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18 Abstract

19 Rice paddy irrigation ponds can sustain surprisingly high taxonomic richness and make 

20 significant contributions to regional biodiversity. We evaluated the impacts of pesticides and 

21 other environmental stressors on the taxonomic richness of freshwater animals in 21 irrigation 

22 ponds in Japan. We sampled a wide range of freshwater animals (reptiles, amphibians, fishes, 

23 mollusks, crustaceans, insects, annelids, bryozoans, and sponges) and surveyed environmental 

24 variables related to pesticide contamination, eutrophication, decreased macrophyte coverage, 

25 physical habitat destruction, and invasive alien species. Statistical analyses comprised 

26 contraction of highly correlated environmental variables, best-subset model selection, stepwise 

27 model selection, and permutation tests. Results showed that: (i) probenazole (fungicide) was the 

28 unique significant stressor on fish (i.e., contamination with this compound  had a significantly 

29 negative correlation with fish taxonomic richness), (ii) the interaction of BPMC (insecticide; also 

30 known as fenobucarb) and bluegill (invasive alien fish) was a significant stressor on a “large 

31 insect” category (Coleoptera, Ephemeroptera, Hemiptera, Lepidoptera, Odonata, and 

32 Trichoptera), (iii) the interaction of BPMC and concrete bank was a significant stressor on an 

33 “invertebrate” category, (iv) the combined impacts of BPMC and the other stressors on the 

34 invertebrate and large insect categories resulted in an estimated mean loss of taxonomic richness 

35 by 15% and 77%, respectively, in comparison with a hypothetical pond with preferable 

36 conditions.

37

38 Key words: biodiversity; insecticide; BPMC; fenobucarb; fungicide; probenazole; bluegill; 

39 concrete; plant decrease; fish; insect; invertebrate
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41 Introduction

42 Freshwater ecosystems provide a broad variety of services, including disturbance regulation, 

43 water regulation, water supply, waste treatment, food production, and recreation [1], some of 

44 which are irreplaceable [2]. Although freshwater habitats contain only 0.01% of the world’s 

45 water and cover only 0.8% of the Earth’s surface [3], they maintain almost 6% of all described 

46 species and one-third of all vertebrate species [4, 5]. Among the various types of ecosystems, 

47 however, freshwater ecosystems have the highest proportion of species threatened with 

48 extinction [6, 7]. Because the loss of biodiversity tends to exponentially reduce the efficiencies 

49 and temporal stabilities of ecosystem functions [8], the current rapid biodiversity loss in 

50 freshwater ecosystems implies that they are degrading at a critical rate.

51 Major stressors on freshwater biodiversity include overexploitation, water pollution, flow 

52 modification, destruction or degradation of habitat, and invasion by alien species [4, 9]. Pesticide 

53 contamination is a major component of water pollution [10, 11]. Pesticides can have a serious 

54 impact on biodiversity due to their widespread application to reduce target animals, plants, and 

55 fungi in farmlands, which may affect non-target organisms as well. Experimental studies have 

56 shown that pesticide contamination decreases freshwater biodiversity [12]. While pesticide 

57 contamination in the field is known to dramatically change community compositions into those 

58 dominated by pesticide-tolerant species [13-15], only recently has a significant negative 

59 relationship between pesticide concentrations and biodiversity been reported in freshwater 

60 invertebrates [16, 17]. Two issues make it difficult to evaluate pesticides’ impacts on freshwater 

61 biodiversity in the field as compared to experimental systems. First, considering the 

62 spatiotemporal scale of pesticide application and residual effects, gathering reliable 

63 measurements of the states of communities and environmental variables at each sampling point 
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64 is not easy, because many freshwater bodies have continuous inflows and outflows of organisms 

65 and water. Second, freshwater communities in the field are affected by various environmental 

66 variables other than pesticides. Neglecting any of those non-pesticide variables can cause large 

67 uncertainties in the statistical evaluation of pesticides’ impacts, if the neglected factor has a 

68 strong effect. Conversely, if we take into account all the environmental variables that have strong 

69 effects, we can reduce the uncertainties not only of pesticides’ impacts but also the combined 

70 impacts of pesticides and other environmental stressors.

71 To overcome the first problem, we focused on irrigation ponds for rice cultivation, which are 

72 relatively closed and small systems in comparison with rivers and lakes and thus enable more 

73 reliable measurements of community states and environmental variables. Japan has 

74 approximately 200,000 irrigation ponds, most of which were constructed during the 17th to 19th 

75 centuries [18]. Despite their small size and the high risk of pesticide contamination and other 

76 stressors [19-22], the irrigation ponds can potentially sustain high taxonomic richness and make 

77 significant contributions to regional biodiversity [23-26]. Further, many endangered species 

78 inhabit the irrigation ponds [27]; the ponds function as refuges for various aquatic plants and 

79 wetland animals, because 61.1% of wetlands had already been lost by 2000 in Japan [18]. In this 

80 study, we sampled a wide range of freshwater vertebrates (reptiles, amphibians, and fish) and 

81 macroinvertebrates (mollusks, crustaceans, insects, annelids, and bryozoans) in 21 irrigation 

82 ponds of Hyogo Prefecture, Japan. Kadoya et al. [19] reported that biodiversity of the irrigation 

83 ponds in this region is at great risk of eutrophication, invasion of alien species, and physical 

84 habitat destruction, but the study did not investigate pesticide contamination.

85 To cope with the second problem described above, we surveyed 47 environmental variables 

86 corresponding to various stressors, including pesticide contamination, eutrophication, physical 
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87 habitat destruction, decreased macrophyte coverage, and invasive alien species. We statistically 

88 analyzed the relationships between taxonomic richness of animals and environmental variables 

89 by means of model selection among multivariate regression models. Numerous explanatory 

90 variables (environmental variables), however, can cause not only a multicollinearity problem but 

91 also extremely heavy calculation for model selection procedures. To handle these difficulties, we 

92 developed a new statistical procedure by combining the contraction of explanatory variables (by 

93 using correlations among them), best-subset model selection, stepwise model selection, and 

94 permutation tests. The developed procedure enabled us to detect previously unknown and 

95 significantly negative effects of two pesticides, probenazole (fungicide) and 

96 (2-butan-2-ylphenyl) N-methylcarbamate (BPMC [fenobucarb]; insecticide), on the taxonomic 

97 richness of the sampled animals and to evaluate the combined impacts of BPMC and other 

98 environmental stressors.

99

100 Sampling and Measurement

101 Ethics statement

102 We obtained permits for the survey from each pond manager in conjunction with the Agricultural 

103 and Environmental Affairs Department, Hyogo Prefecture Government. Surveyed ponds did not 

104 involve protected areas and species that required permits for sampling. The sampled invasive 

105 alien species were processed in accordance with the Japanese IAS Act. All native vertebrates 

106 were released into the same water bodies immediately after being measured and weighed.

107

108 Study area

109 Our study area covers approximately 580 km2 in southwestern Hyogo Prefecture, Japan 
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110 (34°49′N, 134°55′E). Predominant land uses are paddy fields, broad-leaved forests, and urban 

111 areas. The study area has a warm climate with a mean annual temperature of 14.4 °C (minimum 

112 3.5 °C in January, maximum 26.4 °C in August) and mean annual precipitation of 1198.3 mm 

113 [19]. We selected 21 ponds to cover all typical land uses around the ponds, with surface areas 

114 ranging from 1935 to 22,163 m2, depth ranging from 0.3 to 4.83 m, and elevation ranging from 

115 10 to 130 m a.s.l. None of these 21 ponds had macrophyte overgrowth during the study period.

