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Abstract

Motivation: Approximate Bayesian Computation (ABC) is an increasingly popular

method for likelihood-free parameter inference in systems biology and other fields of research,

since it allows analysing complex stochastic models. However, the introduced approximation

error is often not clear. It has been shown that ABC actually gives exact inference under

the implicit assumption of a measurement noise model. Noise being common in biological

systems, it is intriguing to exploit this insight. But this is difficult in practice, since ABC is

in general highly computationally demanding. Thus, the question we want to answer here is

how to efficiently account for measurement noise in ABC.

Results: We illustrate exemplarily how ABC yields erroneous parameter estimates when

neglecting measurement noise. Then, we discuss practical ways of correctly including the

measurement noise in the analysis. We present an efficient adaptive sequential importance

sampling based algorithm applicable to various model types and noise models. We test

and compare it on several models, including ordinary and stochastic differential equations,
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Markov jump processes, and stochastically interacting agents, and noise models including

normal, Laplace, and Poisson noise. We conclude that the proposed algorithm could improve

the accuracy of parameter estimates for a broad spectrum of applications.

Availability: The developed algorithms are made publicly available as part of the open-

source python toolbox pyABC (https://github.com/icb-dcm/pyabc).

Contact: jan.hasenauer@uni-bonn.de

Supplementary information: Supplementary information is available at bioRxiv online.

Supplementary code and data are available online at http://doi.org/10.5281/zenodo.3631120.

1 Introduction

Mathematical models have become an essential tool in many research areas to describe and anal-

yse dynamical systems, allowing to unravel and understand underlying mechanisms. In order to

make quantitative predictions and test hypotheses, unknown parameters need to be estimated and

parameter and prediction uncertainties need to be assessed.

This is frequently done in a Bayesian framework, where prior information and beliefs about model

parameters are updated by the likelihood of observing data under a given model parameteriza-

tion, yielding by Bayes’ Theorem the posterior distribution of the parameters given the data.

Many established parameter estimation methods, including optimization (Banga, 2008), profile

calculation (Raue et al., 2009) and standard Monte Carlo sampling (Hines, 2015), require access

to at least the non-normalized posterior. However, as models get more complex and stochastic,

the likelihood function can become analytically or numerically intractable (Jagiella et al., 2017).

Examples of such models include Markov processes, stochastic differential equations, and stochas-

tically interacting agents. In systems biology, such models are used to realistically describe e.g.

gene expression, signal transduction, and multi-cellular systems (e.g. Lenive et al. (2016); Picchini

(2014); Imle et al. (2019)).

Likelihood-free inference methods have therefore recently gained interest, including among others

Approximate Bayesian Computation (ABC) (Beaumont et al., 2002; Sisson et al., 2018b), indi-

rect inference (Gourieroux et al., 1993; Drovandi, 2018), synthetic likelihoods (Wood, 2010; Price

et al., 2018), and particle Markov Chain Monte Carlo (Andrieu et al., 2010). In particular, ABC
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has become increasingly popular in various research areas due to its simplicity, scalability, and its

broad applicability. In a nutshell, in ABC the evaluation of the likelihood function is circumvented

by simulating data for given parameters, and then accepting the parameters if the simulated and

observed data are sufficiently similar. ABC is frequently combined with a sequential Monte Carlo

scheme (ABC-SMC) (Del Moral et al., 2006; Sisson et al., 2007), which allows for an iterative re-

duction of the acceptance threshold, improves acceptance rates by sequential importance sampling,

and can exploit parallel infrastructure well.

Observed data are generally corrupted by noise, resulting from unavoidable inaccuracies in the

measurement process. In likelihood-based inference, it has been widely adopted to include noise

models in the likelihood function (Raue et al., 2013). Contrarily, in likelihood-free methods,

particularly ABC, it is easy to disregard any noise due to the unnecessity of even formulating

a likelihood and the various inherent approximation levels, so that error sources can be difficult

to pinpoint from the result. In the past, it has repeatedly not been included in ABC analyses

(Toni et al., 2009; Lenive et al., 2016; Jagiella et al., 2017; Imle et al., 2019; Eriksson et al.,

2019). Asymptotic unbiasedness of ABC is however granted only if the data-generation process is

perfectly reproduced. Omitting the measurement noise can lead to substantially wrong parameter

estimates, regarding in particular uncertainty (Frazier et al., 2020).

