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Abstract  
Motivation:    As   genomic   data   becomes   more   abundant,   efficient   algorithms   and   data   structures   for  
sequence   alignment   become   increasingly   important.   The   suffix   array   is   a   widely   used   data   structure   to  
accelerate   alignment,   but   the   binary   search   algorithm   used   to   query   it   requires   widespread   memory  
accesses,   causing   a   large   number   of   cache   misses   on   large   datasets.   

Results:    Here   we   present   Sapling,   an   algorithm   for   sequence   alignment   which   uses   a   learned   data  
model   to   augment   the   suffix   array   and   enable   faster   queries.   We   investigate   different   types   of   data  
models,   providing   an   analysis   of   different   neural   network   models   as   well   as   providing   an   open-source  
aligner   with   a   compact,   practical   piecewise   linear   model.   We   show   that   Sapling   outperforms   both   an  
optimized   binary   search   approach   and   multiple   existing   read   aligners   on   a   wide   collection   of   genomes,  
including   human,   bacteria,   and   plants,   speeding   up   the   algorithm   by   more   than   a   factor   of   two   while  
adding   less   than   1%   to   the   suffix   array’s   memory   footprint.   

Availability   and   implementation:    The   source   code   and   tutorial   are   available   open-source   at  
https://github.com/mkirsche/sapling .  

Contact:    mkirsche@jhu.edu  

Supplementary   Information:    Supplementary   notes   and   figures   are   available   online.  
 
1.   Introduction  
Aligning   sequencing   reads   to   a   reference   genome   or   collection   of   genomes   is   a   key   component   of  
many   genomic   analysis   pipelines,   including   variant   calling    (Nielsen    et   al. ,   2011) ,   quantifying   gene  
expression   levels   (RNA-seq)    (Wang    et   al. ,   2009) ,   identifying   DNA-protein   binding   sites   (ChIP-seq)  
(Park,   2009)    and   several   others    (Soon    et   al. ,   2013) .   Many   techniques   have   been   proposed   to   solve   the  
read   alignment   problem   in   ways   that   are   computationally   efficient   and   robust   to   sequencing   errors   and  
true   biological   differences.   Since   finding   inexact   alignments   is   generally   much   slower   than   finding   exact  
matches,   a   common   approach   is   to   use   the   seed-and-extend   heuristic    (Baeza-Yates   and   Perleberg,  
1996) .   When   using   this   heuristic,   small   segments   of   the   read   are   used   as   seeds,   and   exact   matches   of  
these   seeds   are   found   using   an   algorithm   for   exact   string   matching.   Then,   the   exact   matches   are   used  
as   candidate   alignment   sites,   and   each   is   scored   based   on   how   well   the   whole   read   aligns   in   the  
surrounding   region.   This   heuristic   has   been   shown   to   perform   well   in   many   genomic   applications,   and   is  
used   by   a   large   number   of   leading   short   and   long   reads   aligners   including   Star    (Dobin    et   al. ,   2013) ,  
Bowtie2    (Langmead   and   Salzberg,   2012) ,   BWA-MEM    (Li,   2013) ,   NGMLR    (Sedlazeck    et   al. ,   2018)    and  
many   others.   It   is   also   used   as   a   core   routine   for   whole   genome   alignment    (Marçais    et   al. ,   2018)    and  
many   other   applications    (Altschul    et   al. ,   1990) .  
 
The   seed-and-extend   heuristic   relies   on   being   able   to   quickly   search   for   exact   matches   of   seed  
sequences   in   the   reference   genome.   The   problem   of   finding   these   matches,   called   the   exact   substring  
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search   problem,   has   applications   both   within   and   outside   of   genomics    (Charras   and   Lecroq,   2004) .   A  
number   of   data   structures   have   been   proposed   to   solve   this   problem   by   indexing   the   reference   genome  
in   such   a   way   that   the   exact   substring   search   problem   can   be   solved   quickly.   These   include   suffix  
arrays    (Manber   and   Myers,   1993) ,   suffix   trees    (Weiner,   1973) ,   hash   tables    (Karp   and   Rabin,   1987) ,   and  
FM-indexes    (Ferragina   and   Manzini,   2000) .   For   genomic   applications,   suffix   arrays   are   one   of   the   key  
data   structures   for   seed-and-extend   algorithms   used   by   Star    (Dobin    et   al. ,   2013) ,   BLASR    (Chaisson  
and   Tesler,   2012) ,   MUMMER4    (Marçais    et   al. ,   2018)    and   others.   The   suffix   array   consists   of   the  
lexicographically   ordered   list   of   suffixes   present   in   a   string,   and   once   constructed,   a   binary-search   like  
algorithm   can   be   used   to   quickly   locate   exact   matches   of   query   strings    (Manber   and   Myers,   1993) .  
 