116

117 Sampling of vertebrates and macroinvertebrates

118 Sampling was conducted twice at each pond. At the first sampling (19 September to 5 October 

119 2006), a fyke net (double 3-m wings, funnel 3.04 m, height 0.69 m, 4-mm nylon mesh) was set 

120 during daytime, with its two leaders set at the shore and the approximate center of the pond, 

121 respectively. Also, five rectangular bait traps (length 40 cm, height 25 cm, width 25 cm, 4-mm 

122 nylon mesh, mouths on both sides with 6-cm diameter, fish sausages and dried squid for bait) 

123 were set equally spaced along a line from shore to shore passing through the deepest point. The 

124 fyke net and traps were retrieved the following day. The second sampling (14–24 May 2007) was 

125 conducted near the shore with a D-frame dipnet (0.2-mm mesh) by 0.5-m-long discrete sweeps at 

126 3 to 13 representative habitats (areas of floating-leaved plants, emergent plants, and leaf litter), 

127 depending on the pond’s habitat diversity. Animals sampled with the fyke net and dipnet were 

128 identified to the lowest possible taxon. At this sampling, bottom surface sediment was collected 

129 three times at the approximate center of each pond with an Ekman–Birge-type sampler (mouth 

130 opening of 150 mm × 150 mm; Rigo, Tokyo, Japan). The collected sediment was washed 

131 through 0.2-mm mesh to eliminate the finer particles, and the samples were preserved in 10% 

132 formalin and identified to the lowest possible taxon under a binocular microscope. If an 
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133 identified taxon included another identified taxon (e.g., one was a genus and another was species 

134 belonging to that genus), we assumed that they actually belonged to different lowest taxa from 

135 each other. In total, 144 taxa were identified (S1 Table).

136 The identified taxa included four invasive alien species: bluegill, Lepomis macrochirus; 

137 black bass, Micropterus salmoides; red swamp crayfish, Procambarus clarkii; and bullfrog, 

138 Lithobates catesbeianus. These organisms are regulated under the country’s Invasive Alien 

139 Species Act, meaning they are regarded to have the potential to harm ecosystems in Japan 

140 through predation on and competition with indigenous species 

141 (https://www.env.go.jp/en/nature/as.html). To evaluate their impacts as well as those of other 

142 stressors on freshwater animals in the studied ponds, these four invasive species were excluded 

143 and were instead treated as environmental variables that can influence biodiversity. We also 

144 excluded the pest insects Galerucella nipponensis and Elophila interruptalis collected on the 

145 agricultural crop water shield, Brasenia schreberi [28], since their responses to pesticides may be 

146 qualitatively different from those of other, non-pest animals.

147 For the remaining 138 taxa (hereafter, the “all-sampled” category), we counted the number of 

148 taxa in each pond (range, 9 to 59; mean ± SD, 27.8 ± 10.2). The all-sampled category was 

149 divided into seven subcategories: (1) reptiles, 3 taxa; (2) fishes, 13 taxa; (3) mollusks, 11 taxa; 

150 (4) crustaceans, 7 taxa; (5) large insects (Coleoptera, Ephemeroptera, Hemiptera, Lepidoptera, 

151 Odonata, Trichoptera), 48 taxa; (6) small insects (Diptera), 28 taxa; and (7) annelids (annelids, 

152 bryozoans, and sponges), 28 taxa. We separated the insects into two categories because the 

153 sampled dipterans consisted mainly of Chironomidae (23 of 28 taxa), a family that is known to 

154 be tolerant of water pollution [29], and thus may have a qualitatively different response to 

155 environmental variables than those of other insect orders. We referred to the last category simply 
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156 as “annelids” because it consisted mainly of annelids (23 of 28 taxa). We counted the number of 

157 taxa for each of these subcategories in each pond (Fig 1, S2 Table). The average frequency of 

158 each animal category was 4.8% for reptiles, 10.9% for fishes, 5.1% for crustaceans, 6.2% for 

159 mollusks, 16.1% for large insects, 33.4% for small insects, and 23.3% for annelids.

160

161 Fig 1. Taxonomic richness of freshwater animals sampled in the study ponds. The numbers 

162 atop bars are pond IDs. The large insect category consists of Coleoptera, Ephemeroptera, 

163 Hemiptera, Lepidoptera, Odonata, and Trichoptera. The small insect category consists of 

164 Diptera. The annelid category consists mainly of annelids and contains small fractions of 

165 bryozoans and sponges.

166

167 Environmental variables

168 For each pond, we measured 37 physicochemical water properties seven times in 2007 (April 

169 23–24, May 28–29, June 18–19, July 17–18, August 13–14, September 3–4, September 25–26). 

170 The measured properties were water temperature, pH, total nitrogen, total phosphorus, suspended 

171 solids, chlorophyll a, and the concentrations of 31 pesticides (insecticides: BPMC, buprofezin, 

172 clothianidin, dinotefuran, fipronil, imidacloprid, malathion, tebufenozide, thiamethoxam; 

173 fungicides: azoxystrobin, ferimzone, fthalide, urametpyr, IBP, isoprothiolane, 

174 metominostrobin-E, metominostrobin-Z, probenazole, pyroquilon, thifluzamide, tiadinil, TPN; 

175 herbicides: bentazone, bromobutide, butachlor, chlomeprop, dymron, mefenacet, oxaziclomefon, 

176 pentoxazone, pyriminobac-methyl-E). See S1 Appendix 1 and S3 Table for details of the 

177 measurements, and see S4 and S5 Tables for the data. For each pesticide, concentrations lower 

178 than the detection limit were replaced with the detection limit concentration. All pesticides 
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179 except for TPN were detected in at least one pond (S1, S2, and S3 Figs). In the statistical 

180 analysis, for each pond we used the maximum detected concentration among the seven samples 

181 for each of the 30 pesticides detected, and we used the average for each of the other six 

182 environmental variables. We also measured the organic matter content (ignition loss) in each 

183 pond’s sediment once (13–15 May 2007) (S1 Appendix 2).

184 At each pond, we also measured the following 10 variables: pond depth, pond area, concrete 

185 bank rate (proportion of pond bank covered by concrete dike), percent coverage of 

186 floating-leaved plants, percent coverage of emergent plants, pond drainage intensity (0: no 

187 drainage, 1: partial drainage, 2: full drainage; see also [30]), and presence of the four invasive 

188 species: bluegill, black bass, red swamp crayfish, and bullfrog (1: found, 0: not found). See S1 

189 Appendix 2 for details of the measurements. The values of the environmental variables are 

190 summarized in S6 and S7 Tables (see S4, S5, and S8 Tables for the data).

191 Among the environmental variables measured, the declines of floating-leaved plant coverage 

192 and that of emergent plant coverage may be stressors on the taxonomic richness of freshwater 

193 animals in the studied ponds. This is because macrophytes in irrigation ponds in the study area 

194 have been decreasing due to urbanization [31], an increase in concrete banks [32], and herbicide 

195 contamination. Some of the studied ponds had high concentrations of two herbicides, butachlor 

196 and pentoxazone (S2 Fig), which were far higher than their acute toxicity levels for the 

197 ecotoxicological bioindicator Raphidocelis subcapitata (72-h ErC50, 3.15 μg/L [33] and 0.79 

198 μg/L [34], respectively). The decline of macrophytes can drive decadal change in benthic 

199 invertebrates [35]. To clarify this viewpoint, we transformed the percentages of floating-leaved 

200 plant coverage and emergent plant coverage into the area percentages not covered by these types 

201 of plants, as follows: 100 – (floating-leaved plant coverage) and 100 – (emergent plant 
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202 coverage), respectively. Hereafter, we refer to these as “F-plant noncoverage” and “E-plant 

203 noncoverage”, respectively.

204 Too shallow water depth causes unstable environments for freshwater animals, which may 

205 result in low biodiversity [36, 37]. Japanese irrigation ponds have been maintained through the 

206 periodic drainage and removal of bottom mud by farmers [30]. But recently the drainage and 

207 mud dredging have tended to be less frequent than in the past, and sometimes ponds are 

208 abandoned because of a decline in rice farming and farmers’ aging [32]. These phenomena 

209 usually induce ponds to become shallower and eventually vanish [38]. Thus, we also transformed 

210 the depth of each pond into a shallowness index = (maximum depth among ponds) – (focal pond 

211 depth).

212 The numbers of observed taxa may have been affected by variation in the number of dipnet 

213 samples among ponds. However, normalization of the observed taxonomic richness by fitting 

214 rarefaction curves [16] was not appropriate for our data, because choices of sampling points and 

215 sampling numbers were both nonrandom; that is, they were designed to cover the existing habitat 

216 diversity with a minimum sampling number in each pond. As an alternative to normalization, we 

217 added the logarithm of dipnet sampling number to the 47 environmental variables, taking into 

218 account that sampling efforts and species numbers tend to show log–log relationships [39]. In 

219 total, 48 environmental variables were used in the statistical analysis.

