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Abstract

Motivation: Single-cell sequencing technologies are becoming increasingly more established, in par-
ticular, in the study of tumor heterogeneity, i.e., the cell subpopulations that a cancer tumor typically
comprises. Investigating tumor heterogeneity is imperative to better understand how tumors evolve
since each of cell subpopulation harbors a unique set of genomic features that yields a unique pheno-
type, an issue that is bound to have clinical relevance. Clustering of cells based on copy number data,
obtained from single-cell DNA sequencing, provides an opportunity to assess different tumor cell sub-
populations. Accordingly, computational methods have emerged for detecting single-cell copy number
variations (copy number profiling) as well as clustering; however, these two tasks have up to now been
handled sequentially with various ad-hoc preprocessing steps lacking an automated, generalized and
fully probabilistic framework.
Results: We propose CopyMix, a novel probabilistic mixture model based method for single-cell clus-
tering and copy number profiling using Variational Inference, to simultaneously cluster cells and infer
copy number profiles corresponding to the clusters. CopyMix is evaluated using simulated data as well
as published biological data from metastatic colorectal cancer. The results reveal high V-measures for
clustering and low errors in copy number inference. These favorable results indicate a considerable
potential to obtain clinical impact by using CopyMix in studies of cancer tumor heterogeneity.
Availability: The software is available at: https://github.com/negar7918/CopyMix and the previ-
ously published biological dataset is available from the NCBI Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) under accession number SRP074289)

Keywords: single-cell sequencing; copy number calling; clustering; mixture models; variational infer-
ence.

1 Introduction

A tumor typically consists of a collection of heterogeneous cell populations, each having distinct genetic
and phenotypic properties, in particular, concerning capacity to promote cancer progression, metastasis,
and therapy resistance (Eirew et al., 2015; Nowell, 1976). Single-cell sequencing technologies (Gawad
et al., 2016; Navin et al., 2011; Shapiro et al., 2013; Zahn et al., 2017) provide a new opportunity
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Figure 1: The overview of CopyMix with: input y, cells’ reads; outputs q(Z) and q(C), posterior distribu-
tions resulting in clusters within y with their corresponding copy number profiles illustrated by heatmaps
(this is an example of binary clustering).

to investigate the genomic profile of individual cells both regarding single nucleotide variation (SNV)
and copy number variation (CNV). CNVs and SNVs have been shown to be important contributors to
phenotypic variation relating to health and disease (Baslan et al., 2012; Lawson et al., 2018). Moreover,
although single-cell SNV profiling is hampered by experimental imperfections such as drop-outs, copy
number profiling is feasible at least at coarser resolutions. Clustering of cells based on their individual copy
number profiles provides the opportunity for SNV profiling of the clusters and, in general, opportunities to
better understand tumor subpopulations and tumor heterogeneity, issues that are bound to have clinical
relevance in the near future.

Current single-cell datasets pose a wealth of computational challenges. Computational methods have
emerged for detecting single-cell copy number variations (copy number profiling) as well as clustering;
however, these two tasks have up to now been handled sequentially with various ad-hoc preprocessing steps
lacking an automated, generalized and fully probabilistic framework. Concerning copy number profiling,
Hidden Markov Models (HMMs) have been applied to individual cells in different settings (Vitak et al.,
2017; Zahn et al., 2017). Leung et al. (2017) used a changepoint method (Nilsen et al., 2012) to infer
single-cell copy number profiles. They preprocessed the data before changepoint detection and then scaled
the copy number profiles to have a mean equal to the ploidy of the originating tumor. After derivation
of copy number profiles, Leung et al. (2017) clustered the cells using hierarchical clustering based on
Euclidean distances and Ward-linkage.
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Here, we develop CopyMix, a novel method to analyze single-cell copy number data, using a prob-
abilistic model-based approach, that allows us to simultaneously cluster cells and infer copy number
profiles by combining statistical strength from data across all cells and neighbouring sites. Model-based
methods are interpretable and measures of uncertainty can be obtained for the inferred quantities. To
our best knowledge, no earlier work has simultaneously performed copy number inference and cell clus-
tering; however, similar approaches have been considered for single-cell DNA methylation (Kapourani
and Sanguinetti, 2019; de Souza et al., 2018), single-cell SNV data (Roth et al., 2016), and bulk chIP-seq
data from several replicates (Zuo et al., 2016).

CopyMix is a model-based clustering approach that uses a mixture model with components, corre-
sponding to clusters, each having a specific copy number profile modeled by a sequence of latent variables.
We deploy a Bayesian treatment and infer all quantities of interest using Variational Inference (VI) (Jor-
dan et al., 1999), which typically yields faster than inference methods like Markov chain Monte Carlo
sampling (Blei et al., 2017). Compared to Expectation-Maximization (EM), VI has multiple advantages,
e.g., it estimates the posterior distribution of all quantities of interest rather than point estimates, it
protects against over-fitting, and renders it possible to perform principled determination of the optimal
number of mixture components (Bishop, 2006).

Fig. 1 illustrates an overview of CopyMix where it analyzes the input cell sequences, containing read
counts per predefined genomic bin, and produces clusters of cells with their corresponding copy number
sequences (profiles) explaining the clusters.