Learned   index   structures    (Kraska    et   al. ,   2017)    are   a   technique   for   accelerating   queries   on   a   variety   of  
data   structures   by   leveraging   patterns   present   in   the   particular   dataset   being   processed.   While   classical  
data   structures   are   asymptotically   optimal,   these   runtime   bounds   are   based   on   a   worst-case   analysis  
where   it   is   assumed   that   the   dataset   has   no   specific   patterns   that   can   be   exploited.   However,   many  
real-world   datasets   have   learnable   patterns,   and   learned   index   structures   have   been   used   in   many  
different   applications   such   as   B-trees   and   Hash-maps    (Kraska    et   al. ,   2017) .   Additionally,   learned   index  
structures   have   previously   been   considered   for   read   alignment   using   a   modified   FM-index    (Ho    et   al. ,  
2019) ,   although   the   source   or   implementation   are   not   available   and   it   was   applied   to   a   single   dataset.  
 
Here   we   present   Sapling,   an   open-source   algorithm   which   leverages   learned   index   structures   for  
accelerated   read   mapping.   At   its   core,   it   uses   suffix   arrays,   which   we   augment   with   a   model   of   the  
particular   genome   that   is   being   indexed.   We   evaluate   two   different   types   of   data   models   -   a   neural  
network   trained   on   the   suffix   array,   as   well   as   a   compact   piecewise   linear   model.   We   find   that   by   using  
a   data   model,   the   core   suffix   array   query   time   is   reduced   by   more   than   a   factor   of   two   while   only  
increasing   the   size   of   the   data   structure   by   less   than   1%   across   a   variety   of   genome   sequences.   We  
offer   Sapling   as   both   an   open-source   library   for   exact   substring   search   and   a   standalone   read   aligner   at  
https://github.com/mkirsche/sapling .  
 
2.   Methods  
2.1   Suffix   Array   Search  
For   a   text   T   of   length   n,   let   T[i]   be   the   character   in   the   ith   position   of   T,   and   define   a   substring   of   T,   T[i..j],  
where   0   ≤   i   ≤   j   <   n,   as   a   string   of   characters   T[i],   T[i+1],   …,   T[j].   We   define   the   exact   substring   search  
problem   as   follows:   Given   a   text   T   of   length   n   and   a   pattern   P   of   length   m,   report   all   positions   x   in   T  
such   that   T[x..(x+m-1)]   is   equal   to   P.   A   naive   algorithm   of   trying   all   possible   values   for   P   would   take  
O(n * m)   operations,   which   is   infeasible   for   large   texts,   especially   when   many   queries   each   need   to   be  
evaluated.   In   genomic   applications   where   the   text   is   a   reference   genome   and   the   pattern   is   a   genomic  
read   a   few   properties   generally   hold:   1)   The   text   is   much   (multiple   orders   of   magnitude)   larger   than  
each   query,   and   2)   The   same   text   is   used   across   multiple   queries   (typically   many   millions   to   billions   of  
sequencing   reads   for   a   single   genome).   In   an   attempt   to   exploit   these   properties,   several   algorithms  
have   been   proposed   which   index   the   text   on   its   own   before   any   of   the   queries   are   considered,   and   then  
this   index   is   used   to   reduce   the   number   of   possible   alignment   positions   for   every   query.   
 
One   popular   index   is   the   suffix   array.   A   suffix   of   T   is   defined   as   any   substring   T[i..j]   such   that   j   =   n   -   1;  
that   is,   any   substring   which   ends   after   the   last   character   of   T.   Suffixes   are   related   to   substring   search  
queries   because   any   occurrence   of   a   length-m   pattern   P   at   some   position   x   in   T   corresponds   to   a   suffix  
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of   T,   T[x..n-1],   whose   first   m   characters   are   exactly   the   string   P.   When   the   suffixes   are   considered   in  
lexicographical   order,   all   such   suffixes   starting   with   P   will   occur   contiguously.   This   property   of   suffixes  
serves   as   the   intuition   behind   the   use   of   suffix   arrays   for   exact   substring   search   queries.  
 
