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Abstract

Rhythms of the brain are generated by neural oscillations across multiple frequencies,
which can be observed with multiple modalities. Following the natural log linear law of
frequency distribution, these oscillations can be decomposed into distinct frequency
intervals associated with specific physiological processes. This perspective on neural
oscillations has been increasingly applied to study human brain function and related
behaviors. In practice, relevant signals are commonly measured as a discrete time series,
and thus the sampling period and number of samples determine the number and ranges
of decodable frequency intervals. However, these limits have been often ignored by
researchers who instead decode measured oscillations into multiple frequency intervals
using a fixed sample period and numbers of samples. One reason for such misuse is the
lack of an easy-to-use toolbox to implement automatic decomposition of frequency
intervals. We report on a toolbox with a graphical user interface for achieving local and
remote decoding rhythms of the brain system (DREAM) which is accessible to the
public via GitHub. We provide worked examples of DREAM used to investigate
frequency-specific performance of both neural (spontaneous brain activity) and
neurobehavioral (in-scanner head motion) oscillations. DREAM analyzed the head
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motion oscillations and found that younger children moved their heads more than older
children across all five frequency intervals whereas boys moved more than girls in the
age interval from 7 to 9 years. It is interesting that the higher frequency bands contains
more head movements, and showed stronger age-motion associations but the weaker
sex-motion interactions. Using the fast functional magnetic resonance imaging data
from the Human Connectome Project, DREAM mapped the amplitude of these neural
oscillations into multiple frequency bands and evaluated their test-retest reliability. A
novel result indicated that the higher frequency bands exhibited more reliable amplitude
measurements, implying more inter-individual variability of the amplitudes for the
higher frequency bands. In summary, these findings demonstrated the applicability of
DREAM for frequency-specific human brain mapping as well as the assessments on their
measurement reliability and validity.

Keywords: brain oscillations, slow frequency, reliability, head motion 1

1 Introduction 2

Rhythms of the brain are generated by neural oscillations occurring across multiple 3

frequencies [5]. The natural logarithm linear law (N3L) offers a theoretical framework 4

for parcellating these brain oscillations into multiple frequency intervals linking to 5

distinct physiological roles [22]. Remarkably, when graphed on the natural logarithm 6

scale, the centers of each frequency interval fall on adjacent integer points. Thus, 7

distances between adjacent center points are isometric on the natural logarithm scale, 8

resulting in a full parcellation of the whole frequency domain where each parcel of the 9

frequencies is fixed in theory, namely frequency intervals. These frequency intervals 10

have been repeatedly observed experimentally [6]. This characteristic suggests that 11

distinct physiological mechanisms may contribute to distinct intervals. Functional 12

magnetic resonance imaging (fMRI), a non-invasive and safe technique with an 13

acceptable trade-off between spatial and temporal resolution, has the potential to 14

contribute to the study of certain neural oscillations in the human brain in vivo. In 15

early fMRI studies of the human brain, researchers tended to treat oscillations across 16

different frequencies without differentiation. Low-frequency oscillations measured by 17

resting-state fMRI (rfMRI) have been assessed primarily in the frequency range of 0.01 18

to 0.1 Hz, a range in which spontaneous brain activity has high signal amplitude [4, 20]. 19

While such efforts have been somewhat informative, treating this broad frequency range 20

in a unitary manner may conceal information carried by different frequency intervals. 21

To address this issue, an early study decomposed the rfMRI signals into multiple 22

frequency intervals using the N3L theory (Slow-5: 0.01 - 0.027 Hz, Slow-4: 0.027 - 0.073 23

Hz, Slow-3: 0.073 - 0.198 Hz, Slow-2: 0.198 - 0.25 Hz) [47]. This exploration 24

demonstrated the feasibility of mapping distributional characteristics of oscillations’ 25

amplitude in both space and time across multiple frequency intervals in the brain. 26

Since then, an increasing number of rfMRI studies have employed such methods by 27

directly applying these frequency intervals, and have detected frequency-dependent 28

differences in brain oscillations in patients. Specifically, these differences were mostly 29

evident between Slow-4 and Slow-5 amplitudes [14,16,19,21,28,42]. Such 30

frequency-dependent phenomena have also been explored using other rfMRI metrics 31

including regional homogeneity detected in the Slow-3 and Slow-5 frequency ranges [34]. 32