The problem is illustrated in Figure 1 on an ordinary differential equation model of a conversion

reaction, with one unknown parameter θ1. Synthetic data D were generated by adding normal noise

to the model simulation y(θtrue) (Figure 1A). Three different ABC-SMC analyses were performed:

Using the noise-free model y together with an `1 (I) or `2 (II) distance, and, to account for noise,

randomizing the model output by a corresponding normal random variable (III). Usually, in ABC

we would hope to decrease the acceptance threshold ε asymptotically to 0. For (I) and (II), this

was however not possible (Figure 1B). The thresholds converged to some positive values, which

in addition differ for the `1 and `2 distance. This mirrors in the inferred posterior distributions

(Figure 1C), where (I) and (II) converge to point estimates, which can be linked to maximum

likelihood estimates under the assumption of normal (I) or Laplace (II) noise. This is clearly

not the result one would hope for in a Bayesian analysis. In comparison, (III) yields a good

approximation of the true posterior. In the Supplementary Information, Section 1.5 we discuss the

problem of model error in ABC from a theoretical perspective, also explaining what happens in
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Figure 1: Illustrative conversion reaction ODE example. (A) The employed data. (B) Acceptance thresh-

olds over sequential ABC-SMC iterations for 3 estimation methods: Using a non-noisy model and an l2

or l1 distance in the ABC acceptance step, and using a noisy model (and an l2 distance). The minimum

obtainable values for the respective distances are indicated by dashed lines. (C) Histograms of the cor-

responding ABC posterior approximations after the last iterations. The true posteriors are indicated by

dashed, the true parameter values by dotted lines.

the above analyses. Further, in the Supplementary Information, Section 6 we illustrate on some

more examples, including stochastic models, how ignoring measurement noise can lead to wrong

parameter estimates. In practice, errors in the ABC parameter estimates resulting from model

error can be hard to detect, so it is important to correctly account for measurement noise.

In this manuscript, we discuss ways of correctly addressing measurement noise: Either the model

output can be randomized, or the ABC acceptance step can be modified in accordance with

the noise model. The latter method builds on the insight by Wilkinson (2013) that ABC can

be considered as giving exact inference from the original model with an additional error term

induced by the acceptance step. Introduced by Wilkinson (2013) for rejection and Markov Chain

Monte Carlo (ABC-MCMC) samplers and used by van der Vaart et al. (2018) in the case of

replicate measurements, the approach was extended by Daly et al. (2017) to ABC-SMC samplers,
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presenting two algorithms confined to the situation of additive independent normal noise, and

relying on certain tuning parameters. Here, we extend the existing ideas by presenting an ABC-

SMC based algorithm applicable to various model types and noise models. Further, we develop

robust approaches tackling several aspects of such an algorithm, like initialization and step size

selection, and include ideas from rejection control importance sampling (Liu et al., 1998; Sisson and

Fan, 2018), which make our algorithm robust and self-tuned and thus widely applicable. We test

and compare it on various models including ordinary and stochastic differential equations, discrete

Markov jump processes, and agent-based models, and noise models including normal, Laplace, and

Poisson noise.

2 Methods

2.1 Basics of ABC-SMC

The goal of Bayesian inference is to infer a posterior distribution π(θ|D) ∝ p(D|θ)π(θ) over param-

eters θ ∈ Rnθ given observed data D ∈ Rny , where π(θ) denotes the prior density on the parameters

encoding information and beliefs before observing the data, whereas the likelihood p(y|θ) is the

probability density of data y given model parameters θ. ABC deals with the situation that we

have a generative model from which we can simulate data y ∼ p(y|θ), but evaluating the likelihood

is infeasible. Then, classical ABC comprises the following 3 steps:

1. sample parameters θ ∼ π(θ),

2. simulate data y ∼ p(y|θ),

3. accept θ if d(y,D) ≤ ε,

for some distance function d : Rny × Rny → R and acceptance threshold ε. This is repeated until

sufficiently many, say N , parameters have been accepted. Accepted particles constitute a sample

from the approximate posterior distribution

πABC,ε(θ|D) ∝
∫
Rny

I(d(y,D) ≤ ε)p(y|θ) dy ·π(θ),
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where I denotes the indicator function, also referred to as uniform kernel in this context.