The   suffix   array   is   defined   as   an   array   of   positions   corresponding   to   the   lexicographical   order   of   suffixes  
in   a   given   text.   For   a   text   T   with   n   characters,   we   define   the   suffix   array   of   T,   SA T    to   be   a   permutation   of  
{0,   ..,   n-1}   such   that   SA T [i]   is   the   start   position   in   T   of   the   ith   suffix   of   T   when   the   suffixes   are   sorted  
lexicographically.   For   example,   in   the   text   T   =   “CAT”,   the   sorted   order   of   suffixes   is   {“AT”,   “CAT”,   “T”},   so  
SA T    =   {1,   0,   2}.   For   any   pattern   P,   each   occurrence   of   P   in   T   will   be   the   prefix   of   some   suffix   of   T,   and  
since   each   such   suffix   starts   with   the   characters   in   P,   the   start   positions   of   the   instances   of   P   in   T   will  
occur   consecutively   in   SA T .   This   reduces   the   problem   of   exact   substring   search   to   that   of   finding   the  
range   of   suffix   array   positions   [i,   j]   such   that   T[SA T [k]..(SA T [k]+m-1)]   =   P   for   all   integers   k   in   [i,   j].   These  
positions   can   be   found   using   a   binary   search   algorithm,   which   starts   with   an   initial   search   space   of   [0,  
n-1]   and   repeatedly   bisects   the   search   space,   querying   the   middle   suffix   to   decide   whether   the   suffixes  
starting   with   the   characters   in   P   occur   in   the   first   or   second   half,   and   recursively   searching   the  
half-sized   space.   The   naive   binary   search   algorithm,   for   a   pattern   of   length   m,   requires   O(log(n) * m)  
operations   since   each   query   requires   a   string   comparison   of   up   to   m   characters.   However,   a   more  
efficient   binary   search   algorithm   specialized   for   the   suffix   array   has   been   proposed   which   requires  
O(log(n)   +   m)   operations.   This   exploits   an   auxiliary   data   structure   called   the   longest   common   prefix  
array   (LCP   array)   that   stores   the   number   of   shared   characters   between   the   prefixes   of   consecutive  
suffixes    (Manber   and   Myers,   1993) .  
 
2.2   A   learned   index   structure   for   suffix   arrays  
When   performing   the   binary   search   algorithm,   each   iteration   requires   checking   the   middle   of   the   current  
search   space.   For   large   genomes,   this   means   that   consecutive   iterations   at   the   start   of   the   algorithm  
correspond   to   distant   array   positions.   Consequently,   the   algorithm   has   poor   spatial   locality   and   results  
in   many   cache   misses.   While   the   number   of   iterations   is   relatively   small   (~32   for   a   mammalian-sized  
genome),   most   of   the   memory   accesses   result   in   cache   misses   that   are   many   times   slower   than  
memory   accesses   with   cache   hits   -   e.g.,   approximately   4ns   to   access   from   L1   cache   vs   100ns   to  
access   from   main   memory   on   a   modern   Intel   CPU    (Levinthal,   2009) .   Therefore,   we   propose   a   method  
which   uses   a   data   model   so   that   with   a   single   memory   lookup   into   the   model   and   a   small   number   of  
efficient   arithmetic   operations,   the   initial   search   space   for   binary   search   is   significantly   reduced,   and   the  
cache   misses   which   occur   at   the   beginning   of   the   binary   search   algorithm   can   be   mostly   circumvented.  
 
As   described   above,   learned   index   structures   have   been   used   to   replace   or   augment   data   structures  
with   a   data   model   which   models   some   properties   of   the   particular   data   being   stored.   In   the   case   of  
suffix   arrays,   we   define   for   a   suffix   array   SA T    a   true   mapping   T(x)   which   maps   a   k-mer   x   to   the   set   of  
positions   of   the   suffix   array   that   correspond   to   suffixes   starting   with   x.   From   the   data,   we   learn   a  
function   P(x),   a   low-memory   and   arithmetically   efficient   approximation   of   T.   Then,   for   a   query   k-mer   Q,  
P(Q)   gives   an   approximate   position   of   where   in   the   suffix   array   Q   occurs.   By   performing   this   query   on  
every   k-mer   in   T,   we   can   obtain   a   global   error   bound   E   on   the   predictions,   which   has   the   property   that  
for   any   suffix   in   T,   P(x)   gives   a   position   which   is   no   more   than   E   positions   away   from   the   nearest   value  
in   T(x).   For   a   given   k-mer   x,   we   can   compute   P(x),   and   if   x   is   present   in   the   suffix   array,   there   will   be  
some   suffix   array   position   y   in   [P(x)   -   E,   P(x)   +   E]   such   that   the   suffix   starting   at   position   SA T [y]   starts  
with   x,   and   this   value   of   y   can   be   computed   using   a   binary   search   with   an   initial   range   of   length   2E   +   1  
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instead   of   length   n   ( Figure   1 ).   Therefore,   we   seek   a   model   with   three   properties:   the   ability   to   perform  
predictions   quickly,   a   low   memory   footprint,   and   a   small   error   bound   across   genomes.  