2 Our novel framework: CopyMix

CopyMix is a probabilistic clustering method based on a mixture model with components, corresponding
to clusters, each having a specific copy number profile modeled by a sequence of latent variables. Similarly
as in Shah et al. (2006); Vitak et al. (2017); Zahn et al. (2017), we assume that each latent copy number
sequence is governed by a Markov chain (describing a sequence of possible copy numbers in which the
probability of each copy number value, defined as state, depends only on the previous state in the
sequence). In CopyMix, we assume that the data (read counts) follow a Poisson distribution as in Witten
(2011); we consider read counts per fixed equal size genomic bin as in Leung et al. (2017). Moreover, we
assume the read counts are emitted from a latent sequence of copy number states. Note that our inference
framework can easily be adapted to other emission distributions aside from the Poisson distribution.

Fig. 2 illustrates CopyMix graphical model where Y denotes the observable variables, read counts per
predefined bins, C the latent copy number states forming a Markov chain and Z the latent cell-specific
cluster assignment variables. We notice in Fig. 2 that each Y has two levels of dependencies, which
are reflections of the assumption that the Poisson distribution over the read counts depends on a latent
cell-specific cluster assignment, Z, and a corresponding latent copy number state, C. Intuitively, a higher
copy number should correspond to a higher read count and we incorporate this assumption in our model
by defining the rate of Poisson distribution as the product of copy number state and cell-specific rate,
θn, see Eq. (1); this also implies that θn corresponds to the average sequencing coverage for a haploid
genome. Due to this multiplicative structure for the Poisson rate, a copy number state of zero results in
the lowest rate implying copy number deletion events; however, since the rate of Poisson cannot be zero
our implementation of CopyMix handles this by assigning a very small number instead of zero. When it
comes to the priors, we use conjugacy. Our model is described in more detail in what follows.
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The genome considered, is partitioned into M equally sized segments of consecutive positions called
bins. Let Yn = (Yn1, . . . , YnM ), where Ynm is the random but observable number of reads aligned to
bin m for cell n taking values in {0, 1, 2, . . .} for m ∈ [M ] = {1, . . . ,M} and n ∈ [N ] = {1, . . . , N}. We
assume that Y1,. . . ,YN are independent and given a vector of true copy number states, Yn1, . . . , YnM are
also independent with the distribution of Ynm depending on the true copy number state at bin m. The
cluster membership of cell n is indicated by the hidden variable Zn that takes values in [K] = {1, . . . ,K}.
We assume there are K << N vectors of true hidden copy number states, i.e., one for each cluster.
The variables Z1, . . . , ZN are independent following a categorical distribution with P (Zn = k) = πk and∑K
k=1 πk = 1. If Zn = k then the distribution of Yn depends on the k-th vector of true hidden copy

number states, defined as Ck = (Ck1, . . . , CkM ), with each Ckm taking values in [J ] = {1, . . . , J}. We
assume that Ck1, . . . , CkM follow a discrete-time homogeneous Markov chain with initial probabilities
ρkj = P (Ck1 = j), j ∈ [J ] and transition probabilities akij = P (Ckm = j|Ckm−1 = i), i, j ∈ [J ].
Consequently, given the cluster assignment and the corresponding true hidden vector of copy number
states, Yn1, . . . , YnM are independent with Ynm following a distribution with parameters depending on
the hidden true state at bin m for cluster k, that is, Ynm|Zn = k,Ckm = j ∼ Fjθn . As mentioned earlier,
we assume Fjθn to be a Poisson distribution with rate j × θn, that is,

Fjθn(y) ≡ (j × θn)ye−(j×θn)

y!
with jθn > 0. (1)

In what follows we, w.l.o.g., consider the initial probabilities, ρkj ’s, to be fixed and known. We let Ψ
be the set containing all the unknown model parameters, i.e., Ψ = {A,θ,π}, where A = {Ak : k ∈ [K]}
with Ak = {akij : i, j ∈ [J ]}; θ = {θn : n ∈ [N ]}; and π = (π1, . . . , πK). In order to infer Ψ, the
hidden states Z = (Z1, . . . , Zn), and C = {C1, . . . ,CK} we apply VI; that is, we derive an algorithm
that, for given data, approximates the posterior distribution of the parameters by finding the Variational
Distribution (VD), q(Z,C,Ψ), with smallest Kullback-Leibler divergence to the posterior distribution
P (Z,C,Ψ|Y), which is equivalent to maximizing the evidence lower bound (ELBO) (Blei et al., 2017)
given by

ELBO(q) = E[ logP (Y,Z, C,Ψ)]− E[ log q(Z,C,Ψ)]. (2)

We consider the following prior distributions for the parameters in Ψ.

• aki = (aki1, . . . , a
k
iJ) ∼ Dirichlet(Λk0

i ).

• θn ∼ Gamma(ε0sn, ε
0
rn), where ε0sn and ε0rn are the the shape and rate hyperparameters, respectively.

• π ∼ Dirichlet(α0
1, . . . , α

0
K)

Next, we describe the main steps of the proposed VI approach for inferring Z,C and Ψ.