Due to the curse of dimensionality, ABC usually works not directly on the data, but employs

low dimensional summary statistics s = s(y) ∈ Rns (Fearnhead and Prangle, 2012). Here, we

abstract from this to simplify the notation. The summary statistics may be assumed to be already

incorporated in y.

It can be shown that for ε → 0, πABC,ε(θ|D) → π(θ|D) under some mild assumptions (e.g.

Prangle et al. (2017), and Supplementary Information, Section 1.4), however there is a trade-off

between decreasing the approximation error induced by ε and maintaining high acceptance rates.

To tackle both problems, ABC is frequently combined with a Sequential Monte Carlo (SMC)

scheme. Here, we present a scheme based on Toni et al. (2009); Beaumont et al. (2009). In

ABC-SMC, a population of parameters {θ1i }i≤N is initially sampled from the prior and propagated

through a sequence of intermediate distributions π(θ|d(y∗, D) ≤ εt), t = 1, . . . , nt, using importance

sampling, with the proposal distribution gt(θ) based on the previous iteration’s accepted particles.

The tolerances ε1 > . . . > εnt ≥ 0 are chosen to yield a gradually better approximation of the

posterior distribution, while maintaining high acceptance rates. The steps are summarized in

Algorithm 1.

Algorithm 1 ABC-SMC algorithm

for t = 1, . . . , nt do

set up gt and εt

while less than N acceptances do

sample parameter θ ∼ gt(θ)

simulate data y ∼ p(y|θ)

accept θ if d(y,D) ≤ εt

end while

compute weights w
(i)
t =

π(θti)

gt(θti)
, with accepted parameters {θti}i≤N

end for

Here, the proposal distribution in iteration t is

gt(θ) =

π(θ), t = 1,∑N
i=1w

t−1
i gt(θ|θt−1i )/

∑N
i=1w

t−1
i , otherwise,
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with gt(θ|θt−1i ) local perturbation kernels, {θt−1i }i=1,...,N the accepted parameters in the previous

iteration, and w
(i)
t importance weights (Klinger and Hasenauer, 2017). The output of ABC-SMC

is a population of weighted parameters {(θnti , w
(i)
nt )}i≤N ∼ πABC,εnt

(θ|D).

2.2 The problem of measurement noise in ABC

In ABC, the model p(y|θ) does often not account for measurement noise. This effectively assumes

perfect measurements, which is in practice hardly the case. In the following, we assume that the

data D are noisy and thus a realization of a distribution q(ȳ|θ) which includes the noise, but that

the model p(y|θ) does not do so. Further, we can write (ȳ, y) ∼ π(ȳ|y, θ)p(y|θ), so that

q(ȳ|θ) ∝
∫
π(ȳ|y, θ)p(y|θ) dy .

The interpretation of π(ȳ|y, θ) is that of a parameterized noise model of observing data ȳ under

noise-free model output y and parameters θ. Thus, the noise model relates observables that assume

perfect measurements to practically obtained noisy data. We call

• π(ȳ|y, θ) the noise model,

• p(y|θ) the model likelihood, and

• q(ȳ|θ) the full likelihood.

The noise model π(ȳ|y, θ) is usually simple, e.g. a normal or a Laplace distribution. Hence, we

consider the case that the noise model can be evaluated, while we are only able to sample from,

but not evaluate, the model likelihood.

The use of the likelihood p as above would imply that inference for the wrong model is performed.

The goal is now to infer the corrected posterior π(θ|D) ∝ q(D|θ)π(θ).

2.3 Approaches to account for noise

How can we tackle in ABC the discrepancy between model output y and noisy data D? Principally,

three different approaches have been in use, which are visualized in Figure 2.
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sample parameters simulate model simulate noise

A3: Stochastic acceptor

Figure 2: The different conceivable ways of accounting for noise. (A1): Using a uniform kernel with ε� 0.

The posterior is visibly off. (A2): Adding random measurement noise to the model output. The posterior

still has a slightly higher variance. (A3): Modifying the acceptance kernel. The posterior matches the

true distribution accurately.