While the lower and upper bounds of the frequency intervals are fixed in theory, their 33

highest and lowest detectable frequencies and frequency resolution are determined by 34

the sampling parameters (e.g., rate and duration) in computational practice. However, 35

the above-mentioned studies applied the frequency intervals from earlier studies [8, 47] 36

rather than to use those matching their actual sampling settings. To address this 37
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situation, we developed an easy to use toolbox to decode the frequency intervals by 38

applying the N3L theory. This toolbox, named DREAM, is based on MATLAB with a 39

graphical user interface (GUI). Here, we introduce the N3L algorithm and its DREAM 40

implementation. Neural oscillations reflected by the human brain spontaneous activity 41

measured with resting-state functional MRI and head motion data during mock MRI 42

scans were employed as two worked examples to demonstrate the use of DREAM to 43

perform frequency analyses. 44

2 Methods and Algorithms 45

Neuronal brain signals are temporally continuous but they are almost always measured 46

as discrete data for practical reasons. The characteristics of the sampled data should 47

meet the criterion of the sampling theorem proposed by American electrical engineers 48

Harry Nyquist and Claude Shannon. The core algorithm to determine the frequency 49

boundaries of measured neuronal signals in DREAM is based on the Nyquist-Shannon 50

sampling theorem. Specifically, per the theorem, sampling frequency and sampling time 51

determine the highest and lowest frequencies that can be detected and reconstructed. 52

Sampling data retains most of the information contained in the original signals if the 53

sampling frequency is at least twice the maximum frequency of the continuous signals. 54

As for neuronal signals, the highest frequency that could be detected and reconstructed 55

is determined by the sampling frequency, or by the sampling interval which is equal to 56

the reciprocal of the sampling frequency, as shown in formula (1) 57

fmax =
1

2TR
(1)

where fmax represents the highest frequency that could be detected in the neuronal 58

signal and TR represents the sampling interval. 59

The lowest frequency in neuronal signals that could be detected depends on the 60

sampling time. As shown in formula (2), in order to distinguish the lowest frequency in 61

neuronal signals, the sampling time should be equal to or larger than the reciprocal of 62

two times the lowest frequency 63

T ≥ 1

2fmin
(2)

where T represents the sampling time, and fmin represents the lowest frequency in 64

neuronal signals that could be distinguished. 65

Since the sampling time is equal to the number of samples multiplied by the 66

sampling interval, the lowest frequency can be calculated by formula (3): 67

fmin =
1

2NTR
(3)

where N represents the number of samples. 68

According to the N3L theory, neural oscillations in mammalian brain formed a linear 69

hierarchical organization of multiple frequency bands when regressed on a natural 70

logarithmic scale. The center of each band would fall on each integer of the natural 71

logarithmic scale (Fig. 1-1). Thus, adjacent bands have constant intervals that equals to 72

one, which correspond to the approximately constant ratios of adjacent bands on the 73

linear scale (Fig. 1-2). With the highest and lowest frequencies reconstructed, N3L can 74

derive the number of decoded frequencies and the boundaries of each frequency interval 75

(Fig. 1-3). Accordingly, when graphed on the natural log scale, the center of each 76

decoded frequency is an integer. Thus, adjacent center points on the natural log scale 77

are equidistant, which corresponds to the same proportion of adjacent center points’ 78
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values on the linear scale. Based upon this theorem, after performing a linear regression 79

analysis for the highest and lowest frequencies acquired previously, we can determine 80

the central frequencies, as well as the number frequency intervals that can be decoded. 81
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Figure 1. The flowchart on the DREAM algorithm. (1) N3L theory defines an
oscillator with a length-one frequency band centered at n, i.e., OSC(n), in the natural
log space. (2) In original frequency space, it expands the frequency band (en−0.5, en+0.5)
Hz. (3) This frequency band can be discretized with a sampling procedure with N points
and TR rate in terms of the classical signal theory. (4) This computational frequency
band is for a band-pass filtering process to extract the OSC(n) from the raw time series.

Finally, the decoding process integrated in DREAM performs band-pass filtering 82

with the frequency intervals provided by DREAM in the previous steps (Fig. 1-4). This 83

is implemented by the MATLAB built-in function fft and ifft to perform direct and 84

inverse time-frequency transformation on the signals for individual decoded frequency 85

intervals, respectively. All the above steps are illustrated as the flowchart in Figure 1. 86

Interface and Usage 87

Figure 2. DREAM Flash DREAM 88

has been shared and released 89

with the Connectome 90

Computation System [36]. 91

After downloading 92

the package at GitHub, users 93

will need to add the directory 94

where the package is stored 95

into the MATLAB path. The 96

package can then be launched 97

by entering “DREAM” 98

in the MATLAB command 99

line. DREAM integrates 100

its GUI (two buttons) 101

into its flash screen (Fig. 2). 102
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Program Interface 103

Figure 3. DREAM DirTree
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(dispensable)

Data

Subject
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Data Folder 2
(dispensable)

Data

Subject
Folder 3

Data Folder 3
(dispensable)

Data

Subject List

Users should enter or organize their 104

data into the predefined directory 105

structure (Fig. 3) before start 106

processing the data. The work 107

directory is where the subject 108

directories are stored (full path). 109

Individual data should be stored 110

in each subject directory or a 111

sub-folder inside (data directory). 112

DREAM has a main interface 113

(Fig. 4) for setting up the structure 114

(the left side) and previewing 115

the plots of time series from 116

the data selected (the right side). 117

GUI Usage 118

We introduce how to use the graphical interface step by step in below. The circled 119

numbers in Figure 4 correspond to the analyzing steps in this section.