Step 1. VD factorization

We assume the following factorization of the VD:

q(Z,C,Ψ) = q(π)
N∏
n=1

q(Zn)
K∏
k=1

q(Ck)
K∏
k=1

J∏
i=1

q(aki )
N∏
n=1

q(θn) . (3)
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Figure 2: Probabilistic graphical model representing our proposed model. Shaded nodes represent ob-
served values, the unshaded ones are the latent variables and the squares are the hyperparameters of the
model; a posterior distribution over the values of the unshaded nodes is approximated using Variational
Inference. Ynm, observed read counts from cell n and bin m; Ckm, corresponding latent copy number
state forming a Markov chain; θn, cell-specific rate; Zn, latent cell-specific cluster assignment variable. π
and Ak, the priors over Zn and Ckm respectively; ρk, prior over the starting copy number state.
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Step 2. Joint distribution

The logarithm of the joint distribution satisfies: logP (Y,Z,C,Ψ) = logP (Y|Z,C,Ψ) + logP (C|Ψ) +
logP (Z|Ψ) + logP (Ψ). For details of calculations see Appendix A.1.

Step 3. VD computation

We now derive a coordinate ascent algorithm for the VD. That is, we derive an update equation for each
term in the factorization, Eq. (3), by calculating the expectation of logP (Y,Z,C,Ψ) over the VD of all
random variables except the one currently being updated (Bishop, 2006). For example, we obtain the
update equation for π, q(π), by calculating E−π( logP (Y,Z,C,Ψ)), where −π indicates that the expec-
tation is taken with respect to the VD of all other random variables than π, i.e., Z,C and {A,θ} except
π. Below we present the update equation for each term in Eq. (3). See Appendix A.2 for derivation
details. In addition, the values of the expectations taken with respect to the approximated distributions,
throughout the equations below, are given in Appendix A.3.

Update equation for π: Let I(·) be the indicator function. q(π) is a Dirichlet distribution with parameters
α = (α1, . . . , αK), where

αk = α0
k +

N∑
n=1

Eq(Zn)(I(Zn = k)). (4)

Update equation for Zn: Let ynm be the observed number of reads aligned to bin m for cell n corresponding
to the random variable Ynm and let Dn,m,j ≡ ynm log θn + ynm log j − jθn − log(ynm!).Thedistribution
q(Zn) is a Categorical distribution with parameters πn = (πn1, . . . , πnK), where

πnk =
exp(π̃nk)∑K

k′=1 exp(π̃nk′)
(5)

with

π̃nk = Eq(π)(log πk) +
M∑
m=1

J∑
j=1

Eq(Ck)(I(Ckm = j))Eq(θn)(Dn,m,j).

Update equation for θn: q(θn) is a Gamma distribution with shape and rate parameters:

εsn = ε0sn +
M∑
m=1

ynm (6)

εrn = ε0rn +
{ M∑
m=1

K∑
k=1

Eq(Zn)(I(Zn = k))
J∑
j=1

Eq(Ck)(I(Ckm = j))j
}
. (7)

Update equation for aki : q(a
k
i ) is Dirichlet with parameters Λk

i = (Λki1, . . . ,Λ
k
iJ), where

Λkij = Λk0ij +
M∑
m=2

Eq(Ck)(I(Ckm−1 = i, Ckm = j)). (8)
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Update equation for Ck: In the calculation of q(Ck), the resulting distribution resembles the posterior
probability of the hidden variables in an HMM and only differs in the normalization constant. Similarly
to the approach adopted in (MacKay, 1997), we use a slightly different implementation of forward-
backward algorithm. More specifically, we define a graph (one per cluster k) G = {V,E} with vertices
V = {Cmj : m ∈ [M ], j ∈ [J ]}, having weights denoted as wk(Cmj), and edges E = {Cm−1iCmj :
m ∈ {2, . . . ,M}, j ∈ [J ]}, having weights denoted as wk(Cm−1iCmj). Note that for the simplicity of
notation we use Cmj instead of Ckm = j for edges and vertices. We define forward (φkmj) and backward

(βkmj) quantities similar to HMMs (Bishop, 2006). Instead of using the terminologies of transition and
emission probabilities, we formulate a corresponding algorithm in terms of the weights of the graph,
wk(Cm−1iCmj) and wk(Cmj). The initial transition probability can be defined as wk(C0C1j). Notice that
k indicates the cluster which the graph belongs to. We calculate forward and backward quantities using
the weights, and there is no need to normalize the graph weights since a normalization is performed later
when calculating the VD. Having the weights, we compute the two posterior probabilities q(Ckm = j)
and q(Ckm−1 = i, Ckm = j); note that they are normalized by summing over all j ∈ [J ]. McGrory and
Titterington (2009) derive the exact normalization of the graph weights, for a similar but less complex
graphical model; however, this is unnecessary since the normalization can be performed later, as we do.
The update equations are as follows.

wk(Cm−1iCmj) = exp {Eq(ak
i )

(log akij)} (9)

wk(Cmj) = exp {
N∑
n=1

Eq(Zn)(I(Zn = k))Eq(θn)(Dn,m,j)} (10)

q(Ckm = j) =
φkmjβ

k
mj∑J

j=1 φ
k
mjβ

k
mj

(11)

q(Ckm−1 = i, Ckm = j) =
wk(Cm−1iCmj)wk(Cmj)φ

k
m−1iβ

k
mj∑J

j=1wk(Cm−1iCmj)wk(Cmj)φ
k
m−1iβ

k
mj

(12)

Step 4. Summary of updates

We update the parameters of each the posterior distribution presented in Step 3 using Algorithm 1. As
we aim to find the posterior distributions of cluster assignments and copy number states, we only return
q(Zn) and q(Ckm = j) for all the values of n, k, m and j.