220

221 Statistical analysis

222 To identify which of the 48 environmental variables are related to the taxonomic richness (i.e., 

223 numbers of taxa) of the sampled animals, we conducted model selection among regression 

224 models and permutation tests. The response variables for the regression models were the 
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225 taxonomic richness of the all-sampled category and seven subcategories (reptiles, fishes, 

226 mollusks, crustaceans, large insects, small insects, and annelids). In addition, we classified taxa 

227 into four more categorizes, namely large animals (reptiles, fishes, mollusks, crustaceans, and 

228 large insects), small animals (small insects and annelids), vertebrates (reptiles and fishes), and 

229 invertebrates (mollusks, crustaceans, large insects, small insects, and annelids), and analyzed 

230 these as response variables as well. The analysis was conducted with statistical software R 

231 (version 3.4.4) and its packages glmmML-1.0, glmperm-1.0-5, spdep-0.7-9, pforeach-1.3, and 

232 foreach-1.4.4 (organized into R package “contselec,” available from 

233 https://github.com/yorickuser/contselec).

234

235 Contraction of environmental variables

236 The environmental variables were scaled so that their means and standard deviations became 

237 equal to 0 and 1, respectively. To reduce the amount of calculation needed and to avoid the 

238 multicollinearity problem, environmental variables with high absolute correlations were grouped 

239 together (by choosing 0.52 as the threshold for absolute value of correlation). This operation 

240 reduced the 48 environmental variables to 11 contraction groups. Nine of the groups contained a 

241 single variable: BPMC (insecticide), probenazole (fungicide), shallowness, F-plant noncoverage, 

242 concrete bank, pond drainage, bluegill, red swamp crayfish, and bullfrog; we refer to these as 

243 “real variables.” The remaining two contraction groups were a small group “IBP-Ignition_loss” 

244 consisting of IBP (fungicide) and ignition loss, and a large group containing the remaining 37 

245 environmental variables. Each of these two groups was represented by its principal component 

246 analysis (PCA) axes so that more than 65% of its total variance was explained by the PCA 

247 scores. For the small group, only the first PCA axis was used (77.1% explained). For the large 
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248 group, its top four PCA axes (65.5% explained) were used (S2 Appendix 1). We refer to these 

249 five representative variables as “pseudo variables.”

250 Consequently, the 48 uncontracted environmental variables were reduced to 14 contracted 

251 environmental variables, which included 9 real variables and 5 pseudo variables. In this analysis, 

252 we also integrated the effects of pesticides by calculating their toxic units [14, 16]. However, the 

253 integrated toxic units, TUmax and TUsum, both resulted in their belonging to the large contraction 

254 group, such that the effects of pesticides were not clarified.

255

256 Model selection

257 We used the 14 contracted environmental variables as the explanatory variables to explain the 

258 response variable, taxonomic richness of a focal animal category. For convenience, all 

259 explanatory variables were scaled to range from 0 to 1. For each of the possible subsets of the 14 

260 explanatory variables, we constructed a Poisson regression mixed model, where any model has at 

261 least one explanatory variable.

262 In each model, the response variables were described by a vector  of length 𝐲 = (𝑦1,…,𝑦𝑀)

263  (the number of studied ponds), where  is its value for the th pond. Explanatory 𝑀 = 21 𝑦𝑖 𝑖

264 variables were described by a set of vectors  with , each of which was 𝐱1,…,𝐱𝐾 1 ≤ 𝐾 ≤ 14

265 denoted by . We assumed that  follows the Poisson distribution,𝐱𝑘 = (𝑥𝑘,1,…,𝑥𝑘,𝑀) 𝑦𝑖

266 𝑦𝑖 ~ Poisson(𝑌𝑖)#(1)

267 with its mean  described as𝑌𝑖

268 ln (𝑌𝑖) = 𝛼 +  
𝐾

∑
𝑘 = 1

𝛽𝑘𝑥𝑘,𝑖 +  𝑟𝑖,#(2)

269 where  is the intercept,  is the intensity of the th explanatory variable at the th pond with 𝛼 𝑥𝑘,𝑖 𝑘 𝑖
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270 its regression coefficient , and  is a pond-specific random effect.  follows the normal 𝛽𝑘 𝑟𝑖 𝑟𝑖

271 distribution with average 0 and standard deviation . For each of the models constructed above, 𝜎

272 we calculated maximum likelihood estimations for , , maximum marginal-likelihood 𝛼 𝛽1,…,𝛽𝐾

273 estimation for , and the Akaike information criterion (AIC) [40]. To suppress the estimation 𝜎

274 bias of AIC as a distance measure from an unknown true model, we excluded models that had 

275 more free parameters than one-third of the sample size [41]; models with  (i.e., 𝑀/3 < 𝐾 +  2

276 , , and ) were excluded. We also fitted the normal Poisson regression model by 𝛽1,…,𝛽𝐾 𝛼 𝜎

277 setting  in advance, in which case models with  (i.e., , ) were 𝜎 = 0 𝑀/3 < 𝐾 +  1 𝛽1,…,𝛽𝐾 𝛼

278 excluded.

279 When the model with the lowest AIC, referred to as the contracted best model, had residuals 

280 with significant spatial autocorrelation (i.e., p-value < 0.05 in either Moran’s I test or Geary’s C 

281 test), we excluded the model because the assumption of independence was violated, and we 

282 treated the second best model as the contracted best model. This operation was repeated until the 

283 spatial autocorrelation in the contracted best model’s residuals became non-significant. (For the 

284 results reported in this paper, none of the initial best models had residuals with significant spatial 

285 autocorrelation.)

286

287 Statistical inference

288 If the p-value for the regression coefficient of a focal explanatory variable is calculated by 

289 comparing the best model with its reduced model (generated by removing the focal variable from 

290 the best model) without taking into account the model selection conducted beforehand, then the 

291 calculated value is not an appropriate p-value for the null hypothesis that the focal explanatory 

292 variable has no effect on the response variable. This is because the model selection process 
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293 affects the p-value for the null hypothesis [42]. In this study, we calculated the p-value 

294 corresponding to a null hypothesis that a focal explanatory variable has no negative effect (i.e., a 

295 one-sided test) by using a permutation test that specifically operates the model selection for each 

296 of 1000 resampled datasets (S2 Appendix 2). However, this permutation test requires extremely 

297 heavy calculation. Thus, to efficiently search for explanatory variables with statistically 

298 significant negative effects, we first looked for their candidates, referred to as statistically 

299 contributive explanatory variables, and then applied the permutation test to examine the 

300 significance of those candidates’ effects. Specifically, we judged that a focal explanatory 

301 variable is statistically contributive when the variable satisfies the following three conditions: (i) 

302 The focal explanatory variable is included in all models of  with  (i.e., ΔAIC ≤ CΔAIC CΔAIC = 2.0

303 differences in AIC from the contracted best model do not exceed 2.0), and its regression 

304 coefficients in those models have the same sign. (ii) In the contracted best model, the p-value for 

305 the regression coefficient of the focal explanatory variable is smaller than  based on 𝛼ΔAIC = 0.05

306 the permutation of regressor residuals test [43]. (iii) The focal explanatory variable is also 

307 included (keeping its sign) in the uncontracted best model that is chosen by the stepwise model 

308 selection by AIC among models composed of environmental variables before contraction, where 

309 the contracted best model is used as the initial model.

310 Among the three conditions above, condition (i) is the most important, and conditions (ii) and 

311 (iii) suppress biases due to small sample sizes and contraction of explanatory variables, 

312 respectively. In condition (i), the threshold  is chosen because any model with CΔAIC = 2.0

313  is rejected by the parametric likelihood ratio test for significance level 0.05, when ΔAIC > 2.0

314 that model is nested in the contracted best model. Although this relationship does not hold for 

315 non-nested models, we consider choosing 2.0 to be a good strategy for finding the candidates for 
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316 explanatory variables with significant effects (see S2 Appendix 3 and S2 Appendix 4 for details).