Using an appropriate uniform kernel

The first approach (A1) is to employ a uniform kernel, with the distance metric d and the ac-

ceptance threshold ε chosen such that the resulting acceptance kernel is similar to the underlying

noise distribution (e.g. in Toni et al. (2009); Daly et al. (2017)). An advantage of this approach is

its computational efficiency, since acceptance is deterministic (Sisson et al., 2018a). Further, it is

easy to apply in practice since it only uses standard ABC methods available in most software tools.

However, a major concern is that this approach effectively assumes a uniform noise distribution

(see Theorem 1, Section 2.4), which in practice hardly applies. In addition, the exact choice of ε

is ambiguous. E.g., one can fix the kernel variance, or set it to the expected value of the distance

function at the true noise-free model value. Doing so requires knowledge of underlying noise pa-

rameters, or even of y. This information is in practice not available. Here, we only mention this

approach for completeness, and focus on (asymptotically) exact methods.
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Randomizing the model output

The second approach (A2) is to modify the forward model simulation to account for measurement

noise, i.e. to randomize the model output y → ȳ ∼ π(ȳ|y, θ) (e.g. in Toni and Stumpf (2010)), thus

replacing p by q. An advantage of this method is that it is again easy to apply, requiring only a

basic ABC implementation. Further, if the noise model depends on unknown parameters, these

can in theory be included in the overall parameter vector θ and estimated along the way. Also, this

approach is in particular applicable to “black box” models where the noise cannot be separated.

A major concern with this method is however that the randomness in the simulation of noise can

lead to low acceptance rates. Further, the comparison of simulated and observed data still requires

a standard acceptance kernel with a non-trivial threshold. A2 is asymptotically exact as ε → 0,

however in practice a small approximation error will remain, which can be hard to quantify.

Modifying the acceptance step

The third approach (A3) is to keep the non-noisy model p, but to modify the acceptance criterion:

Based on the insight by Wilkinson (2013) that “ABC gives exact inference, but for the wrong

model”, we modify the acceptance step from Section 2.1 to

3. accept θ with probability π(D|y,θ)
c

,

with a normalization constant c ≥ maxy,θ π(D|y, θ). This step can be implemented by sampling

u ∼ U [0, 1] and accepting if π(D|y,θ)
c
≥ u. Theorem 1 (Section 2.4) tells us that this indeed gives

exact inference from the true posterior. It is thus the non-degenerate noise model that allows us to

perform likelihood-free inference in an exact manner (i.e., up to Monte Carlo errors), still without

evaluating the full likelihood. Only for deterministic models do we have the full likelihood, such

that this approach is equivalent to likelihood-based sampling techniques. In Wilkinson (2013),

this idea has been integrated in an ABC-rejection and an ABC-MCMC algorithm. In Daly et al.

(2017), two sequential implementations for Gaussian noise are introduced. Building on both works,

we present in the following a self-tuned sequential algorithm applicable to a broad class of noise

models.
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2.4 ABC gives exact inference under the assumption of model error

We use the following:

Theorem 1 (Exact noisy ABC). Consider a prior density π(θ), a model likelihood p(y|θ), a

noise model π(ȳ|y, θ), and assume D ∼ q(ȳ|θ) ∝
∫
π(ȳ|y, θ)p(y|θ) dy. Then ABC with acceptance

probability π(D|y, θ)/c with c ≥ supy,θ π(D|y, θ) targets the correct posterior distribution π(θ|D) ∝

q(D|θ)π(θ).

Proof. See the Supplementary Information, Section 2.

This extends the work of Wilkinson (2013) to generic noise distributions and allows the noise

model to be parameter-dependent. The latter facilitates, e.g., the estimation of unknown scale

terms such as the standard deviation for normally distributed measurement noise. This result

can also be interpreted in the context of general ABC acceptance kernels, see the Supplementary

Information, Section 1.3 and Remark 4.