3 Empirical investigation

3.1 Experimental setup

3.1.1 Dataset

We perform experiments on both simulated data and a published biological dataset (Leung et al., 2017)
(available from the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sraSRA) under acces-
sion number SRP074289). The biological data stem from single-cell whole-genome sequencing from 18
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Algorithm 1 Variational Inference for clustering and hidden state inference

1: procedure estimate-posteriors(y): y, the input of N sequences of length M
2: Initialise ε0sn, ε0rn, Λk0

i , α0
k, πnk, wk(C0C1j)

3: Update εsn using y and ε0sn in Eq. 6
4: Update wk(Cm−1iCmj) using Λk0

i and πnk in Eq. 9
5: Update wk(Cmj) using Λk0

i , πnk, ε0rn, εsn and y in Eq. 10
6: repeat

7: Update α
(c)
k using π

(c−1)
nk and α0

k in Eq. 4
8: Update q(Ckm = j)(c) and q(Ckm−1 = i, Ckm = j)(c) using
9: wk(C0C1j)

(c−1), wk(Cm−1iCmj)
(c−1) and

10: wk(Cmj)
(c−1) ( Eq. 9 to 12)

11: Update Λ
k(c)
i using Λk0

i and q(Ckm−1 = i, Ckm = j)(c) in Eq. 8

12: Update ε
(c)
rn using ε0rn, π

(c−1)
nk and q(Ckm = j)(c) in Eq. 7

13: Update π
(c)
nk using α

(c)
k , εsn, ε

(c)
rn , q(Ckm = j)(c) and y in Eq. 5

14: Update wk(Cmj)
(c) using Λ

k(c)
i , π

(c)
kn , ε

(c)
rn , εsn and y in Eq. 10

15: Update wk(Cm−1iCmj)
(c) using Λ

k(c)
i and π

(c)
nk in Eq. 9

16: c← c+ 1
17: until convergence of the ELBO in Eq. 2
18: Output: q(Zn) ∼ Cat(πn1, .., πnK), cluster probabilities
19: Output: q(Ckm = j), hidden state probabilities
20: return q(Zn) and q(Ckm = j)

primary colon cancer tumor cells and 18 metastatic cells from matched liver samples for one patient
referred to as CRC2 in Leung et al. (2017). In this work, we analyze CRC2 patient data (more complex
than CRC1 according to Leung et al. (2017)) considering chromosomes 18, 19, 20 and 21 comprising a
total of 904 genomic bins of an approximate size of 200Kb each. Each data point in the dataset corre-
sponds to the total number of reads aligned per bin per cell after GC correction (Leung et al., 2017).
These counts reflect the hidden copy numbers—copy number integers are conventionally ranged from 0
to 6 as in Leung et al. (2017)—in the tumor cell’s genome. The higher the counts are the higher the copy
numbers are expected to be. Regarding clustering in Leung et al. (2017), it is reasonable that the primary
tumor cells from colon and the metastatic cells from liver should cluster separately, as inter-tumor copy
number differences are expected to dominate over minor intra-tumor copy number variations; therefore,
we use the terms primary and metastatic clusters.

For the simulated data, we generate 30 datasets for each test case, following our graphical model
and inspired by biological datasets from Leung et al. (2017) (details in section 3.2.1); for implementation
details, see README.txt in https://github.com/negar7918/CopyMix. We examine different test cases
that are orthogonal to each other, in order to show the robustness of our approach; each scenario, for
both clustering and copy number state inference, is reproducible.

3.1.2 Experimental Protocol

As maximizing the ELBO, given in Eq. 2, is a non-convex optimization problem, it can lead to a local
optimum; to avoid this problem, it is crucial to initialize the proposed VI algorithm properly (Blei et al.,
2017). We develop the following initialization framework to tackle this challenge. We run VI for different
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numbers of clusters considering different initialization methods; below is the list of initialization methods:

• k-means+bw: run k-means to find clusters then perform Baum-Welch (Baum, 1972) on HMM
with Poisson distributed observations (Paroli et al., 2000) to infer the copy number sequences.

• k-means+bw-2: run k-means to find clusters then perform a modified Baum-Welch (similar to
the usual Baum-Welch except that the Poisson distribution has the same form as in Eq. 1) to infer
the copy number sequences.

• k-means+rand: run k-means to find clusters then randomly assign the copy number sequences

• non-Markovian EM: run EM over a graphical model similar to the one in Fig 2 but without
dependencies between C’s, to simultaneously cluster and infer the copy number sequences.

• rand: randomly assign clusters and copy number sequences.

• rand+bw: randomly assign clusters then perform Baum-Welch on Poisson HMM to infer the copy
number sequences.