317

318 Interaction among statistically contributive explanatory variables

319 When a focal animal category had more than one statistically contributive explanatory variable 

320 in the above analysis (for main effects), we further analyzed interactions among them. First, for 

321 each possible combination of the contributive variables, we calculated the product of the two 

322 variables’ intensities at each pond and added it to the set of contracted environmental variables 

323 and to the set of uncontracted environmental variables. Second, we conducted the analysis 

324 described in the sections “Model selection” and “Statistical inference.” Note that the set of 

325 models examined in this analysis for interactions includes the set of models in the analysis for 

326 main effects. Thus, AICs of the contracted best models in this analysis for interactions are 

327 always no higher than those of the corresponding contracted best models in the analysis for main 

328 effects. Therefore, the contracted best models with interactions are all as good as the 

329 corresponding contracted best models without interactions.

330

331 Impacts of statistically contributive explanatory variables

332 When the contracted best model had  explanatory variables, of which  variables had 𝐾 𝐽

333 statistically contributive effects, we calculated their impacts on the response variable (taxonomic 

334 richness of the focal animal category) as follows. We permuted the explanatory variables so that 

335 the statistically contributive variables come first, which allowed rewriting of Eq. (2) as

336 ln (𝑌𝑖) = α +  
𝐽

∑
𝑗 = 1

𝛽𝑗𝑥𝑗,𝑖 +  
𝐾

∑
𝑘 = 𝐽 + 1

𝛽𝑘𝑥𝑘,𝑖 +  𝑟𝑖.#(3)

337 We assumed a hypothetical th pond with all contributive variables having zero intensities and 0
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338 all non-contributive variables having the average intensities among the studied ponds (i.e., 𝑥𝑗,0

339  for all , and  for all ). We call this = 0 𝑗 = 1,…,𝐽 𝑥𝑘,0 = 𝑥𝑘 =
1
𝑀∑𝑀

𝑖 = 1𝑥𝑘,𝑖 𝑘 = 𝐽 + 1,…,𝐾

340 hypothetical pond the normal pond. From Eq. (3), the expected taxonomic richness of the normal 

341 pond is given by

342 𝑅 = exp (𝛼 +  
𝐾

∑
𝑘 = 𝐽 + 1

𝛽𝑘𝑥𝑘),#(4)

343 where  holds for the normal Poisson regression ( ). At the normal pond, if we 𝑅 = 𝑌0 𝑟𝑖 = 0

344 increase the intensity of the th explanatory variable, , from its minimum value 0 to its 𝑗 𝑥𝑗,0

345 average  among the studied ponds, then the expected taxonomic richness is given by 𝑥𝑗 𝑅mean
𝑗 =

346 . The change rate of the taxonomic richness is calculated as / . 𝑅exp (𝛽𝑗𝑥𝑗) 𝑅mean
𝑗 𝑅 = exp (𝛽𝑗𝑥𝑗)

347 On this basis, we calculated the mean impact of the th explanatory variable as the strength of 𝑗

348 the change rate,

349 𝐼mean
𝑗 = { 𝑅mean

𝑗

𝑅 = exp (𝛽𝑗𝑥𝑗) for 𝛽𝑗 > 0 
𝑅

𝑅mean
𝑗

= exp ( ‒ 𝛽𝑗𝑥𝑗) for 𝛽𝑗 < 0.
#(5)

350 Note that  for positive  indicates the strength of the increasing rate, whereas  for 𝐼mean
𝑗 𝛽𝑗 𝐼mean

𝑗

351 negative  gives the strength of the diminishing rate.𝛽𝑗

352 Analogously, if we increase the intensity of the th explanatory variable from its minimum 𝑗

353 value 0 to its maximum 1 at the normal pond, then the expected taxonomic richness is given by 

354 . On this basis, we calculated the maximum impact of the th explanatory 𝑅max
𝑗 = 𝑅 exp (𝛽𝑗) 𝑗

355 variable as follows: 
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356 𝐼max
𝑗 = { 𝑅max

𝑗

𝑅 = exp (𝛽𝑗) for 𝛽𝑗 > 0 
𝑅

𝑅max
𝑗

= exp ( ‒ 𝛽𝑗) for 𝛽𝑗 < 0.
#(6)

357 When all statistically contributive variables in the contracted best model had negative effects 

358 (i.e.,  for all ), then by assuming that the normal pond had the same intensities 𝛽𝑗 < 0 𝑗 = 1,…,𝐽

359 of those variables as those of the th pond (i.e.,  for all ), we calculated the 𝑖 𝑥𝑗,0 = 𝑥𝑗,𝑖 𝑗 = 1,…,𝐽

360 combined negative impact of those variables at the th pond as the strength of diminishing rate,𝑖

361
𝐼 𝑖

{1,…,𝐽} =
𝑅

𝑅exp ( 𝐽

∑
𝑗 = 1

𝛽𝑗𝑥𝑗,𝑖)
= exp ( ‒

𝐽

∑
𝑗 = 1

𝛽𝑗𝑥𝑗,𝑖).#(7)

362 From this equation, we calculated the mean combined impact as a geometric mean among  𝐼 𝑖
{1,…,𝐽}

363 for , as𝑗 = 1,…,𝐽

364 𝐼 mean
{1,…,𝐽} = [Π 𝑀

𝑖 = 1𝐼 𝑖
{1,…,𝐽}]

1
𝑀 = exp ( ‒

𝐽

∑
𝑗 = 1

𝛽𝑗𝑥𝑗),#(8)

365 which corresponds to the combined impact on the average pond. In addition, we calculated the 

366 maximum combined impact as the maximum among  for  as𝐼 𝑖
{1,…,𝐽} 𝑗 = 1,…,𝐽

367 𝐼 max
{1,…,𝐽} = max {𝐼 1

{1,…,𝐽},…,𝐼 𝑀
{1,…,𝐽}}.#(9)

368 When some of statistically contributive variables had positive effects, those variables were 

369 omitted. In this study, we also omitted statistically contributive explanatory variables that did not 

370 have statistically significant effects. (As for the combined impact of positive effects, its mean 

371 and maximum can be calculated with Eqs. (7–9) by removing the minus symbol on the 

372 right-hand sides of Eqs. (7) and (8) and omitting variables with negative effects instead, although 

373 such a calculation was not conducted in this study.)
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374

375 Results

376 Detected effects of environmental stressors on taxonomic richness

377 With regard to the taxonomic richness of the all-sampled category and its 11 subcategories, we 

378 found statistically contributive effects of probenazole (fungicide), BPMC (insecticide), concrete 

379 bank, bluegill, F-plant noncoverage, and shallowness, all of which were negative (Figs 2 and 3). 

380 Each of these negative effects was statistically significant in at least one animal category (see S9 

381 Table for the calculated p-values, and S2 Appendix 5 for the best models). For convenience and 

382 brevity, we refer to the explanatory variables with statistically contributive negative effects and 

383 those with statistically significant negative effects as “stressors” and “significant stressors,” 

384 respectively.

385 Although probenazole and BPMC were neither significant nor contributive stressors on the 

386 all-sampled category (Fig 2a), probenazole was a unique and significant stressor on the fish 

387 subcategory (Fig 2b), and BPMC was one of three significant stressors (BPMC, F-plant 

388 noncoverage, and bluegill) on the large insect subcategory (Fig 2d). As for the other 

389 subcategories (reptiles, mollusks, crustaceans, small insects, and annelids), only small insects 

390 had a stressor, concrete bank, which was also significant (Fig 2c).