 
Figure   1.    The   suffix   array   lookup   can   be   considered   a   prediction   problem   by   defining   a   mapping   T(S)  
which   maps   a   k-mer   S   encoded   as   an   integer   K-mer   value   to   each   of   the   positions   in   the   suffix   array  
corresponding   to   suffixes   starting   with   S.   Learned   index   structures   can   approximate   this   mapping   with   a  
function   P(S)   mapping   the   k-mer   value   of   each   k-mer   S   to   an   estimated   index,   which   is   trained   on   the  
suffix   array   for   a   particular   dataset   using   the   (S,   T(S))   pairs.   The   maximum   error   E   across   all   k-mers   in  
the   string   is   computed   so   that   when   a   particular   k-mer   Q   is   queried,   if   it   is   present   in   the   string,   then   at  
least   one   of   its   suffix   array   positions   falls   in   the   range   [P(Q)   -   E,   P(Q)   +   E].   This   smaller   range   can   be  
used   for   the   binary   search   lookup,   resulting   in   better   spatial   locality.  
 
2.3   Modeling   with   Artificial   Neural   Networks   (ANNs)  
The   first   method   we   explored   for   modeling   the   suffix   array   distribution   was   using   an   Artificial   Neural  
Network   (ANN)    (Cybenko,   1989)    to   learn   the   true   mapping   T(x).   In   this   approach,   we   trained   ANNs   on  
(k-mer   value,   suffix   array   position)   pairs,   with   the   goal   of   using   the   trained   network   to   predict   the  
approximate   suffix   array   position   of   a   given   k-mer    (Figure   2a) .   To   ensure   that   the   function   being  
learned   is   over   numeric   values,   Sapling   encodes   each   k-mer   as   its   k-mer   value   -   an   integer   with   2k   bits.  
In   this   conversion,   two   bits   are   allocated   for   each   of   the   k   characters,   with   the   two   highest-order   bits  
corresponding   to   the   first   character   and   the   two   lowest-order   bits   corresponding   to   the   last   character.  
The   two   bits   for   a   given   character   are   00   if   the   character   is   “A”,   01   for   “C”,   10   for   “G”,   and   11   for   “T”.  
This   encoding   scheme   ensures   that   any   k-mer   which   comes   lexicographically   before   another   will   have  
a   smaller   integer   value,   resulting   in   a   simple,   monotonically   non-decreasing   mapping.  
 
For   modeling,   we   first   transform   the   suffix   array   positions   into   “residual   values”   -   this   detrending   is  
performed   by   considering   a   straight   line   from   the   first   k-mer   to   the   last   k-mer   (i.e.   fitting   a   linear   function  
to   the   entire   genome,   such   as   plotted   in    Figure   2a ),   and   then   computing   how   each   suffix   array   position  
differs   from   this   line.   The   residual   values   are   more   easily   learned   by   the   ANN   since   the   function   will  
have   a   smaller   range   of   values   to   consider.   The   input   data   is   then   unit   scaled   so   that   both   the   k-mers  
and   the   suffix   array   positions   are   within   [0,   1].   We   divide   the   input   data   into   B   equal-sized   intervals,   and  
an   individual   ANN   is   trained   on   each   of   them.   For   these   neural   nets,   we   used   a   basic   “rectangular”  
architecture   consisting   of   L   layers,   each   with   N   nodes   (aside   from   the   single   input   node   in   the   first   layer  
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and   the   single   output   node   in   the   last   layer).   The   networks   were   fully   connected   (each   node   in   layer   i  
passed   input   into   every   node   in   layer   i+1),   with   no   drop   out,   with   a   ReLU   activation   function  
(Ramachandran    et   al. ,   2017)    applied   between   layers.   
 