For each given number of clusters, we choose the best VI run based on the highest expected value of
the log-likelihood. Next, we select the number of clusters by an elbow selection method (Johnson and
Wichern, 2007) based on the Deviance Information Criterion (Spiegelhalter et al., 2002) over different
numbers of clusters.

We assess the clustering performance of CopyMix on 30 simulated datasets for each test case via
V-measure (Rosenberg and Hirschberg, 2007). V-measure is a score between zero and one, where one
stands for perfect clustering. V-measure captures the homogeneity (only those cells that are members of
a single group are assigned to a single cluster) and completeness (all of those cells that are members of
a single group are assigned to a single cluster) properties. Regarding inference of copy number profiles,
we evaluate the performance of CopyMix on simulated data by calculating the proportion of discordant
(unequal) position values between true and inferred vectors of copy number states.

For biological data evaluation, V-measure is used to assess the clustering performance where the true
clusters are assumed to correspond to the primary and metastatic cells; regarding state inference, we
compare the copy number breakpoints between the results from CopyMix and the original paper Leung
et al. (2017).

3.2 Experimental Results

3.2.1 Simulated data

Here, we compare CopyMix to the VI initialization methods, listed in section 3.1.2, on 30 simulated
datasets for each test scenario; we select the number of cells, sequence lengths, rate parameters, transition
probabilities based on Leung et al. (2017). We assume equal amplification on the read counts across bins
since the bin size is high enough (200kb as in Leung et al. (2017)) meaning that the effect of unequal
amplification is negligible. Figures 3, 4 and 5 (in the boxplots, the median values are highlighted in red for
initialisation method and blue for CopyMix to facilitate comparisons) provide summaries of V-measures
and proportions of discordant positions for different settings of: copy number transition matrices and
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Table 1: This table shows the initialization methods chosen by CopyMix framework concerning configu-
ration A, C, D and E in Fig 3 across 30 different datasets.
A C D E

k-means+bw (15) k-means+rand (5) non-Markovian EM (19) k-means+rand (4)
k-means+bw-2 (1) rand (25) k-means+bw (4) k-means+bw (10)
rand (14) rand+bw (7) rand (16)
The number in the parentheses is number of datasets using the initialization method

A B C D E

0.0

0.2

0.4

0.6

0.8

1.0

d
is
c
o
rd
a
n
t
p
o
s
it
io
n

Initialisation median

CopyMix median

A B C D E
transition matrix

0.0

0.2

0.4

0.6

0.8

1.0

v-
m
ea

su
re

Initialisation median
CopyMix median

Figure 3: Performance of initialization methods (brown bars with red median values) and CopyMix
(cyan bars with blue median values) across different sets of transition matrices Left: discordant positions
between true and inferred vectors of copy number states. Right: V-measure between true and inferred
cell clustering assignments.

number of clusters (Fig. 3); sequence length (Fig.4) and number of cells (Fig. 5). For all the tests,
CopyMix results in V-measure of 1 except for one case (Fig. 3) where V-measure is in an interval of [.85,
1] with the median being 1; proportions of discordant positions are mostly 0 and otherwise are in the
interval of [0, .2]. Note that CopyMix benefits from initializations but interestingly also recovers from
poor ones; moreover, CopyMix outperforms non-Markovian EM, k-means and two versions of Baum-
Welch included in the initialization methods. Table 1, lists the initialization methods chosen by our
framework as the best ones based on the highest likelihood, across 30 datasets for the configurations A,
C, D and E in Fig. 3; the rest of the figures in this section have similar results concerning the chosen
initialization methods by our framework.

The results in Fig. 3 are obtained considering 45 cells—each with a sequence length of 800 bins—
clustered into two (configurations A to D) and three (configuration E) clusters varying the copy number
variation (transition) patterns in each cluster. The mean values of θn are around 100. The copy number
transition patterns (forming the transition matrix of a Markov chain) vary across configurations A to E
which are orthogonal to each other; The configurations are based on the following definitions: single
state, a copy number state is inclined to stay at one certain state; self-transition, a copy number state
is inclined to stay at its current state for awhile; changing state, a copy number state changes shortly
after being at a state; non-homogeneous transition, a sudden change of copy number state arises for
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Figure 4: Performance of initialization methods and CopyMix varying the sequence length. Left and
right as well as color codes are similar to Fig. 3.

a specific short range of positions in the copy number sequence; shift state, copy number state patterns
of different clusters differ by a multiplicative or additive constant. We now describe the configurations
of copy number transition patterns: A, similar to chromosomes 11 in CRC1 and 4 in CRC2 (shift state
pattern); B, similar to chromosome 11 in CRC1 (one cluster has a self-transition pattern and the other
one single state pattern); C, similar to chromosome 3 in CRC1 (two clusters have identical transition
matrices but one follows the non-homogeneous transition pattern); D, similar to chromosomes 18 to 21 in
CRC2 which is the dataset used in section 3.2.2 (self-transition, changing state and shift state patterns);
E, two clusters have the transitions in case C and the third cluster has a combination of changing state and
single state pattern . As we can see, CopyMix has a perfect performance in terms of clustering and copy

number inference for easier cases and also a high performance concerning the harder cases. Moreover, we
investigae decreasing the rate parameter θn for configuration A to see how our model handles shallow data
as this can be a challenge in copy number profiling (Zahn et al., 2017). Our model is robust towards lower
rates up to θn = 3, without reducing the quality of performance concerning V-measure and discordant
positions.