391

392 Fig 2. Statistically contributive stressors on taxonomic richness of all-sampled category and 

393 three subcategories: fishes, small insects (Diptera), and large insects (Coleoptera, 

394 Ephemeroptera, Hemiptera, Lepidoptera, Odonata, and Trichoptera). Stressors labeled with 

395 an asterisk are statistically significant. In each panel, the white bar indicates the expected 

396 taxonomic richness of the focal animal category in the absence of all statistically contributive 
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397 stressors (  in Eq. (4) in the main text). The light gray (or dark gray) bar indicates the expected 𝑅

398 taxonomic richness in the presence of only the focal stressor denoted by  at its mean intensity 𝑥𝑗

399 (or maximum intensity, scaled to 1.0) among the studied ponds, given by  (or 𝑅exp (𝛽𝑗𝑥𝑗) 𝑅

400 ), with its regression coefficient  in the contracted best model (S2 Appendix 5). The exp (𝛽𝑗) 𝛽𝑗

401 value labeled with “mean” (or “max”) shows the mean (or maximum) impact of the focal 

402 stressor among ponds, given by the height ratio of the white bar to the light gray bar (or dark 

403 gray bar). Specifically, the mean (or maximum) impact was calculated as /𝑅 (𝑅 exp (𝛽𝑗𝑥𝑗)) =

404  (or ) (see “Impacts of statistically contributive explanatory variables” exp ( ‒ 𝛽𝑗𝑥𝑗) exp ( ‒ 𝛽𝑗)

405 section). The estimation errors were calculated as Wald 95% confidence intervals, indicated in 

406 the format of (lower bound – upper bound). The solid curve indicates the expected taxonomic 

407 richness as a function  of the focal stressor’s intensity . The scatter plots indicate 𝑅exp (𝛽𝑗𝑥𝑗) 𝑥𝑗

408 , where  is the intensity of the focal stressor at the th pond, and  is the 𝑅exp (𝛽𝑗𝑥𝑗,𝑖) + 𝜀𝑖 𝑥𝑗,𝑖 𝑖 𝜀𝑖

409 fitting residual of the contracted best model for the th pond.𝑖

410

411

412 When considering the large animal category, both shallowness and F-plant noncoverage were 

413 significant stressors (Fig 3a), whereas the small animal category had a different set of significant 

414 stressors: BPMC, F-plant noncoverage, and concrete bank (Fig 3b). The invertebrate category 

415 had a similar tendency as that of the small animal category, but only F-plant noncoverage was 

416 significant (Fig 3c). The vertebrate category had no stressors (data not shown).

417

418 Fig 3. Statistically contributive stressors on taxonomic richness of categories of large 

419 animals (reptiles, fishes, mollusks, crustaceans, and large insects), small animals (small 
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420 insects and annelids), and invertebrates (mollusks, crustaceans, large insects, small insects, 

421 and annelids). The plotting was done as in Fig 2.

422

423

424 Further analysis of interactions among the detected stressors revealed statistically significant 

425 positive interactions between BPMC and bluegill for the large insect category (Fig 4a) and 

426 between BPMC and concrete bank for both the small animal (Fig 4b) and invertebrate categories 

427 (Fig 4c).

428

429 Fig 4. Statistically significant interactions among stressors on taxonomic richness of 

430 categories of large insects (Coleoptera, Ephemeroptera, Hemiptera, Lepidoptera, Odonata, 

431 and Trichoptera), small animals (small insects and annelids), and invertebrates (mollusks, 

432 crustaceans, large insects, small insects, and annelids). Result of analysis for detecting 

433 interactions among statistically contributive stressors in Figs 2 and 3 is shown. The plotting was 

434 done as in Fig 2.

435

436

437 Each panel in Figs 2–4 lists the mean and maximum impacts of the focal stressor among the 

438 ponds, defined by Eqs. (5) and (6), respectively. Although the mean and maximum impacts have 

439 large estimation errors, probenazole and BPMC tended to have weak mean impacts but strong 

440 maximum impacts.

441 Our analysis indicates that probenazole contamination has diminished the taxonomic richness 

442 of the fish category to 1/(mean impact) = 1/1.32 at the mean among ponds and to 1/(max. 
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443 impact) = 1/2.80 at the worst pond (Fig 2b). In other words, the expected mean and maximum 

444 losses of the fish taxonomic richness caused by probenazole are 100 × (1 – 1/1.32) = 24% and 

445 100 × (1 – 1/2.80) = 64%, respectively.

446 As for BPMC, the contracted best models with interactions (Fig 4) were all as good as the 

447 corresponding contracted best models without interactions (Figs 2 and 3), as explained in section 

448 “Interaction among statistically contributive explanatory variables.” Thus, Fig 4 is more suitable 

449 for the estimation of BPMC’s impacts. For the large insect category (Fig 4a), the interaction 

450 effect of BPMC and bluegill had a mean impact of 1.36 (26% loss) and maximum impact of 

451 13.17 (92% loss). For the small animal category (Fig 4b), the interaction effect of BPMC and 

452 concrete bank had a mean impact of 1.19 (16% loss) and maximum impact of 3.69 (73% loss). 

453 For the invertebrate category (Fig 4c), the interaction effect of BPMC and concrete bank had a 

454 mean impact of 1.18 (15% loss) and maximum impact of 3.51 (72% loss).

455

456 Combined impact of statistically significant stressors

457 Multiple significant stressors were detected for the large insect, large animal, and small animal 

458 categories (Figs 2–4). Since Poisson regression models were used for the fitting, the impacts of 

459 those stressors are multiplicative (explained in section “Impacts of statistically contributive 

460 explanatory variables”). Thus, the combined impacts, defined by Eq. (7), can be plotted as 

461 additive effects on a logarithmic scale, as shown in Fig 5. 

462

463 Fig 5. Estimation of combined impacts of statistically significant stressors. For each animal 

464 category that has multiple statistically significant stressors in Figs 2–4, the combined impact of 

465 those stressors in each pond is plotted as the reciprocal of the diminishing ratio of the taxonomic 
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466 richness, by using the contracted best model (S2 Appendix 5). The numbers atop bars indicate 

467 pond IDs shown in Fig 1. (See text in “Impacts of statistically contributive explanatory 

468 variables.”)

469

470

471 Clearly, the stressors’ combined impacts are much stronger than the impact of each alone. Note 

472 that the stressors in Figs 5a and 5d (main effects only) are all included in Figs 5b and 5e (with 

473 interaction), respectively, where some of the main effects are replaced by their interactions. 

474 Since the contracted best models with interactions are all as good as the corresponding 

475 contracted best models without interactions, we here focus on those with interactions (Figs 5b 

476 and 5e) for the large insect and small animal categories.

477 Figure 5b indicates that the three significant stressors (BPMC, bluegill, and F-plant 

478 noncoverage) diminish the taxonomic richness of the large insect category to 1/(mean impact) = 

479 1/4.43 at the mean among ponds and to 1/(max. impact) = 1/13.17 at the worst pond. In other 

480 words, the expected mean and maximum losses of the taxonomic richness of the ponds are 100 × 

481 (1 – 1/4.43) = 78% and 100 × (1 – 1/13.17) = 92%, respectively, in comparison with the 

482 hypothetical normal pond free from all stressors. Likewise, Figure 5c indicates that the two 

483 significant stressors (shallowness and F-plant noncoverage) diminish taxonomic richness of the 

484 large animal category to 1/4.15 (76% loss) at the mean among ponds and to 1/6.96 (86% loss) at 

485 the worst pond. Figure 5e indicates that the three significant stressors (BPMC, concrete bank, 

486 and F-plant noncoverage) diminish taxonomic richness of the small animal category to 1/1.61 

487 (38% loss) at the mean among ponds and to 1/4.22 (76% loss) at the worst pond.

488
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489 Discussion

490 Impact of pesticides

491 Our study suggests that probenazole (fungicide) is a stressor on fish taxonomic richness in the 

492 studied ponds. Probenazole is a benzothiazole fungicide widely used in Asia for the control of 

493 rice blast fungus (Magnaporthe grisea) in paddy fields [44]. Its acute toxicity levels for the fish 

494 Cyprinus carpio, the crustacean Daphnia magna, and the aquatic plant Raphidocelis subcapitata 

495 [45] are all more than 1000-fold the maximum detected concentration of 0.73 µg/L measured in 

496 this study. As for the chronic effects of probenazole on fishes, we found no relevant 

497 experimental or field study. In general, however, fungicides can have diverse lethal and sublethal 

498 chronic effects on fishes and affect their physiology, development, and behavior [46]. In 

499 addition, some fungicides exhibit significant toxicity only when combined with other pesticides 

500 [47, 48]. Moreover, probenazole has a rapid decomposition rate (half-life of 9.8 h at pH 7 and 

501 25 °C [45]) compared to our sampling frequency (once or twice per month), in which case the 

502 actual concentrations attained in the studied ponds could have been far higher than the detected 

503 concentrations. Therefore, our result may imply that probenazole actually has a negative impact 

504 on fish taxonomic richness. To clarify its impact, further experimental and field research is 

505 needed.