Figure 4. The main interface of DREAM.

120

• Step 1 - select the data type: Click the drop-down box to choose the data type 121

to be analyzed. 122

• Step 2 - set up the work directory: Click the path selection button to set the 123

work directory in the dialog box that pops up. 124

• Step 3 - batch process: Select the subject list file in the popped-up dialog box 125

by clicking the file selection button. 126
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• Step 4 - set up sampling rate: Enter the sampling interval in seconds (TR) in 127

the input box (in some cases, this can be automatically extracted from the header 128

information). 129

• Step 5 (optional) - data directory: If the data are stored in a sub-folder inside 130

the subject directory, type the name of the data directory in the input box. 131

After all the above parameters are set up, data meeting the requirement will appear 132

in the list-box (Fig. 4-6), from where the user can remove unwanted data by selecting 133

the file name and clicking the Remove button. Finally, by clicking the Divide button, 134

a user can start the decoding program. The outputs contain a set of decoded files and a 135

csv file that records the boundary frequencies of each decoded band. The outcomes can 136

be directly used for subsequent analyses. 137

3 DREAM1: Frequency-dependent oscillations of 138

in-scanner head motion in 3-16 years-old children 139

In-scanner head motion has been treated as a confound in fMRI studies, especially in 140

studies of children and patients with psychiatric disorders. Many studies have shown 141

the effects of motion on fMRI results such as increases of short-distance correlations and 142

decreases of long-distance correlations in rfMRI-derived connectivity metrics [23, 27, 38]. 143

Researchers have proposed various methods to correct motion effects in fMRI studies. 144

In contrast, studying head motion as a neurobehavioral trait has long been overlooked 145

(see an exception in [41]), especially in children. Here, we use DREAM to quantify head 146

motion data acquired from preschool and school children in a mock scanner using a 147

novel multi-frequency perspective. We hypothesized that: 1) head motion is a 148

behavioral trait associated with age; 2) there are sex differences in head motion in 149

children; and 3) the head motion effects are frequency-dependent. 150

Participants and Data Acquisition 151

We recruited 94 participants (47 females) between 3 to 16 years of age as part of the 152

Chinese Color Nest Project [39,48], a long-term (2013-2022) large-scale effort on 153

normative research for lifespan development of mind and brain (CLIMB) [9]. All 154

participants were from groups visiting during the Public Science Open Day of the 155

Chinese Academy of Sciences, with the approval of at least one legal guardian. 156

The experiment was performed in a mock MRI scanner at the site of the MRI Research 157

Center of the Institute of Psychology, Chinese Academy of Sciences. The mock scanner 158

was built by PST (Psychology Software Tools, Inc.) using a 1:1 model of the GE MR750 159

3T MRI scanner in use at the institute. It is used for training young children to lie still 160

in a scanner before participating the actual MRI scanning session. It is decorated with 161

cartoon stickers to provide a children-friendly atmosphere. Head motion data were 162

acquired with the MoTrack Head Motion Tracking System (PST-100722). The system 163

consists of three components: a MoTrack console, a transmitter and a sensor. The 164

sensor is worn on the participant’s head and provides the position of the head relative 165

to the transmitter. For each participant, head motion is displayed on the computer 166

screen in real-time. The original sampling rate of the system is 103 Hz. The averaging 167

buffering size is 11 samples, which results in a recording sampling rate of 9.285 Hz. The 168

participants were instructed to rest quietly on the bed of the mock scanner for around 169

three and half minutes without moving their heads or bodies. They were watching a 170

cartoon film inside the scanner during the “scanning” to simulate movie-watching 171

scanning. The data acquisition period was designed to resemble the real MRI scanning 172
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environment, with a recording of scanning noises of the real MRI machine played as the 173

background noise. 174

Data Analysis 175

Head motion data are recorded in text files consisting of six parameters for each time 176

point, three translation (millimeters) and three rotation (degrees) measures. The first 177

three parameters are displacements in the superior, left and posterior directions, 178

respectively. The last three parameters are rotation degrees in the three cardinal 179

rotational directions. We converted the original data into frame-wise displacement (FD), 180

a single parameter scalar quantity representing head motion proposed by Power and 181

colleagues [23]. To correct for spikes caused by sudden movements, which may bias 182

mean FD values, we applied the AFNI 3dDespike command (version 17.3.06) to the 183