Next, we test configuration A by increasing the size of the sequences up to 10000 (inspired by the
total length of the genomic bins from biological data in Leung et al. (2017)), see Fig. 4. We can observe
that our model handles these sequences without any decrease in performance.

Finally, Fig. 5 illustrates the perfect performance of CopyMix when varying the number of cells from
15 to 500 in configuration A.

3.2.2 Biological data

Next, we evaluate CopyMix on the biological published data from Leung et al. (2017). CopyMix clusters
the cells into primary and metastatic groups which compared to the clustering results of Leung et al. (2017)
leads to a perfect V-measure of one. Metastatic tumor cells were clustered into two major subclusters
in Leung et al. (2017) by amplifications on chromosomes 3 and 8 where some known genes are present;
hence, considering chromosomes 18 to 21 (our biological dataset) is reasonable for the purpose of only
detecting the two major clusters. Note that CopyMix detects the three clusters if chromosomes 3 and
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Figure 5: Performance of initialization methods and CopyMix varying the number of cells. Left and right
as well as color codes are similar to Fig. 3.

8 are added. However, Leung et al. (2017) does not present a method to decide over the threshold in
hierarchical clustering which leads to the chosen the level of subclusters in the hierarchy; moreover, there
is no ground truth that we can judge their results. Applying other state-of-the-art clustering methods
on the bin counts (e.g., k-means, hierarchical clustering (Bar-Joseph et al., 2001)—this is used by Leung
et al. (2017) after copy number profiling—and density-based spatial clustering (Ester et al., 1996)) leads
to poor results with V-measure between 0 and .1.

Regarding the copy number profiling, Fig. 6 illustrates the copy number profiles inferred by CopyMix
and the original work by (Leung et al., 2017). The heatmaps indicate higher copy number state by
a darker color. We can see that CopyMix detects the breakpoints (copy number changes) reported in
(Leung et al., 2017) with an accuracy of 88%, considering a margin (of a size corresponding to 1.5% of the
sequence length) around the breakpoints; moreover, we can observe that CopyMix further detects finer
breakpoints than the ones from (Leung et al., 2017). Note that Leung et al., 2017 perform ploidy scaling
which contributes to some copy number scale differences in comparison to the results of CopyMix.

4 Conclusion

The tasks of single-cell copy number profiling and clustering have so far been sequential, requiring different
and ad-hoc preprocessing of data lacking an automated, generalized and fully probabilistic framework. We
introduce a mixture model-based framework, CopyMix, to allow for a fully probabilistic and simultaneous
single-cell copy number profiling and clustering using VI. Our approach is evaluated on both simulated
and biological data—the biological dataset concerns the clustering and copy number profiling of cancer
primary and metastatic cells. Regarding clustering, the V-measure of 1 is achieved for all of the test cases
involved except one case with values in the interval of [.85, 1]. Concerning the copy number profiling,
results from simulated data lead mostly to zero false detected states; for biological data, CopyMix detects
88% of the breakpoints from the original paper Leung et al. (2017). In addition, CopyMix discovers refined
copy number changes between major breakpoints; this allows for potential future investigation on the
substructure of copy number variations, with possible clinical relevance.
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Figure 6: Copy number inference comparison between the results of (Leung et al., 2017) (left) and
CopyMix (right) for both primary and metastatic clusters.

Having good results on shallow simulated data, the proposed approach can be applied and further
tested for shallow data as this is a challenge described in Zahn et al. (2017). CopyMix provides for
several different research opportunities concerning clustering and state inference, for example: reducing
sensitivity in VI initialization; improving computational efficiency; and augmenting and refining the
model.
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A Appendix: Derivation details

A.1 Step 2 of Section 2

Each term of the logarithm of the joint distribution presented in Step 2 of Section 2 is calculated as follows:

logP (Y|Z,C,Ψ) =
N∑
n=1

M∑
m=1

K∑
k=1

J∑
j=1

I(Zn = k)I(Ckm = j) logFjθn(ynm)

=
N∑
n=1

M∑
m=1

K∑
k=1

J∑
j=1

I(Zn = k)I(Ckm = j)
[
ynm log(jθn)− jθn − log(ynm!))

]
;

logP (C|Ψ) =
K∑
k=1

[ J∑
j=1

I(Ck1 = j) log ρkj +
M∑
m=2

J∑
i=1

J∑
j=1

I(Ckm−1 = i, Ckm = j) log akij
]
;

logP (Z|Ψ) =
N∑
n=1

K∑
k=1

I(Zn = k) log πk;

logP (Ψ) = logP (A) + logP (θ) + logP (π)

where,

logP (θ) =
N∑
n=1

[
(ε0sn − 1) log θn − ε0rnθn

]
+ C,

logP (A) =
K∑
k=1

J∑
i=1

[ J∑
j=1

(Λk0
ij − 1) log akij

]
+ C,

and

logP (π) =

K∑
k=1

(α0
k − 1) log πk + C.