The   loss   function   used   was   mean   squared   error   (the   average   of   the   square   of   the   differences   between  
the   predicted   suffix   array   residual   position   and   the   true   value).   We   trained   the   model   to   minimize   this  
loss   function   using   the   Adam   optimizer   with   default   PyTorch    (Paszke    et   al. ,   2019)    hyper-parameters  
(learning   rate   0.001,   betas   =   [0.9,   0.999]   and   epsilon   =   1e-8).   The   training   for   these   models   proceeds   in  
epochs,   during   which   the   model’s   ability   to   predict   the   input   data   is   assessed   and   improved.   During  
each   epoch,   the   current   model   (using   the   parameters   it   has   learned   up   to   that   point)   makes   predictions  
on   the   input   data,   and   the   mean   squared   error   is   computed.   Based   on   this   error,   the   parameters   in   the  
model   are   updated   through   a   process   called   back   propagation.   To   speed   up   training,   we   used   a   batch  
size   of   64   -   this   means   that   the   model   makes   predictions   for   64   input   values,   the   mean   square   error   is  
calculated   across   these   64   predictions,   and   the   model’s   parameters   are   updated   accordingly,   before   the  
next   batch   is   loaded.   The   input   data   is   shuffled   at   the   start,   so   the   batches   do   not   contain   consecutive  
data   points.  
 
For   training,   we   set   the   maximum   number   of   training   epochs   to   be   200.   All   models   were   trained   for   at  
least   10   epochs,   and   after   this   initial   period,   if   a   reduction   of   10%   or   more   in   the   value   of   the   loss  
function   was   not   achieved   during   the   last   10   epochs,   the   training   procedure   was   terminated   to   limit  
wasted   work.   When   the   training   for   a   particular   neural   network   ended,   the   best   model   across   all   training  
epochs   was   kept   and   used   to   predict   the   suffix   array   positions   for   all   k-mers   in   the   network’s  
corresponding   interval   of   k-mer   values.  
 
2.4   Modeling   with   Piecewise   Linear   Functions   (PWL)  
An   alternative   data   model   we   explored   is   a   piecewise   (PWL)   linear   model.   In   this   model,   the   space   of  
all   4 k    possible   k-mers   is   subdivided   into   a   fixed   number   b   equally-sized   intervals,   where   b   is   a   power   of  
2   to   allow   fast   calculation   of   which   interval   each   k-mer   falls   into    (Figure   2b) .   Then,   for   each   interval,   the  
lexicographically   earliest   k-mer   from   the   genome   which   is   present   in   that   interval   is   stored   along   with   its  
corresponding   suffix   array   position.   While   this   idea   of   “marker”   k-mers   to   limit   the   range   of   the   suffix  
array   to   search   has   been   used   previously    (Dobin    et   al. ,   2013) ,   Sapling   improves   upon   this   approach   by  
interpolating   the   exact   suffix   array   position   of   the   entire   k-mer,   giving   an   even   smaller   interval   of  
candidate   positions.   In   the   algorithm   used   by   Sapling,   the   prediction   P(s)   is   computed   as   follows:  

1. Calculate   which   interval   x   is   in   by   shifting   its   value   right   by   b   bits.  
2. Look   up   the   pair   (x 1 ,   y 1 )   corresponding   to   the   earliest   k-mer   in   the   same   interval   and   the   pair   (x 2 ,  

y 2 )   corresponding   to   the   earliest   k-mer   in   the   next   interval.  
3. Construct   a   line   segment   between   (x 1 ,   y 1 )   and   (x 2 ,   y 2 ),   and   output   the   y-value   which   corresponds  

to   an   x-value   of   s.  
This   simple   model   allows   very   efficient   queries   consisting   of   looking   up   two   pairs   which   are   adjacent   in  
memory   followed   by   a   small   number   of   arithmetic   operations.   The   memory   footprint   is   parameterized   on  
the   number   of   intervals,   storing   two   64-bit   integers   per   interval,   and   we   show   that   even   with   a   relatively  
small   number   of   intervals,   small   error   bounds   can   be   achieved   across   different   genomes.   For   these  
reasons   we   use   this   data   model   in   our   implementation.  
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Figure   2.     a)     Schematic   diagram   of   ANN   architecture.    An   input   k-mer   encoded   using   a   simple   binary  
encoding   scheme   is   passed   to   a   fully   connected   ANN   with   L   layers,   each   with   width   W.   The   output  
value   from   the   ANN   is   the   predicted   residual   value,   which   is   then   projected   to   the   actual   suffix   array  
position   using   a   linear   transformation.   In   practice,   we   use   multiple   ANNs   that   each   learn   the   distribution  
of   a   portion   of   the   k-mer   space   (not   shown).    b)     Schematic   diagram   of   Piecewise   Linear   model.    The  
piecewise   linear   model   divides   the   space   of   possible   inputs   (k-mers   encoded   as   integers)   into   b  
equal-sized   intervals.   It   stores   representative   data   points   from   each   interval   (those   with   the   lowest  
k-mer   values)   and   connects   points   in   consecutive   intervals   with   line   segments.   Then,   when   estimating  
the   suffix   array   position   for   a   particular   k-mer,   the   linear   function   between   that   k-mer’s   bin   and   the  
following   bin   is   used   to   estimate   the   suffix   array   position.  
 