FD time series. Data without this preprocessing was also analyzed and supported 184

reproducible patterns. Then time-windows were determined and applied before feeding 185

the data into DREAM. We retained 1672 sampling points from the zeroed time point 186

(time point when the original six parameters were set to zero), which equaled a duration 187

of three minutes. After preprocessing, we used DREAM to decode the data. Of note, 188

the original FD values were all positive. After decoding, the time series of decoded 189

bands were demeaned, which means the average values of all decoded time series were 190

very near to zero. Thus, we took the absolute value of decoded frequency intervals to 191

calculate mean FD values, which were used in subsequent statistical analyses. Inspired 192

by many human growth curves modeled by exponential function and the scatter plots 193

on the head motion data, we first converted the head motion data using the natural 194

logarithm transformation and then assess the relationship between FD and age by using 195

linear regression models to fit the FD data in each frequency interval with age. We 196

conducted this regression for boys and girls, respectively, and tested whether the slopes 197

and intercepts are significantly different between boys and girls. Of note, this method is 198

equivalent to an Analysis of Covariance (ANCOVA) [29]. These analyses were also 199

applied to the standard deviation of FD time series to test the stability of head motion. 200

Results 201

Six participants were excluded from further data analysis due to sampling periods less 202

than three minutes. Another four participants were excluded because their mean FD 203

values were three standard deviations higher than the mean value of the whole group 204

(i.e., outliers). Total 42 boys (age: 3 - 14 years, 8.7± 3.0) and 42 girls (age: 4 - 16 years, 205

8.4± 3.1) were included in our final analyses. No significant differences in age were 206

found between males and females. All the findings derived with the head motion data 207

without despike preprocessing are highly similar to those of using despike, which are 208

reported as following. Meanwhile, all the results derived from the linear regression 209

models are replicated by the ANCOVA model. 210

Frequency Decomposition 211

Since all the head motion data have the same sampling frequency and sampling period, 212

DREAM decoded all the FD time series into the same six frequency intervals named 213

according to [6] (Slow-4: 0.033 to 0.083 Hz, Slow-3: 0.083 to 0.22 Hz, Slow-2: 0.222 to 214

0.605 Hz, Slow-1: 0.605 to 1.650 Hz, Delta: 1.650 to 4.482 Hz, Theta: 4.482 to 4.643 215

Hz). This theta band is too narrow comparing with its full range (up to 10 Hz) to be 216

reliable for the analyses, and thus not included in our analyses. The full band and the 217

five frequency bands from an individual child are depicted in Figure 5 and Figure 6. 218
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Figure 5. A preview of the original FD time series from a participant.

Figure 6. DREAM decodes FD time series into the five bands.

Age-related Head Motion Changes across Frequencies 219

Results from the linear regression analysis yielded significant negative correlations 220

between age and mean FD values across all the five bands for both boys and girls 221

(df = 40, FDR corrected p < 0.05): 222

• Slow-4: boys, p = 0.018, R2 = 0.218; girls, p = 0.034, R2 = 0.195 223

• Slow-3: boys, p = 0.008, R2 = 0.249; girls, p = 0.027, R2 = 0.203 224
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• Slow-2: boys, p = 0.001, R2 = 0.314; girls, p = 0.017, R2 = 0.221 225

• Slow-1: boys, p < 0.001, R2 = 0.358; girls, p = 0.013, R2 = 0.230 226

• Delta : boys, p < 0.001, R2 = 0.380; girls, p = 0.008, R2 = 0.250 227
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Figure 7. Nonlinear age-motion relationship across the five frequency bands.
The plots are based upon the log transformed motion data, indicating the exponential
growth model ymotion = e(axage+b). The upper-left panel shows the Mock scanning facility
in the Magnetic Resonance Imaging Research Center at the Institute of Psychology,
Chinese Academy of Sciences.

The relationship between age and mean FD values are plotted in Figure 7, indicating 228

that younger children tend to move more than older ones, and this trait correlation held 229

in both boys and girls. We also performed a similar linear regression analysis between 230

the standard deviations of decoded FD values and age, and observed similar outcomes 231

that the standard deviations were significantly negatively correlated with age across 232

frequency bands and sexes. This showed older children are more stable with their head 233

motion than younger children. 234

We further tested if the two lines are different between boys and girls. Statistical 235

results revealed no such sex-related effect (df = 80, FDR corrected p > 0.05): 236

• Slow-4: slope, p > 0.5, F = 0.383; intercept, p = 0.494, F = 3.979 237
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• Slow-3: slope, p > 0.5, F = 0.531; intercept, p = 0.385, F = 4.428 238

