in the QC reports available from the eQTL Catalogue website 
(http://www.ebi.ac.uk/eqtl/Datasets/). 
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Supplementary Figure 2. Distribution of sample RNA sequencing read depth in each study. 
Samples from the BLUEPRINT [23] study have been split into paired-end (PE) and single-end 
(SE), because they were sequenced in two different laboratories using different RNA-seq 
protocols.   
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Supplementary Figure 3. 
Quantification methods of 
molecular phenotypes in the 
eQTL Catalogue. Symbolic 
representation of 23 read 
fragments assigned to 1 
gene (aligned with HISAT2 
[58], quantified with 
featureCounts [60]) 
consisting of 2 transcripts 
(quantified with Salmon [61]) 
and 6 exonic parts 
(annotated with DEXSeq 
[19], quantified with 
featureCounts). The gene 
also has 5 distinct introns 
which are identified and 
quantified by Leafcutter [48]. 
Transcriptional event usage 
is quantified with txrevise 
[15]. Txrevise uses shared 
exons as a scaffold to 
identify independent 
transcriptional events 
corresponding to alternative 
promoters, internal exons 
and 3ʹ ends. Leafcutter 
splice junction QTLs will be 
included in a future version 
of the eQTL Catalogue. 
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Supplementary Figure 4. Overview of the Quality Control (QC) measures applied to all of the 
datasets in the eQTL Catalogue. QC reports for individual datasets can be found on the eQTL 
Catalogue website (https://www.ebi.ac.uk/eqtl/Datasets/). (A) Principal component analysis of 
the TwinsUK dataset. (B) Multidimensional scaling analysis of the TwinsUK dataset. Four outlier 
samples (highlighted in yellow) from the PCA and MDS analysis were excluded from QTL 
mapping. (C) Sex-specific gene expression analysis. Expression of the female-specific XIST 
gene is plotted against the mean expression the protein coding genes on the Y chromosome. 
Samples from two donors (S003P5 (male) and S003Q3 (female)) expressed both XIST and 
genes from the Y chromosome, indicating potential cross-contamination with RNA from a 
sample of different genetic sex. (D) Genetic similarity of S003Q3B1 RNA sample to all of the 
genotyped donors in the BLUEPRINT VCF file as calculated by the QTLtools mbv command 
[65]. As expected, the genotypes of the S003Q3B1 RNA sample are most similar to the 
genotype data from the same donor and most other donors are equally dis-similar, forming a 
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separate cluster at the bottom left corner. However, the S003Q3B1 RNA sample also displays 
higher-than-expected genetic similarity with genotype data from the S003P5 donor. Together 
with evidence presented on panel C, this suggests that cross-contamination has occurred 
between the S003Q3B1 and S003P5B1 RNA samples. As a result, we decided to remove these 
two samples from downstream analysis.  
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Supplementary Figure 5. Assigning genotyped samples to the four 1000 Genomes 
superpopulations. (A) Density plot of distances between each sample in BrainSeq [28] dataset 
and each superpopulation cluster in the 1000 Genomes Phase 3 reference dataset [16]. First 
three principal components of the genotype data are used to calculate distances. Majority of 
samples in the BrainSeq dataset are close to either European (EUR) or African (AFR) 
superpopulations. (B) Histogram of distances between each sample in the BLUEPRINT [23] 
dataset and each superpopulation cluster in reference dataset. All samples are close to the 
European (EUR)  superpopulation cluster of the 1000 Genomes reference dataset. (C) 
Projection of the BrainSeq dataset to the first two principal components of the 1000 Genomes 
Phase 3 reference dataset. Most samples are assigned to either European or African 
superpopulations. Red samples are too far from all four superpopulations and thus remain 
unassigned. These samples are likely to represent recent admixture. (D) Projection of the 
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BLUEPRINT dataset to the first two principal components of the 1000 Genomes Phase 3 
reference panel. All samples are assigned to the European superpopulation. Superpopulation 
codes: EUR - European, AFR - African, SAS - South Asian, EAS - East Asian.  
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