A.2 Step 3 of Section 2

In step 3 of section 2, In what follows we present the derivation of each posterior update equation. For convenience,
we use +≈ to denote equality up to a constant additive factor.
Update equation for π:

log q(π) +≈ E−π
(

logP (Y,Z,C,Ψ)
)

+≈ E−π
(

logP (Z|Ψ)
)

+ E−π
(

logP (π)
)

=

N∑
n=1

K∑
k=1

Eq(Zn)

(
I(Zn = k)

)
log πk + logP (π)

=
K∑
k=1

log πk

[ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)]
+

K∑
k=1

log πk(α0
k − 1)

=
K∑
k=1

log πk

[( N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
+ α0

k

)
− 1
]
.
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Update equation for Zn:

log q(Zn) +≈ E−Zn

(
logP (Y,Z,C,Ψ))

+≈ E−Zn

(
logP (Y|Z,C,Ψ)

)
+ E−Zn

(
logP (Z|Ψ)

Let Dn,m,j ≡ ynm log θn + ynm log j − jθn − log(ynm!). Note that logP (Y|Z,C,Ψ) and logP (Z|Ψ) can be written
as the sum of two terms, one that depends on Zn and one that does not, i.e.,

logP (Y|Z,C,Ψ) =
∑M
m=1

∑K
k=1

∑J
j=1 I(Zn = k)I(Ckm = j)Dn,m,j +∑

l 6=n
∑M
m=1

∑K
k=1

∑J
j=1 I(Zl = k)I(Ckm = j)Dn,m,l

and

logP (Z|Ψ) =
K∑
k=1

I(Zn = k) log πk +
∑
l 6=n

K∑
k=1

I(Zl = k) log πk.

Consequently,

log q(Zn)+≈
∑K
k=1 I(Zn = k)

{
Eq(π)(log πk) +

M∑
m=1

J∑
j=1

Eq(Ck)

(
I(Ckm = j)

)
× Eq(θn)(Dn,m,j)

}
.

Update equation for θn:

log q(θn) +≈ E−θn
(

logP (Y,Z,C,Ψ)

+≈ E−θn
(

logP (Y|Z,C,Ψ)
)

+ E−θn
(

logP (θ)
)

We can write logP (Y|Z,C,Ψ) as in Eq. 13 and logP (θ) which depends on θn as,

logP (θ) = (ε0sn − 1) log θn − ε0rnθn +
∑
l 6=n

[
(ε0sn − 1) log θl − ε0rnθl

]
+ C.

Therefore,

log q(θn) +≈ log θn

[ M∑
m=1

ynm

K∑
k=1

J∑
j=1

Eq(Zn)

(
I(Zn = k)

)
Eq(Ck)

(
I(Ckm = j)

)]

− θn
[ M∑
m=1

K∑
k=1

J∑
j=1

Eq(Zn)

(
I(Zn = k)

)
Eq(Ck)

(
I(Ckm = j)

)
j
]

+ log θn(ε0sn − 1)− θnε0rn.

Note that
∑K
k=1

∑J
j=1 Eq(Zn)

(
I(Zn = k)

)
Eq(Ck)

(
I(Ckm = j)

)
= 1.

Update equation for aki :

log q(aki ) +≈ E−ak
i

(
logP (Y,Z,C,Ψ)

)
+≈ E−ak

i

(
logP (C|Ψ)

)
+ E−ak

i

(
logP (A)

)
Disregarding the terms that do not depend on aki in logP (C|Ψ) and logP (A), we obtain:
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log q(aki ) +≈
J∑
j=1

M∑
m=2

Eq(Ck)

(
I(Ckm−1 = i, Ckm = j)

)
log akij +

J∑
j=1

(Λk0
ij − 1) log akij

=
J∑
j=1

log aij

{[
Λk0
ij +

M∑
m=2

Eq(Ck)

(
I(Ckm−1 = i, Ckm = j)

)]
− 1
}
.

Update equation for Ck:

log q(Ck) +≈ E−Ck

(
logP (Y,Z,C,Ψ)

)
+≈ E−Ck

(
logP (Y|Z,C,Ψ)

)
+ E−Ck

(
logP (C|Ψ)

)
.

We can write logP (Y|Z,C,Ψ) as the sum of two terms, one that depends on Ck and another that does not, that
is,

logP (Y|Z,C,Ψ) =
N∑
n=1

M∑
m=1

J∑
j=1

I(Zn = k)I(Ckm = j)Dn,m,j

+
N∑
n=1

M∑
m=1

∑
k′ 6=k

J∑
j=1

I(Zn = k)I(Ck′m = j)Dn,m,j .

Let f(k) be a function of k as
∑J
j=1 I(Ck1 = j) log ρkj +

∑M
m=2

∑J
i=1

∑J
j=1 I(Ckm−1 = i, Ckm = j) log akij , We can

write logP (C|Ψ) = f(k) +
∑
k′ 6=k f(k′).