506 Our findings also suggest that BPMC is a stressor on the taxonomic richness of large insects 

507 (Coleoptera, Ephemeroptera, Hemiptera, Lepidoptera, Odonata, and Trichoptera), small animals 

508 (Diptera, annelids, bryozoans, and sponges), and invertebrates in the studied ponds. BPMC 

509 (fenobucarb) is a carbamate insecticide widely used in Asia to control rice planthoppers, but its 

510 impact on other invertebrates in the field is unclear. BPMC has a long half-life of 577 days (at 

511 pH 7 and 25 °C) [49], and its acute toxicity levels are 24-h EC50 = 10.2 µg/L for D. magna, 96-h 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


24

512 LC50 = 25,200 µg/L for C. carpio, and 72-h EC50 = 33,000 µg/L for R. subcapitata (lowest 

513 values in [49]). However, even lower toxicity levels are reported for freshwater invertebrates: 

514 96-h LC50 = 5.05 µg/L for the freshwater shrimp Paratya improvisa [50] and 48-h LC50 = 2 

515 µg/L for the mayfly Baetis thermicus [51]. As for the chronic effect of BPMC, a concentration of 

516 1 µg/L affects the development of the mayfly Epeorus latifolium [51]. Although 1 µg/L is still 

517 higher than the maximum concentration of 0.08 µg/L detected in our study, due to our once or 

518 twice monthly sampling the maximum concentration actually attained in the studied ponds could 

519 have been higher than 0.08 µg/L. Indeed, for pesticides in general, we can estimate from [16] 

520 (see figure 2A) that the regional species richness of freshwater invertebrates would be reduced 

521 significantly when the detected pesticide concentrations attain 1/400th of their 48-h LC50 for D. 

522 magna. As for BPMC, its 48-h LC50 for D. magna is expected to be lower than its 24-h EC50 = 

523 10.2 µg/L (because for D. magna the 48-h LC50 is essentially the same as the 48-h EC50, which 

524 must be lower than the 24-h EC50 = 10.2 µg/L). Thus, we can roughly estimate that invertebrate 

525 taxonomic richness in our studied ponds would decline at 10.2/400 = 0.026 µg/L of BPMC, 

526 which is less than the maximum detected concentration of 0.08 µg/L in our study. Therefore, our 

527 results for the large insect, small animal, and invertebrate categories accord with the results of 

528 [16] about pesticides’ effects on regional invertebrate diversities.

529 Furthermore, BPMC contamination may also be affecting invertebrate taxonomic diversities 

530 in Japanese rivers, since far higher BPMC concentrations (5.6–37 µg/L) have been reported from 

531 some of class A rivers [50, 52, 53]. Yachi et al. [54] estimated the maximum BPMC 

532 concentrations (PECTier2) at 350 river flow monitoring sites in 2010, using experimental data and 

533 the region-specific parameters of river flow, rice cultivation area, and pesticide usage ratio. From 

534 figure 3 in [54], we can estimate that the upper 5% of those monitoring sites exceed 10 µg/L. 
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535 Thus, invertebrates in Japanese rivers may be in a serious situation due to BPMC pollution.

536 In Japan, to prevent significant effects of a pesticide on aquatic organisms, pesticide 

537 registration standards are set based on acute toxicity test results of fishes, crustaceans, and algae. 

538 For pesticide registration (i.e., usage permission), the predicted environmental concentration 

539 (PEC) of the target pesticide must be lower than the registration standard of that pesticide [54]. 

540 Normally, PEC is calculated hierarchically according to the defined environmental model. For 

541 BPMC, its PEC of 2.1 μg/L according to the environmental model (PECTier2 in [54]) was close to 

542 its registration standard of 1.9 μg/L, and PEC estimation from on-site monitoring data was 

543 permitted. Since the estimated value, 0.67 μg/L, was lower than the registration standard [49], 

544 the registration of BPMC has not been suspended, in other words, its application has not been 

545 restricted. This monitoring is expected to be conducted in accordance with test guidelines for two 

546 sites where high concentrations are expected from pesticide use [49]. However, the maximum 

547 observed concentration of 0.67 μg/L is much lower than the 5.6–37 μg/L reported for class A 

548 rivers [50, 52, 53]. Therefore, more monitoring sites in different regions may be needed to 

549 properly assess BPMC environmental concentrations in Japan, although use of BPMC in Japan 

550 has declined sharply since the 1990s, with the shipment volume of BPMC in 2015 representing 

551 only 3% of that in 1990.

552 With regard to the other 28 pesticides detected in our study, their relationships with 

553 taxonomic richness were unclear. In our statistical analysis, those pesticides had high 

554 correlations with other environmental variables (e.g., variables related to eutrophication), and 

555 thus they were contracted together and transformed into pseudo variables. For statistical 

556 evaluation of those pesticides’ impacts, we need to examine a different set of irrigation ponds 

557 than used in this study.
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558

559 Impacts of other statistically significant stressors

560 For the other statistically significant stressors detected in this study, previous studies support our 

561 results: see [19] for concrete bank, [55] and [19] for bluegill in irrigation ponds, [35] for lack of 

562 floating-leaved plant coverage in peatland drainage ditches, [36] for shallowness in floodplain 

563 lakes, and [37] for shallowness in ponds in an agricultural area. Among those studies, [19] 

564 surveyed irrigation ponds in the same region as our study, showing that not only concrete bank 

565 and bluegill but also chlorophyll a concentration was an important stressor on the taxonomic 

566 richness of freshwater animals. In our study, however, neither a statistically significant nor a 

567 contributive effect of chlorophyll a was detected. This difference may stem from the fact that our 

568 study considered pesticide contaminations and plant coverage as environmental variables, 

569 whereas [19] did not. In our study, the F-plant noncoverage was a statistically significant 

570 stressor, and it had a positive correlation (r = 0.33) with chlorophyll a, which may explain the 

571 difference at least in part.

572 Among the statistically significant stressors detected in our study, careful attention should be 

573 paid to the estimated impacts of shallowness and F-plant noncoverage. In this study, zero 

574 intensities for shallowness and F-plant noncoverage correspond to the maximum pond depth of 

575 4.83 m and the highest F-plant coverage of 93%. In other words, we assumed that the all ponds 

576 originally had 4.83 m depth and 93% F-plant coverage, which may not necessarily correspond to 

577 their actual stress-free original states. However, their significant negative correlations with the 

578 taxonomic richness imply, at least, their potential as stressors, meaning that further increases in 

579 shallowness and F-plant noncoverage may decrease taxonomic richness. Conversely, if we can 

580 increase the water depth or F-plant coverages of those ponds, the taxonomic richness may 
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581 recover.

582

583 Combined impact of pesticides and other stressors

584 Our findings suggest that the taxonomic richness of freshwater animals in Japanese irrigation 

585 ponds has been affected by multiple significant stressors including pesticides. BPMC, F-plant 

586 noncoverage, and bluegill affect the large insect category (Figs 2d and 4a), shallowness and 

587 F-plant noncoverage affect the large animal category (Fig 3a), and BPMC, F-plant noncoverage, 

588 and concrete bank affect the small animal category (Figs 3b and 4b). According to [56], multiple 

589 stressors tend to act antagonistically, and therefore their cumulative mean effect is less than the 

590 sum of their single mean effects. In our analysis using the Poisson regression, when taxonomic 

591 richness was evaluated on a logarithmic scale (like the Shannon diversity index), a mean 

592 combined impact of multiple stressors was mathematically equal to the sum of their single mean 

593 impacts, as shown in Fig 5. On the other hand, when taxonomic richness was evaluated on the 

594 normal scale, all of the mean combined impacts in Figure 5, except for the combined impacts on 

595 the large insect category, were weaker than the sum of the single mean impacts in Figures 2–4, in 

596 accordance with [56].

597 Our results show that the combined impact of BPMC and other significant stressors may 

598 have caused serious declines in taxonomic richness of the categories of large insect, small 

599 animal, and invertebrate, although our estimations have large uncertainties. We detected 

600 significantly positive interactions between BPMC and bluegill for the large insect category and 

601 between BPMC and concrete bank for the invertebrate and small animal categories. The former 

602 interaction is supported by an experimental study by Schulz and Dabrowski [57], who reported 

603 that the mortality of mayflies caused by insecticide exposure (azinphos-methyl and fenvalerate) 
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604 synergistically increases with the presence of predatory fish. We found no relevant literature on 

605 the latter interaction.

606

607 Our statistical method

608 In multivariate regression analysis, too many explanatory variables can lead to a 

609 multicollinearity problem as well as extremely heavy calculation for model selection procedures. 