• Slow-2: slope, p > 0.5, F = 1.177; intercept, p = 0.486, F = 4.010 239

• Slow-1: slope, p > 0.5, F = 1.326; intercept, p = 0.849, F = 3.042 240

• Delta : slope, p > 0.5, F = 1.222; intercept, p = 0.968, F = 2.822 241

Inspired by the trend that sex-related differences in mean FD are smaller in higher 242

frequency bands, especially evident for early stages, we thus divided all the participants 243

into three age groups (3 to 6 years: 14 boys, 18 girls; 7 to 9 years: 14 boys, 15 girls; 10 244

to 16 years: 14 boys, 9 girls) and compared mean FD values between males and females 245

in each age group using two-way (sex and frequency band) ANOVA with repeated 246

measures. Figure 8 summarized the results of an increasing pattern of head motion from 247

slow to fast bands for all the age groups (3-6yrs: F (4) = 10.90, p = 1.65× 10−7; 7-9yrs: 248

F (4) = 20.62, p = 1.20× 10−12; 10-16yrs: F (4) = 23.95, p = 3.06× 10−13). Meanwhile, 249

we observed a significant interaction between sex and frequency band in 7 to 9 years old 250

children (F (4, 1) = 3.22, p = 0.0154) but not for the other groups (3-6yrs: 251

F (4, 1) = 0.195, p = 0.940; 10-16yrs: F (4, 1) = 1.065, p = 0.380). 252
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Figure 8. Sex-frequency interactions on head motion across ages. All the
participants (3 to 16 years old) are divided into three age groups: 3 to 6 years, 7 to
9 years, 10 to 16 years). A two-way (sex and frequency band) ANOVA with repeated
measures compares mean FD values between males and females in each age group.

4 DREAM2: Frequency-dependent spatial ranking 253

and reliability of low-frequency oscillations 254

The amplitude of low frequency fluctuation (ALFF) is a common metric used in fMRI 255

studies that reflects regional amplitude of the signal intensity’s fluctuations in a 256
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frequency range [40]. Previous studies revealed variations of ALFF in both spatial and 257

frequency domains in the resting-state brain. From the perspective of spatial 258

distribution, in the typical resting-state frequency range (e.g., 0.01-0.1 Hz), the neural 259

oscillations showed higher ALFF in grey matter than white matter [4, 32]. It is noted 260

that ALFF reaches its peaks in visual areas [17], posterior structures along brain 261

midline [4, 44] and in cingulate and medial prefrontal cortices [12]. In frequency domain, 262

BOLD oscillations distributed to grey matter were mainly in Slow-4 and Slow-5, while 263

its white matter oscillations were dominated by Slow-3 and Slow-2 [47]. Specifically, 264

higher ALFF in Slow-4 was detected in the bilateral thalamus and basal ganglia 265

whereas the slow-5 oscillators exhibited higher ALFF in the ventromedial prefrontal 266

cortex, precuneus and cuneus (replicated in [37]). These findings revealed the 267

frequency-specific characteristics of resting-state ALFF. The previous studies are 268

limited by their sampling precision (TR ≤ 2000ms), and studies on the ALFF 269

distribution across more accurate bands and their reliabilities are still lacking. For 270

examples, the Slow-2 frequency band derived in [47] has quite small overlap with its 271

theoretical range and thus may limit both reliability and validity of its findings. Here, 272

we use DREAM to decompose the fast (TR = 720ms) rfMRI data from the Human 273

Connectome Project (HCP) [33] test-retest dataset, to 1) map the ranks of ALFF values 274

through Slow-1, Slow-2, Slow-3, Slow-4, Slow-5 and Slow-6 bands and 2) evaluate the 275

test-retest reliability of the ALFF metrics in these different frequency bands. 276

Participants and Data Acquisition 277

The test-retest dataset from HCP consisting of 45 subjects were used for this analysis. 278

All subjects were scanned with an HCP-customized Siemens 3T scanner at Washington 279

University, using a standard 32-channel receive head coil. Three participants were 280

excluded from the substantial analyses because their resting-state scan durations were 281

shorter than others. Forty-two subjects (aged 30.3± 3.4 years, 29 males) were included 282

in the present study. Each subject was scanned two times and each scan contained 283

structural images (T1w and T2w), two rfMRI, seven runs of task fMRI and high 284

angular resolution diffusion imaging (see details of the imaging protocols from HCP 285

website). In the present work, we only used the rfMRI data, which consisted of 1200 286

volumes (TR = 720 ms; TE = 33.1 ms; flip angle = 52◦, 72 slices, matrix = 104× 90; 287

FOV = 208× 180 mm; acquisition voxel size = 2× 2× 2 mm). The data were 288

preprocessed according to the HCP MR preprocessing pipeline [13], resulting in the 289

preprocessed surface time series data fed to the following DREAM analysis. 290

Amplitude Analysis 291

For each rfMRI scan, we first extracted the representative time series for each of the 400 292

parcels [31] by averaging all the preprocessed time series within a single parcel. DREAM 293

decomposed the time series into its components across the potential frequency bands. 294