2.5 Towards an efficient exact sequential ABC sampler

To increase efficiency, we want to integrate the exact sampler A3 with an SMC scheme. To do

so, we need to replace the gradual decrease of the acceptance threshold ε. The basic idea we

employ is motivated by parallel tempering in MCMC (Earl and Deem, 2005), namely to temper

the acceptance kernel to mediate from prior to posterior. That is, we introduce temperatures

T1 > . . . > Tnt = 1, and in iteration t modify the acceptance step to

3. accept θ with probability
(
π(D|y,θ)

ct

)1/Tt
.

This way, we sample from the distribution

πABC,t(θ|D) ∝
∫
π(D|y, θ)1/Ttπ(y|θ)π(θ) dy, (1)

using importance sampling, where Tnt = 1 yields a sample from the correct posterior. Note that

tempering is applicable to any noise model and will yield higher acceptance rates. An exception
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is the uniform distribution, for which the acceptance rate will remain unchanged, but this noise

model can be dealt with by standard ABC already. In the following, we propose approaches to

select the normalization constant c, the temperature schedule, and the initial temperature.

2.6 Selection of the normalization constant

A problem persistent in the approaches by Wilkinson (2013) and Daly et al. (2017) was the choice

of normalization constant c. A trivial choice for this is the highest mode of the noise distribution,

which is for common noise models assumed at y = D. Yet, in practice it is often unlikely or

impossible for the model to exactly replicate the measured data, yielding unnecessarily small

acceptance rates. Thus, of interest is the point c̄ = maxy,θ π(D|y, θ) such that y is realizable

under the model p(y|θ). For deterministic models, this point is the maximum likelihood value and

can be computed by optimization. For stochastic models, it is in general unknown. Daly et al.

(2017) argue that too small a c leads to a decapitation and uniformization of the noise distribution

around the maximum likelihood value. Due to the inability to find good values for c, there the here

employed ABC-SMC sampler based on Toni et al. (2009) was disregarded in favor of a sampler

based on Del Moral et al. (2012), although the former had shown superior accuracy. We can

however solve both the problems of too low acceptance rates and of the decapitation of the noise

model by correcting for that error as follows, based on ideas from rejection control importance

sampling (RCIS, Sisson and Fan (2018)):

Theorem 2 (Importance weighted acceptance). Let ct > 0 arbitrary. If we change the acceptance

step to

3. accept with probability min

[(
π(D|y,θ)

ct

)1/Tt
, 1

]

and modify the importance weights to be

wt(y, θ) ∝
π(D|y, θ)1/Tt

min

[(
π(D|y,θ)

ct

)1/Tt
, 1

] · π(θ)

gt(θ)
, (2)

the weighted samples (θ, w(θ)) target distribution (1).

Proof. See the Supplementary Information, Section 3.3.
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This means that we can, for arbitrary c, correct for accepting from the decapitated noise distribu-

tion by modifying the acceptance weights. Of course, a smaller c leads to higher acceptance rates,

but also to an increase in the Monte Carlo error by weight degeneration. Therefore, it must be

chosen carefully. In a sequential approach, it is straightforward to iteratively update c by taking

into account previously observed values. In this study, we by default set it to the maximum of the

values found in previous iterations. When acceptance rates turn out too low, we set it to β−T c,

where c is the maximum found value, and β ≥ 1 increases acceptance rates roughly by that factor

in the next iteration. Other schemes, e.g. based on quantiles, are possible. Before iteration 1, we

draw a calibration sample from the prior.

2.7 Selection of the temperatures

A proper temperature scheme has to balance information gain and acceptance rate. In general, the

overall required number of simulations depends both on the number of intermediate populations,

and the difficulty of jumping between subsequent distributions. In the following, we propose two

schemes based on different criteria.

Acceptance rate scheme

The idea of this scheme is to match a specified target acceptance rate, i.e. to choose T = Tt such

that the expected acceptance rate

γ =

∫ (∫
min

[(
π(D|y, θ)

ct

)1/T

, 1

]
p(y|θ) dy

)
gt(θ) dθ

=

∫
vt(θ)

(∫
min

[(
π(D|y, θ)

ct

)1/T

, 1

]
p(y|θ) dy

)
gt−1(θ) dθ

≈ 1

N

N∑
i=1

vt(θ
(t−1)
i ) min

(π(D|y(t−1)i , θ
(t−1)
i )

ct

)1/T

, 1

 (3)

matches a specified target rate. Here, in the second line we employ importance sampling from

the previous proposal distribution gt−1 with corresponding Radon-Nikodym derivatives vt(θ) =

gt(θ)/gt−1(θ). This is because in the third line, we approximate this integral via a Monte Carlo

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.927004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.927004
http://creativecommons.org/licenses/by/4.0/


sample, using all parameters sampled in the previous iteration. This must include rejected particles

to avoid a bias. The inner integral is approximated by the corresponding single simulation.