610 However, removing and/or aggregating some of those variables based on relevant previous 

611 studies may cause difficulty in detection of unknown relationships between the response and 

612 explanatory variables. To handle this difficulty, we developed a new statistical procedure for 

613 multivariate regression analysis by combining the contraction of explanatory variables (by using 

614 only correlations among them), best-subset model selection, stepwise model selection, and 

615 permutation tests. This procedure enabled us to detect previously unknown and significantly 

616 negative effects of two pesticides, probenazole (fungicide) and BPMC (insecticide), on 

617 taxonomic richness of the sampled animals and to evaluate the combined impacts of BPMC and 

618 other environmental stressors. In principle, our procedure is applicable to data with not only 

619 univariate response variables but also multivariate ones, as long as the models’ AICs (or other 

620 suitable criteria) can be calculated.

621 In this study, the most statistically contributive stressors, those satisfying conditions (i–iii) 

622 defined in the “Statistical inference” section, were also statistically significant in the permutation 

623 test that explicitly repeats the model selection process. Thus, first finding statistically 

624 contributive explanatory variables and then examining their statistical significance may be an 

625 efficient strategy, because the permutation test that repeats model selection requires heavy 

626 calculation. Further examination and improvement of our procedure, and clarification of its 
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627 relationships with other approaches for post-model-selection inference [42, 58-60], may provide 

628 more efficient and robust tools for such inference.

629

630 Acknowledgements

631 We thank Y. Oikawa and A. Saji (National Institute for Environmental Studies, Tsukuba; NIES) 

632 for pretreatment of samples for water quality analysis; Y. Oikawa (NIES) for pretreatment of 

633 samples for pesticide analysis; S. Serizawa and I. Hirai (NIES) for assistance with pesticide 

634 analysis; T. Murakami (Regional Ecosystem Conservation), Y. Daihu (Regional Ecosystem 

635 Conservation), I. Murakami (Regional Environmental Planning Inc.), R. Ueno (NIES), A. 

636 Ohtaka (Nirosaki University), and U. Nishikawa (NIES) for animal sampling; M. Akasaka for 

637 investigation of peripheral land use and pond vegetation; and M. Imada (NIES) for interviewing 

638 pond owners about drainage.

639

640

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


30

641 References

642 1. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, 

643 O’Neill RV, Paruelo J, Raskin R, Sutton R, van den Belt M. The value of the world’s 

644 ecosystem services and natural capital. Nature 1997;387: 253-260.

645 2. Covich AP, Ewel KC, Hall RO, Gillier RE, Godedkoop W, Merritt DM. Ecosystem services 

646 provided by freshwater benthos. In: Wall DH, editor. Sustaining Biodiversity and Ecosystem 

647 Services in Soil and Sediments. Washington D.C.: Island Press; 2004. pp. 45-72.

648 3. Lundberg G, Kottelat M, Smith GR, Stiassny MLJ, Gill AC. So many fishes, so little time: an 

649 overview of recent ichthyological discovery in continental waters. Annals of the Missouri 

650 Botanical Gardens 2000;87: 26-62.

651 4. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ, 

652 Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA. Freshwater biodiversity: Importance, 

653 threats, status and conservation challenges. Biological Reviews 2006;81: 163-182.

654 5. Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT, Cooke SJ. Emerging threats 

655 and persistent conservation challenges for freshwater biodiversity. Biological Reviews 

656 2019;94: 849-873. https://doi.org/10.1111/brv.12480

657 6. Ricciardi A, Rasmussen JB. Extinction Rates of North American Freshwater Fauna. 

658 Conservation Biology 1999;13: 1220-1222.

659 7. Grooten M, Almond REA (eds). Living planet report, 2018: aiming higher. Gland, 

660 Switzerland: World Wildlife Fund; 2018.

661 8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail R, Narwani A, Georgina 

662 M, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace LB, 

663 Larigauderie A, Srivastava1 DS, Naeem S. Biodiversity loss and its impact on humanity. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


31

664 Nature 2012;486: 59-67.

665 9. Nõges P, Argillier C, Borja A, Garmendia JM, Hanganu J, Kodeš V, Pletterbauer F, Sagouis 

666 A, Birk S. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and 

667 ground waters. Science of Total Environment 2015;540: 43-52.

668 10. Relyea RA. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater 

669 systems. Ecology Letters 2006;9: 1157-1171.

670 11. Malaj E, Peter C, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P. Organic chemicals 

671 jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the 

672 National Academy of Sciences 2014;111(26): 9549-9554.

673 12. Relyea RA. The impact of insecticides and herbicides on the biodiversity and productivity of 

674 aquatic communities. Ecological Applications 2005;15: 618-627.

675 13. Berenzen N, Kumke T, Schultz HK, and Schultz R. Macroinvertebrate community structure 

676 in agricultural streams: impact of runoff-related pesticide contamination. Ecotoxicology and 

677 Environmental Safety 2005;70: 37-46.

678 14. Schäfer RB, Van den Brink PJ, Liess M. Impacts of pesticides on freshwater ecosystems. In: 

679 Sánchez-Bayo F, van den Brink PJ, Mann RM, editors. Ecological Impacts of Toxic 

680 Chemicals. Soest: Bentham Science Publishers; 2011. pp. 111-137.

681 15. Schäfer RB, Liess M. Species at risk (SPEAR) biomonitoring indicators. In: Ferard J, Blaise 

682 C, editors. Encyclopedia of Aquatic Ecotoxicology. Heidelberg: Springer; 2013. pp. 

683 1063-1073.

684 16. Beketov MA, Kefford BJ, Schäfer RB, Liess M. Pesticides reduce regional biodiversity of 

685 stream invertebrates. Proceedings of the National Academy of Sciences USA 2013;110(27): 

686 11039-11043.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


32

687 17. Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. 

688 Proceedings of the National Academy of Sciences USA 2015;112(18): 5750-5755. doi: 

689 10.1073/pnas.1500232112.

690 18. Takamura N. Status of biodiversity loss in lakes and ponds in Japan. In: Nakano S, Yahara T, 

691 Nakashizuka T, editors. Biodiversity observation network in the Asia-Pacific Region: toward 

692 further development of monitoring. Tokyo: Springer; 2012. pp 133-148.

693 19. Kadoya T, Akasaka M, Aoki T, Takamura N. A proposal of framework to obtain an 

694 integrated biodiversity indicator for agricultural ponds incorporating the simultaneous effects 

695 of multiple pressures. Ecological Indicators 2011;11(5): 1396-1402.

696 20. Kizuka T, Akasaka M, Kadoya T, Takamura N. Visibility from roads predicts the distribution 

697 of invasive fishes in agricultural ponds. PLoS ONE 2014;9(6): e99709. 

698 https://doi.org/10.1371/journal.pone.0099709.

699 21. Nakanishi K, Nishida T, Kon M, Sawada H. Effects of environmental factors on the species 

700 composition of aquatic insects in irrigation ponds. Entomological Science 2014;17: 251-261.

701 22. Stenert C, de Mello ÍCMF, Pires MM, Knauth DS, Katayama N, Maltchik L. Responses of 

702 macroinvertebrate communities to pesticide application in irrigated rice fields. Environmental 

703 Monitoring and Assessment 2018;190 (2): 74.

704 23. Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S, Van Wichelen H, Gillard V, et al. 

705 Ecological characteristics of small farmland ponds: associations with land use practices at 

706 multiple spatial scales. Biological Conservation 2006;131: 523-532.

707 24. Kawano K, Akano HN, Hayashi M, Yamauchi T. Aquatic insects in the ponds of Hirata Area 

708 (Izumo City) in Shimane Prefecture (in Japanese). Japanese Bulletin of Hoshizaki Green 

709 Foundation 2006;9: 13-37.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


33

710 25. Chester ET, Robson BJ. Anthropogenic refuges for freshwater biodiversity: their ecological 

711 characteristics and management. Biological Conservation 2013;166: 64-75.

712 26. Kim JH, Chung HY, Kim SH, Kim JG. The influence of water characteristics on the aquatic 

713 insect and plant assemblage in small irrigation ponds in Civilian Control Zone. Korea Journal 

714 of Wetlands Research 2016;18(4): 331-341.