We performed ALFF analysis for all the bands of each run and each subject according 295

to [47] implemented by CCS [36]. Subject-level parcel-wise ALFF maps for each 296

frequency band were standardized into subject-level Z-score maps (i.e., by subtracting 297

the mean parcel-wise ALFF of the entire cortical surface, and dividing by the standard 298

deviation). The two standardized ALFF maps in the same session were then averaged, 299

resulting in two (test versus retest) standardized ALFF maps per frequency band for 300

each subject. To investigate the test-retest reliability of ALFF across the five frequency 301

bands, we calculated the parcel-wise intraclass correlation (ICC) based upon the two 302

ALFF maps [35,49]. We averaged the two standardized ALFF maps of all the subjects 303

to obtain the group-level standardized ALFF maps. In order to evaluate the spatial 304

distribution of the ALFF values for each parcel, we assigned its rank of ALFF values to 305
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the parcel (from 1 to 400). All the above analyses were done for each of the five 306

frequency bands, leading to an ALFF ranking map for each frequency band. 307

Results 308

Figure 9. Spatially ranking ALFF across six frequency bands. LH: left hemi-
sphere; RH: right hemisphere; Vis: visual network; SomMot: somatomotor network;
DorsAttn: dorsal attention network; SalVentAttn: salience ventral attention network;
Cont: frontal parietal control network; Default: default network; Limic: limbic network;
see details of parcel naming at GitHub for the parcellation.

DREAM decomposed the rfMRI timeseries into six frequency bands (Slow-6: 0.007 - 309

0.012 Hz; Slow-5: 0.012-0.030 Hz; Slow-4: 0.030-0.082 Hz; Slow-3: 0.082-0.223 Hz; 310

Slow-2: 0.223-0.607 Hz; Slow-1: 0.607-0.694 Hz). Spatial rankings on ALFF are mapped 311

in Figure 9. It is noticed that ALFF spatially ranked from high in ventral-temporal 312

areas to low in ventral-occipital areas when the frequency band increased from low to 313

high, while those in part of parietal and ventral frontal regions were reversed. The 314

top-10 parcels are listed below: 315

• Slow-6: LH Default pCunPCC 1, LH Default PFC 24, RH Default PFCdPFCm 9, 316

LH Vis 16, RH Vis 6, RH Default PFCdPFCm 10, LH Default Temp 7, 317

LH Default Temp 6, RH Default Par 3, LH Default pCunPCC 2 318

• Slow-5: LH Default PFC 24, RH Default PFCdPFCm 9, LH Default pCunPCC 1, 319

LH Vis 16, RH Vis 6, LH Vis 17, LH Vis 5, RH Vis 16, RH Vis 15, 320

RH Default PFCdPFCm 10 321

• Slow-4: LH Vis 16, RH Default PFCdPFCm 9, LH Default pCunPCC 1, 322

LH Default PFC 24, LH Cont PFCmp 1, RH Cont pCun 2, RH Cont pCun 1, 323

LH Vis 17, LH Cont Cing 2, RH Vis 17 324

• Slow-3: LH Vis 16, RH Default PFCdPFCm 9, LH Default PFC 24, 325

RH Cont pCun 1, LH Default pCunPCC 1, LH Cont PFCmp 1, RH Cont Par 4, 326

RH Vis 14, LH Cont Cing 2, LH Default pCunPCC 5 327
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• Slow-2: LH Vis 16, RH Default PFCdPFCm 9, RH Cont Par 4, 328

LH Default PFC 24, RH Cont pCun 1, RH Vis 14, LH Cont PFCmp 1, 329

LH Default pCunPCC 1, LH Default pCunPCC 5, LH Cont Cing 2 330

• Slow-1: LH Vis 16, RH Default PFCdPFCm 9, RH Cont Par 4, 331

RH Cont pCun 1, LH Vis 14, LH Default PFC 24, LH Cont PFCmp 1, 332

LH Default pCunPCC 1, LH Default pCunPCC 5, LH Cont Cing 2 333

Figure 10. Test-retest reliability of ALFF across six frequency bands.