Thus, disregarding the terms that do not depend on Ck we obtain:

log q(Ck) +≈
M∑
m=1

J∑
j=1

I(Ckm = j)
{ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
Eq(θn)

(
Dn,m,j

)}

+

J∑
j=1

I
(
Ck1 = j

)
log ρkj +

M∑
m=2

J∑
j=1

J∑
i=1

I
(
Ckm−1 = i, Ckm = j

)
× Eq(ak

i
)

(
log akij

)
,

Calculations regarding directed graph are as follows:

uk(C1:m−1, Cm = j) =
m−1∏
i=1

J∏
s=1

exp
{ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
Eq(θn)

(
Dn,i,s

)}I(Cki=s)

exp
{ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
Eq(θn)

(
Dn,m,j

)}
J∏
j=1

exp
{

log ρkj

}I
(
Ck1=j

)
m−1∏
t=2

J∏
s=1

J∏
i=1

exp
{

Eq(ak
i
)

(
log akis

)}I
(
Ckt−1=i,Ckt=s

)
J∏
i=1

exp
{

Eq(ak
i
)

(
log akij

)}I
(
Ckm−1=i,Ckm=j

)
.
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and

vk(Cm+1:M , Cm = j) =
M∏

i=m+1

J∏
s=1

exp
{ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
Eq(θn)

(
Dn,i,s

)}I(Cki=s)

M∏
r=m+1

J∏
s=1

J∏
i=1

exp
{

Eq(ak
i
)

(
log akis

)}I
(
Ckr=i,Ckr+1=s

)
J∏
i=1

exp
{

Eq(ak
i
)

(
log akji

)}I
(
Ckm=j,Ckm+1=i

)
.

We define φkmj =
∑J
C1=1 ..

∑J
Cm−1=1 uk(C1:m−1, Cm = j) and βkmj =

∑J
Cm+1=1 ..

∑J
CM=1 vk(Cm+1:M , Cm = j).

The graph weights are (we assume wk(C0C1j) to be fixed):

wk(Cm−1iCmj) = exp
{

Eq(ak
i
)(log akij)

}
and wk(Cmj) = exp

{ N∑
n=1

Eq(Zn)

(
I(Zn = k)

)
Eq(θn)

(
Dn,m,j

)}
.

Note that we skip writing i, j in the calculations to make them short and more readable:

φkm =
∑J
C1=1 ..

∑J
Cm−1=1 uk(C1:m−1, Cm) =∑J

C1=1 ..
∑J
Cm−1=1 uk(C1:m−2, Cm−1, Cm) =∑J

C1=1 ..
∑J
Cm−1=1 uk(C1:m−2, Cm−1)wk(Cm)wk(Cm−1Cm) =

wk(Cm)
∑J
Cm−1=1 φ

k
m−1wk(Cm−1Cm).

βkm =

J∑
Cm+1=1

..

J∑
CM=1

vk(Cm+1:M , Cm)

=
J∑

Cm+1=1

..
J∑

CM=1

vk(Cm+2:M , Cm+1, Cm)

=
J∑

Cm+1=1

..
J∑

CM=1

vk(Cm+2:M )wk(CmCm+1)wk(Cm+1)

=

J∑
Cm+1=1

βkm+1wk(CmCm+1)wk(Cm+1).

We now calculate the posteriors:

q(Ckm = j) =
J∑

Ck,1:m−1

J∑
Ck,m+1:M

q(Ck,1:m−1, Ckm = j, Ck,m+1:M )
J∑

C1:m−1

uk(C1:m−1, Cm = j)

J∑
Cm+1:M

vk(Cm+1:M , Cm = j) = φkmjβ
k
mj .
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q(Ckm−1 = i, Ckm = j) =
J∑

Ck,1:m−2

J∑
Ck,m+1:M

q(Ck,1:m−2, Ck,m−1 = i, Ckm = j, Ck,m+1:M ) =

J∑
C1:m−2

uk(C1:m−2, Cm−1 = i)wk(Cm−1iCmj)wk(Cmj)

J∑
Cm+1:M

vk(Cm+1:M , Cm = j) = wk(Cm−1iCmj)wk(Cmj)φ
k
m−1iβ

k
mj .

A.3 Calculating expectations

Let Φ be the digamma function defined as Φ(x) = d
dx log Γ(x) which can be easily calculated via numerical

approximation. The values of the expectations taken with respect to the approximated distributions are given as
follows where Φ is used for some of them.

• Eq(Zn)

(
I(Zn = k)

)
= πnk

• Due to computational issues in calculating Eq(θn)

(
Dn,m,j

)
= ynmEq(θn)(log θn) + ynm log j − jEq(θn)(θn) −

log(ynm!), we can instead compute it using the fact that
Eq(θn)(θn) = εsn/εrn and

Eq(θn)

(
log θn

)
= Φ(εsn) + logEq(θn)(θn)− log εsn.

Therefore, we obtain Eq(θn)

(
Dn,m,j

)
= logFθ̃(ynm)+ynm×

[
Φ(εsn)− log εsn

]
, with Fθ̃ being a Poisson p.m.f.

with rate parameter θ̃ = j × (εsn/εrn).

• Eq(π)(log πk) = Φ(αk)−Φ
(∑K

k=1 αk

)
• Eq(ak

i
)(log akij) = Φ(Λkij)−Φ

(∑J
j=1 Λkij

)
• Eq(Ck)

(
I(Ckm = j)

)
= q(Ckm = j) and Eq(Ck)

(
I(Ckm−1 = i, Ckm = j)

)
= q(Ckm−1 = i, Ckm = j), which are

calculated in Eq. 11 and 12.
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