715 27. Nicolet P, Biggs J, Fox G, Hodson MJ, Reynolds C, Whitfield M, Williams P. The wetland 

716 plant and macroinvertebrate assemblages of temporary ponds in United Kingdom and Wales. 

717 Biological Conservation 2004;120(2): 261-278.

718 28. Iitomi A, Niiyama T. Dominant pests and their damage to water shield in Akita (in Japanese). 

719 Annual Report of the Society of Plant Protection of North Japan 2002;53: 256-260.

720 29. Armitage PD, Cranston PS, Pinder LCV. The Chironomidae: the biology and ecology of 

721 non-biting midges. London: Chapman Hall; 1995.

722 30. Usio N, Imada M, Nakagawa M, Akasaka M, Takamura N. Effects of pond draining on 

723 biodiversity and water quality of farm ponds. Conservation Biology 2013;27(6): 1429-1438. 

724 doi: 10.1111/cobi.12096

725 31. Akasaka M, Takamura N, Mitsuhashi H, Kadono Y. Effects of land-use on aquatic 

726 macrophyte diversity and water quality of ponds. Freshwater Biology 2010;55: 909-922.

727 32. Takamura N. Biodiversity monitoring at agricultural ponds. In: Washitani I, Kito S, editors. 

728 Biodiversity monitoring: collaboration to build capacity for ecosystem management (in 

729 Japanese). Tokyo: University of Tokyo Press; 2007. pp 49-69.

730 33. Japanese Ministry of the Environment. Fenobucarb (BPMC) (in Japanese). 2012 [Cited 2019 

731 December 15]. Available from: 

732 http://www.env.go.jp/water/sui-kaitei/kijun/rv/h63_butachlor.pdf

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


34

733 34. Japanese Ministry of the Environment. Fenobucarb (BPMC) (in Japanese). 2012 [Cited 2019 

734 December 15]. Available from: 

735 http://www.env.go.jp/water/sui-kaitei/kijun/rv/h01_pentoxazone.pdf

736 35. Whatley MH, van Loon EE, van Dam E, Vonk JA, van der Geest HG, Admiraal W. 

737 Macrophyte loss drives decadal change in benthic invertebrates in peatland drainage ditches. 

738 Freshwater Biology 2014;59: 114-126.

739 36. Dembkowski DJ, Miranda LE. Hierarchy in factors affecting fish biodiversity in floodplain 

740 lakes of the Mississippi alluvial valley. Environmental Biology of Fishes 2012;93: 357-368.

741 37. Queiroz CS, da Silva FR, da Rossa-Feres DC. The relationship between pond habitat depth 

742 and functional tadpole diversity in an agricultural landscape. Royal Society Open Science 

743 2015;2: 150165.

744 38. Tsunoda, H. Ecological impacts of pond losses and abandonments on regional aquatic 

745 biodiversity: What will happen in the depopulating Japan? (in Japanese). Wildlife and Human 

746 Society 2017;5: 5-15.

747 39. Azovsky AI. Species–area and species–sampling effort relationships: Disentangling the 

748 effects. Ecography 2011;34(1):18-30.

749 40. Akaike H. Information theory and an extension of the maximum likelihood principle. 

750 In: Petrov BN, Caski F, editors. Proceedings of the 2nd International Symposium on 

751 Information Theory. Budapest: Akadimiai Kiado; 1973. pp. 267-281.

752 41. Kitagawa M, Sakamoto Y, Ishiguro M, Kitagawa G. Entropy statistics (in Japanese). Tokyo: 

753 Kyoritsu Press; 1983.

754 42. Taylor J, Tibshirani RJ. Statistical learning and selective inference. Proceedings of the 

755 National Academy of Sciences USA 2015;112(25): 7629-7634. doi: 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


35

756 http://www.pnas.org/content/112/25.

757 43. Werft W, Benner A. glmperm: a permutation of regressor residuals test for inference in 

758 generalized linear models. R Journal 2010;2(1): 39-43.

759 44. Yoshioka K, Nakashita H, Klessig DF, Yamaguchi I. Probenazole induces systemic acquired 

760 resistance in Arabidopsis with a novel type of action. The Plant Journal 2001;25(2): 149-157.

761 45. Japanese Ministry of the Environment. Probenazole (in Japanese). 2010 [Cited 2019 

762 December 15]. Available from: 

763 https://www.env.go.jp/water/sui-kaitei/kijun/rv/h37_probenazole.pdf

764 46. Choudhury N. Ecotoxicology of aquatic system: a review on fungicide-induced toxicity in 

765 fishes. Progress in Aqua Farming and Marine Biology 2018;1(1): 180001.

766 47. Elskus AA. Toxicity, sublethal effects, and potential modes of action of select fungicides on 

767 freshwater fish and invertebrates. U.S. Geological Survey Open-File Report; 2012. pp. 42. 

768 (http://dx.doi.org/10.3133/ofr20121213).

769 48. Dawoud M, Bundschuh M, Goedkoop W, McKie BG. Interactive effects of an insecticide 

770 and a fungicide on different organism groups and ecosystem functioning in a stream detrital 

771 food web. Aquatic Toxicology 2017;186: 215-221.

772 49. Japanese Ministry of the Environment. Fenobucarb (BPMC) (in Japanese). 2012 [Cited 2019 

773 December 15]. Available from: 

774 http://www.env.go.jp/water/sui-kaitei/kijun/rv/h61_fenobcarb.pdf

775 50. Hatakeyama S, Shiraishi H, Hamada A. Seasonal variation of pesticide toxicity bioassayed 

776 using a freshwater shrimp (Paratya compressa improvisa) in water collected from rivers of the 

777 Lake Kasumigaura water system. Water Pollution Research 1991;14: 460-468.

778 51. Tada M, Hatakeyama S. Chronic effects of an insecticide, fenobucarb, on the larvae of two 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


36

779 mayflies, Epeorus latifolium and Baetis thermicus, in model streams. Ecotoxicology 2000;9: 

780 187-195.

781 52. Nakashima T, Ito Y, Fujita Y, Dobashi Y. Fate of pesticides aerially sprayed on paddy fields 

782 in river water (in Japanese). Journal of Environmental Laboratories Association 1996;21(2): 

783 81-87.

784 53. Sakai M, Tada M. Investigation of pesticides in the Tsurumi River (April 2011–March 2012) 

785 (in Japanese). Annual Reports of the Institute of Yokohama-city Environmental Science 

786 2013;37: 13-18.

787 54. Yachi S, Nagai T, Inao K. Analysis of region-specific predicted environmental concentration 

788 of paddy pesticides at 350 river flow monitoring sites (in Japanese). Journal of Pesticide 

789 Science 2017;42(1): 1-9.

790 55. Maezono Y, Miyashita T. Community-level impacts induced by introduced largemouth bass 

791 and bluegill in farm ponds in Japan. Biological Conservation 2003;109: 111-121.

792 56. Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT, Christian T. Net effects of 

793 multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology 

794 2016;22(1): 180-189.

795 57. Schulz R, Dabrowski JM. Combined effects of predatory fish and sublethal pesticide 

796 contamination on the behavior and mortality of mayfly nymphs. Environmental Toxicology 

797 and Chemistry 2001;20: 2537-2543.

798 58. Leeb H, Pötscher BM, Ewald K. On various confidence intervals post-model-selection. 

799 Statistical Science 2015;30: 216-227.

800 59. Taylor, J., and R. Tibshirani. Post-selection inference for l1 penalized likelihood models. The 

801 Canadian Journal of Statistics 2018;46: 41-61.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.30.926568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.926568
http://creativecommons.org/licenses/by/4.0/


37

802 60. Lee SMS, Wu Y. A bootstrap recipe for post-model-selection inference under linear 

803 regression models. Biometrika 2018;105: 873-890. https://doi.org/10.1093/biomet/asy046.

804

805 Supporting information captions

806

807 S1 Appendix. Measurement of physicochemical properties of pond water.

808

809 S2 Appendix. Statistical analysis.

810

811 S1 Fig. Changes of insecticide concentrations in studied ponds. In each panel, red, blue, and 

812 green indicate the top 3 ponds with the highest detected concentrations among the 21 ponds. The 

813 others are colored gray. Each point connecting line segments indicates one of the seven 

814 samplings during the study period.

815
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846 models.

847
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