Test-retest reliability maps of ALFF are also generated (Fig. 10) by mapping ICC 334

using the linear mixed models. It is clear that the higher frequency bands, the more 335

reliable ALFF measurements. The slow-2 (0.223-0.607 Hz) demonstrated the highest 336

test-retest reliability of ALFF across the six frequency bands. The top-10 most reliable 337

parcels are listed below: 338

• Slow-6: RH Vis 16, RH Default pCunPCC 5, RH Cont Cing 1, 339

LH Default PFC 4, LH Cont PFCl 1, LH Vis 14, RH Vis 19, 340

RH Default Temp 3, RH Default Temp 2, RH Cont PFCl 6 341

• Slow-5: RH Cont Cing 1, LH Vis 23, LH Default pCunPCC 7, 342

RH Default Temp 2, LH Cont OFC 1, RH Cont PFCl 15, 343

RH Default pCunPCC 5, LH Vis 14, RH DorsAttn Post 3, 344

RH Default pCunPCC 9 345

• Slow-4: LH Cont OFC 1, RH Default pCunPCC 5, RH Default pCunPCC 9, 346

RH Cont PFCl 15, LH SalVentAttn Med 1, RH Cont Par 5, LH Cont PFCl 2, 347

RH Cont PFCv 1, RH DorsAttn Post 14, RH Default PFCv 1 348

• Slow-3: RH SomMot 10, LH DorsAttn Post 1, RH Default PFCv 1, 349

LH Cont Par 6, LH SomMot 22, LH Default PFC 7, RH DorsAttn Post 14, 350

RH Default pCunPCC 5, RH DorsAttn Post 3, LH SalVentAttn ParOper 1 351
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• Slow-2: RH Default PFCv 1, LH DorsAttn Post 2, RH Default Temp 8, 352

RH Default pCunPCC 5, LH Default pCunPCC 9, RH Cont PFCl 4, 353

RH Default pCunPCC 6, RH Default pCunPCC 4, LH Cont Par 6, 354

RH Default pCunPCC 7 355

• Slow-1: RH Default PFCv 1, RH Default pCunPCC 4, RH Default Temp 8, 356

RH Default pCunPCC 8, RH DorsAttn Post 3, LH Limbic TempPole 4, 357

LH Cont Par 6, RH Default pCunPCC 6, LH DorsAttn Post 1, 358

LH Default PFC 6 359

5 Discussion 360

DREAM is a free and publicly available software that can decode oscillation data into 361

multiple frequency bands. The simple interface was designed to allow all users to easily 362

perform multi-band frequency analyses. The computational methods employed in 363

DREAM to calculate the numbers and ranges of decoded frequency bands apply the 364

Nyquist-Shannon sampling theorem and the brain oscillation theory [6]. Such a theory 365

has been proven of great potentials to understand the brain dynamics as well as their 366

behavioral correspondences. From a theoretical perspective, the oscillation theory can 367

be independent of any modalities (e.g., EEG, MEG, ECoG, TMS, fMRI, fNIRS, eye 368

tracking, etc.) for measuring these oscillations as windows into brain waves [3]. 369

DREAM is thus applicable for multiple forms of discrete sampling data, as long as the 370

data are entered in the supported format. Currently, DREAM can process both NIFTI 371

formatted neuroimaging data and text file formatted behavioral data while more other 372

formats will be supported in its forthcoming releases. 373

As a demonstration of its utility, the results derived with DREAM for pure 374

behavioral recordings suggest that head motion may be a behavioral feature reflecting 375

both state and trait of individuals. We showed that head movements in the high 376

frequency bands are more evident than those in the low frequency bands. This could be 377

a behavioral reflection of the hierarchical organization of brain oscillations for their 378

synchronization at multiple scales in space. Neural oscillations of the higher 379

frequency-bands are related to more local information processing while the lower 380

frequency-bands are for more distant communications in the brain. Our findings are 381

consistent with the previous observation that the head motion had more impacts on the 382

short-distance brain connectivity. While the head motion during fMRI scanning has 383

been treated an important confounding factor in the neural signal [27], some recent work 384

also argued its neurobiological components related to individual traits of the motor 385

behaviors (e.g., [41, 43]). The current researh offers data for an alternative explanation 386

on such neurobehavioral trait likely driven by brain systems operating within a 387

multi-band frequency landscape. In the context of development, as we expected, 388

younger children moved more than older children across all the slow frequency bands. 389

The stability of head motion during the experiment also varied with age, with head 390

motion becoming less variable or more stable in older children. This is more evident in 391

higher frequency bands, an implication that more sudden and sharp movements in 392

younger children. Moreover, in a specific age range (7 - 9 years), boys moved more than 393

girls across Slow-6 to Slow-1 bands but such differences vanished in the delta 394

frequencies. This age range is a critical period for developing the ability to apply 395

effective cognitive control (i.e., cognitive flexibility during executive function) [1], and 396

our findings might reflect the sex differences in the cognitive development. In summary, 397

our results demonstrate the necessity to study the frequency-specific characteristics of 398

head motion, especially a perspective on understanding the neurobiological mechanism 399

behind these behavior-related oscillations. This is of great potential to enrich our 400
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knowledge on the lifespan development such as children, the elderly and patients with 401

neurologic or psychiatric conditions where both distance-related brain and the head 402

motion measurements have been observed to correlate with each other [2, 10,11,30]. 403

Differences in head motion across ages or between cohorts may reflect differences of 404

certain traits, which may co-vary with detected brain signals and behavioral outcomes. 405