2.5   PWL   Implementation  
When   dividing   the   space   of   possible   k-mers   into   buckets,   the   partitioning   is   done   in   such   a   way   that  
each   group   has   the   same   number   of   possible   k-mers.   However,   in   practice,   due   to   varying   k-mer  
frequencies,   it   is   possible   for   some   buckets   to   have   particularly   small   or   large   sections   of   the   suffix  
array   contained   in   them.   The   buckets   with   many   points   often   have   particularly   poor   predictions,   and   this  
causes   the   maximum   errors   to   be   much   worse   than   the   median   errors   or   even   the   95th   percentile  
errors   (see    Results ).   To   avoid   binary   searching   over   a   range   which   is   almost   always   much   larger   than  
necessary,   Sapling   uses   an   additional   cutoff.   Once   the   predictions   have   been   made   for   every   k-mer   in  
the   genome,   in   addition   to   storing   the   maximum   error   in   each   direction,   Sapling   also   stores   the   95th  
percentiles   of   the   errors   in   each   direction.   Then,   when   searching   for   a   particular   k-mer   given   its  
predicted   position,   rather   than   immediately   executing   the   binary   search   algorithm,   Sapling   first   checks  
the   position   corresponding   to   an   error   equal   to   the   95th   percentile   in   the   appropriate   direction.   Then,   in  
95%   of   cases,   the   size   of   the   search   range   can   be   immediately   reduced   to   the   95th   percentile   error,  
which   is   much   smaller   than   the   maximum   error,   further   improving   performance.  
 
When   using   Sapling,   it   is   assumed   that   the   size   of   k-mers   used   when   constructing   the   index   is   equal   to  
the   length   of   the   k-mers   being   queried.   However,   it   is   possible   that   for   some   applications,   the   index   will  
be   searched   for   queries   of   varying   lengths.   The   suffix   array   prediction   function   can   be   evaluated   for  
such   strings   without   rebuilding   the   model   as   follows:  
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➢ If   the   query   length   q   is   less   than   the   Sapling   k-mer   size   k:   Pad   the   end   of   the   query   with   A’s   (the  
k-mer   value   can   be   padded   in   this   way   quickly   by   bit-shifting   the   k-mer   value   2*(k-q)   bits   to   the  
left).  

➢ If   the   query   length   q   is   greater   than   the   Sapling   k-mer   size   k:   Let   the   k-mer   value   of   the   length-k  
prefix   of   the   query   be   v.   Then,   set   the   k-mer   value   of   the   query   as   a   floating-point   value   between  
v   and   v+1   based   on   the   remaining   characters   and   evaluate   the   piecewise   linear   function   at   that  
value.  

Sapling   is   available   as   open-source   software   on   Github,   and   provides   a   succinct   library   for   constructing  
the   piecewise   linear   data   model   and   using   it   to   perform   suffix   array   lookups.   We   also   implemented   a  
simple   seed-and-extend   aligner   as   a   proof-of-concept   which   uses   Sapling   for   seeding   and   the  
Striped-Smith-Waterman   algorithm    (Zhao    et   al. ,   2013)    for   extending   seeds   into   full   alignments.   This  
aligner   accepts   fasta   and   fastq   formatted   files   as   input   and   outputs   alignments   in   SAM   format    (Li    et   al. ,  
2009) .   
 
3.   Results  
3.1   Suffix   Array   Distribution  
We   tested   Sapling   on   six   diverse   reference   genome   sequences:    E.   coli ,    C.   elegans ,    S.   lycopersicum  
(tomato),   human   (both   chromosome   1   in   isolation   and   the   full   human   reference),   and    T.   aestivum  
(wheat)   ( Supplemental   Table   1,   Supplemental   Figure   1) .   While   the   function   we   are   trying   to  
approximate   is   monotonically   non-decreasing,   there   are   many   potential   functions   that   can   emerge  
based   on   the   composition   of   the   suffix   array.   While   the   suffix   array   for   a   random   string   will   result   in  
approximately   a   straight   line,   repetitiveness   and   biological   selection   against   certain   sequences    (Herold  
et   al. ,   2008)    can   drastically   affect   the   nature   of   the   function   ( Supplementary   Figures   2-3 ).   Therefore,  
we   investigated   the   true   suffix   array   position   functions   for   each   of   these   genomes   to   ensure   that   the  
functions   are   learnable   across   species.    Figure   3    shows   the   true   Suffix   Array   Distributions   for   each   of  
the   six   reference   genomes   listed   above.  

 
Figure   3.    Suffix   Array   Distribution   for   6   genome   sequences:    E.   coli ,    C. elegans    (nematode),    H. sapiens  
(chr1),    S. lycopersicum    (tomato),    H.   sapiens    (all   of   hg38),   and    T.   aestivum    (wheat) .  
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3.2   Model   Training   and   Accuracy  
In   testing   the   feasibility   of   different   models,   we   measured   the   prediction   accuracy   of   several   potential  
PWL   and   ANN   models   on   human   chromosome   1   ( Supplemental   Tables   2   &   3) .    Table   1    describes   the  
characteristics   of   a   selection   of   model   architectures   as   well   as   their   memory   footprints.   For   the   ANN,  
most   bins   are   trained   within   40-60   epochs,   although   a   few   particularly   complex   bins   require   up   to   180  
epochs   until   convergence   ( Supplemental   Figure   4 ).   For   each   model,   we   calculated   the   prediction   error  
for   every   k-mer   present   in   the   genome,   defined   as   the   absolute   difference   between   the   predicted   suffix  
array   position   and   the   nearest   position   which   corresponds   to   a   suffix   starting   with   the   query.   The   mean,  
median,   and   maximum   errors   were   computed   both   within   each   bin   and   genome-wide.   By   studying   each  
bin   individually,   we   were   able   to   highlight   cases   where   the   learned   function   modelled   the   suffix   array  
position   function   particularly   well   or   poorly   ( Supplementary   Figures   5   &   6 ).   In   particular,   for   all   of   the  
genomes   we   studied,   the   first   and   last   bins   had   particularly   high   prediction   errors   caused   by   the   high  
relative   frequencies   of   homopolymer   A   and   T   sequences   in   the   genomes   that   challenged   the   PWL  
model.   We   found   that   increasing   the   width   of   the   ANN   used   for   each   bin   in   the   model   resulted   in  
improved   performance,   without   adding   much   overhead.   However,   we   found   that   while   increasing   the  
depth   (number   of   layers)   of   each   ANN   in   the   model   resulted   in   performance   increases,   it   added  
significant   memory   overhead.   This   leads   us   to   conclude   that   utilizing   shallower,   wider   nets   is   the   most  
efficient   way   to   approach   this   problem.   Overall,   the   PWL   model   had   improved   median   and   95%  
percentile   accuracy   compared   the   ANN   model,   especially   when   considering   the   memory   overhead  
involved,   although   the   ANN   model   had   a   lower   maximum   error.  
 
Table   1 .   Summary   of   performance   and   model   complexities   for   several   PWL   and   ANN   architectures.  
 

Model   Type  Piecewise  
Linear  

Piecewise  
Linear  

Piecewise  
Linear  

Neural  
Network  

Neural  
Network  

Neural  
Network  

Number   of  
Buckets  

16k  256k  2m  1k  16k  16K  

Width   x  
Depth  

N/A  N/A  N/A  32   x   1  32   x   1  128   x   2  

Median   Error  899  68  14  900  131  56  

95th  
Percentile  
Error  

7,658  1,579  653  4238  853  463  

Maximum  
Error  

263,165  180,453  135,664  45,839  24,081  13,264  

Memory  
Overhead  

256   KB  4   MB  32   MB  8   MB  131   MB  1245   MB  

 
3.3   Runtime   analysis  
Based   on   the   above   results,   we   implemented   Sapling   to   use   the   PWL   data   model   to   accelerate   suffix  
array   queries.   We   then   compared   the   performance   of   Sapling   using   different   numbers   of   bins   to   a  
number   of   existing   alignment   algorithms   ( Figure   4,   Supplemental   Tables   4   &   5,   Supplemental   Note  
1 ).   For   this,   we   implemented   a   string-optimized   binary   search,   the   asymptotically   optimal   algorithm   for  
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searching   a   suffix   array    (Manber   and   Myers,   1993) .   We   also   ran   the   widely-used   Bowtie    (Langmead    et  
al. ,   2009)    and   Mummer4    (Marçais    et   al. ,   2018)    short   read   aligners   in   their   exact-matching   modes  
( Supplementary   Note   1 )   to   obtain   a   fair   comparison   to   Sapling’s   performance.   For   each   aligner,   we  
measured   the   amount   of   time   needed   to   perform   50   million   queries   on   the   human   genome,   where   each  
query   is   a   random   21-mer   which   is   known   to   occur   in   the   genome,   ignoring   the   time   required   for  
indexing.   All   software   was   run   on   a   single   core   of   an   Intel(R)   Xeon(R)   CPU   E7-8860   server   at   2.20   GHz  
with   1   TB   of   RAM.   For   the   runtime   experiments   we   used   a   tmpfs   ramdisk   to   minimize   the   amount   of  
IO-based   latency.   As   expected,   we   see   the   runtime   performance   of   Sapling   improves   as   the   number   of  
bins   increases.    In   an   ideal   case,   with   a   perfect   prediction   function,   the   number   of   suffix   arrays   lookups  
would   be   decreased   from   log 2 (n)   -   approximately   32   for   the   human   genome   -   to   a   single   lookup   at   the  
predicted   position.   Our   model   is   able   to   reduce   the   search   range   to   a   few   thousand   rows,   reducing   the  
number   of   lookups   to   about   10   for   most   queries.   This   results   in   an   algorithm   which   is   more   than   3   fold  
faster   than   the   string-optimized   binary   search   and   nearly   6.5   fold   faster   than   bowtie   when   used   with   the  
largest   number   of   bins.  