The different properties of head motion in different frequency bands show that there 406

may be different mechanisms associated with different frequencies. Head motion at 407

higher frequencies varies more with age, and this may reflect that cognitive control 408

associated with higher frequencies develops better with age. Of note, interpolation 409

analyses indicated that this observation is not related to an issue of better 410

signal-to-noise ratio at higher frequencies because there are more events per unit time. 411

Within the narrow age range of 7 to 9 years old, boys moved more than girls in most 412

frequency bands, although sex differences were larger at lower frequencies. This may 413

indicate that the development of controlling system associated with lower frequencies 414

may have larger sex-related differences for this age range. The above results lead us to 415

speculate that there may be two control systems that are associated with different 416

frequency bands of head motion which develop differently with age and between boys 417

and girls. More detailed experimental studies deserved to test this postulation in future. 418

The strategies of dealing with head motion issues in human brain mapping may also 419

need updates regarding its measurement reliability and validity in terms of the possible 420

neurobiological correlates [35,46,50]. One promising direction is to separate various 421

sources of the head movements by using additional recordings or developing novel 422

motion metrics (e.g., the recent progress in [24–26]). These efforts identified seven kinds 423

of in-scanner motion in resting-state fMRI scans, and five of them related to respiration. 424

Some pseudomotion occurred only in the phase encode direction and was a function of 425

soft tissue mass, not lung volume. Using the Mock scanning experimental design as in 426

the present work, together with the aforementioned approaches, could be of high value 427

in further understanding neurobiobehavioral underpins of the human head movements. 428

Using fast fMRI from HCP, at the first time, we revealed the spatially configuring 429

pattern of ALFF ranking gradually from low to high frequency bands. This indicates a 430

trend along the two orthogonal axes. Along the dorsal-ventral axis, higher ALFF ranks 431

were moving from the ventral occipital and the ventral temporal lobe up to regions in 432

the parietal lobe as the frequency increasing. Along the anterior-posterior axis, from 433

lower to higher bands, higher ALFF ranks were walking from the posterior to the 434

anterior regions in the ventral part. This frequency-dependent ALFF pattern is similar 435

to the findings of previous studies on the association between brain structure and gene 436

expression, which also reported orthogonal gradations of brain organization and the 437

associated genetic gradients [7, 18]. The underlying physiological mechanism and 438

functional significance of the frequency-dependent ALFF patterns deserve further 439

investigations. It is interesting that the frequency-dependent pattern of ICC is quite 440

uniform across the brain and as the frequency increased, its reliability increased 441

alongside. This observation illustrated that compared with the low frequency bands, 442

higher frequency bands might be more suitable for detecting individual differences in 443

ALFF. Most of the previous studies have adopted ALFF of the lower frequency bands 444

(i.e., Slow-5 and Slow-4 or around 0.01 to 0.1 Hz) where their ICCs rarely met the 445

reliability requirement (ICC ≥ 0.8) of clinical applications. In contrast, our findings 446

suggest that both Slow-2 and Slow-1 ALFF could be the usable and reliable marker of 447

the brain oscillations for these applications. It is noticed that the reliability of Slow-1 448

ALFF is slightly lower than those of Slow-2 ALFF, and this may be an indication on 449

the limited Slow-1 band here compared to its theoretical range (around 0.6065− 1.6487 450

Hz). While studies of the very fast sampled fMRI signals such as HCP are sparse, it is 451

quite promising for future studies with multiple neuroimaging modalities (e.g., [3,15]) to 452
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DREAM as an integrative tool across frequencies. An open toolbox such as DREAM is 453

essential for large-scale projects inspired by the increasing practice of open sciences 454

coming with more and more fMRI and EEG datasets openly shared as well as their 455

applications (e.g., [45]). 456

Information Sharing Statement 457

The DREAM toolbox is fully open to the public by sharing both the off-line version 458

(https://github.com/zuoxinian/CCS/tree/master/H3/DREAM) and the light online 459

version (http://ibraindata.com/tools/dream). To ensure the reproducibility of our 460

findings, all the codes and head motion data for generating the figures and other results 461

in the present work are also shared via DREAM and CCS website. 462

• Connectome Computation System: https://github.com/zuoxinian/CCS 463

• DREAM: https://github.com/zuoxinian/CCS/tree/master/H3/DREAM 464

• Visualization Data in DREAM1 (GraphPad): 465

github.com/zuoxinian/CCS/blob/master/H3/DREAM/DREAM1_demo.pzfx 466

• ANOVA Codes in DREAM1 (MATLAB): 467

github.com/zuoxinian/CCS/blob/master/H3/DREAM/DREAM1_repANOVA.m 468

Please credit both DREAM and CCS work if you use our DREAM in your research. 469
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