 
Figure   4.    Runtime   of   different   methods   to   locate   50   million   21-mers   in   the   human   genome.    The  
queries   were   sampled   randomly   from   those   which   occur   at   least   once   in   the   human   genome,   and   the  
same   queries   were   used   for   all   methods.    In   addition   to   running   Bowtie,   Mummer4,   and   a  
string-optimized   binary   search   algorithm,   Sapling   was   run   with   several   different   settings,   limiting   the  
number   of   buckets   (and   therefore   the   memory   overhead)   to   various   proportions   of   the   size   of   the  
human   genome.  
 
In   addition   to   measuring   across   model   architectures   and   between   different   aligners,   we   also   measured  
how   well   the   runtime   of   Sapling   scales   when   the   genome   size   is   increased.   To   measure   this,   we   ran  
Sapling   on   six   different   reference   genomes   of   different   sizes,   and   for   each   genome   measured   the  
amount   of   time   required   to   query   five   million   random   k-mers   which   are   present   in   the   genome.   We  
performed   a   similar   experiment   for   the   string-optimized   binary   search.   We   find   that   as   the   genome   size  
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increases,   the   reduction   in   runtime   from   using   a   data   model   increases   substantially   ( Figure   5,  
Supplemental   Tables   6   &   7 ).  

 
Figure   5.    Runtime   of   Sapling   and   binary   search   across   six   different   genomic   sequences   using   0.01%,  
1%   or   25%   space   overhead.  
 
4.   Discussion  
In   this   paper,   we   presented   Sapling,   a   novel   algorithm   for   quickly   performing   suffix   array   lookups   for  
use   within   read   alignment   and   genome   alignment   algorithms.   Sapling   uses   the   idea   of   learned   index  
structures   to   model   the   contents   of   the   suffix   array   as   a   function   rather   than   as   a   data   structure,   and  
uses   a   practical   piecewise   linear   model   to   efficiently   approximate   this   function.   Using   this   method  
shows   significant   improvement   in   the   runtime   of   querying   many   different   genomes,   demonstrating   that  
even   a   simple   low-memory   piecewise   linear   approximation   of   the   suffix   array   position   function   is  
sufficient   for   achieving   several-fold   improved   performance   compared   to   existing   tools   with   modest  
space   overhead.   As   read   and   genome   alignment   is   performed   on   even   larger   genomes   and   larger  
collections   of   genomes,   the   need   for   efficient   substring   search   algorithms   becomes   even   more  
pressing,   and   Sapling   will   be   able   to   scale   better   to   large   reference   sizes   than   existing   query  
algorithms.  
 
While   this   work   demonstrates   the   potential   for   learned   index   structures   in   a   very   important   and   widely  
used   genomic   application,   there   remain   many   possible   avenues   for   future   development.   Presently,   the  
prototype   read   aligner   uses   a   basic   seed-and-extend   implementation   that   requires   additional  
development   to   make   it   competitive   with   existing   aligners   for   inexact   alignment.   In   addition,   Sapling  
could   be   used   for   modeling   other   full   text   index   data   structures,   especially   sparse   versions   of   the   suffix  
array    (Vyverman    et   al. ,   2013)    or   the   FM-index,   or   other   data   structures   entirely.   Finally,   read   alignment  
is   just   one   of   the   many   data-intensive   problems   in   genomics   that   requires   the   efficient   use   of   large   data  
structures.   We   are   investigating   other   genomic   applications   of   the   learned   index   structures   paradigm,  
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including   optimized   graph   representations   for   genome   and   pan-genome   assembly,   optimized   variant  
databases,   and   other   data   intensive   problems.  
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