Matching γ ≈ γtarget is a one-dimensional bounded optimization problem which can be efficiently

solved. Compared to the overall run time of ABC analyses, we found the computation time to be

negligible. While this scheme provides only a rough estimate of the expected acceptance rate, it

proved sufficient for our purpose.

Assuming convergence ct → c∞ and gt → g∞ similar in shape to the true posterior distribution, it

is to be expected that a such proposed T converges to a value T∞ > 1 in general. Therefore, the

acceptance rate scheme is rather intended as a scheme for the first few iterations and needs to be

backed up with an additional scheme, e.g. the one following, that ensures T ↘ 1.

Exponential decay scheme

In standard likelihood-based parallel tempering MCMC, empirically a geometric progression, i.e.

a scheme with fixed temperature ratios, has shown to yield roughly equal probabilities for swaps

between adjacent temperatures (Sugita et al., 2000). This finding can be theoretically justified

(Predescu et al., 2004). Since a similar approach was recently successfully applied in an ABC-SMC

setting by Daly et al. (2017), we used a geometric progression here as well. We specified a fixed

ratio α ∈ (0, 1) such that Tt+1 = αTt.

The effective next temperature was then set to the minimum of the temperatures proposed by the

acceptance rate scheme and the exponential decay scheme.

Find a good initial temperature

Unanswered has remained the question of how to choose the initial temperature. It should be low

enough to avoid simply sampling from the prior without information gain, but have reasonable

acceptance rates. Thus it is a crucial tuning parameter. Here, we propose a widely applicable

self-tuned mechanism based on the above acceptance rate scheme: The acceptance rate scheme

can be applied to find T1 if we set g1(θ) = g0(θ) = π(θ) and generate a calibration sample {θ(0)i }i≤N
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from the prior, the same we use to find the initial normalization c.

For brevity, we denote by ASSA in the following the here proposed exact ABC-SMC sampler with

an adaptive sequential stochastic acceptor, i.e. with c set to the previously observed highest value

with weight correction, and the two temperature selection schemes, with target acceptance rate

γtarget = 0.3, and α = 0.5 in the exponential decay scheme.

2.8 Implementation

We implemented all the algorithms in the open-source python toolbox pyABC (https://github.com/icb-

dcm/pyabc, Klinger et al. (2018)), which offers a state-of-the-art implementation of ABC-SMC.

We put emphasis on an easy-to-use modular implementation, such that it is straightforward to

customize the analysis pipeline. To ensure numerical stability, critical operations were performed

in log-space. For further details see the Supplementary Information, Section 5. Jupyter notebooks

illustrating how to use the algorithms have been included in the pyABC online documentation.

The complete data and code are available on zenodo (http://doi.org/10.5281/zenodo.3631120).

3 Results

To study the properties of ASSA, and compare it to alternative approaches, we consider six models.

3.1 Model description

The models cover various modeling formalisms, including ordinary differential equations (ODE),

stochastic differential equations (SDE), Markov jump processes (MJP), and agent-based models

(ABM), as well as various noise models, including normal, Laplace, and Poisson noise.

Models M1 and M2 are ODE models of a conversion reaction A
θ1


θ2
B, a typical building block

in many biological systems. We estimated the reaction rate coefficients θ1, θ2, assuming only

species A to be measured. In model M1, we employed independent additive normal noise, a
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Figure 3: Evaluation of the properties of the components of the proposed sampling scheme. (A) Kernel

density estimates (KDE) of four posterior estimates generated for model M1 with one unknown parameter

and 10 data points, with different normalization constants c, only once correcting for the acceptance bias

by reweighting. (B) Normalization constant c over the iterations for inference for model M1 with 100

data points. (C) Acceptance rate in sampling runs for models M1, M3 and M4 for two population

sizes N . Only the acceptance rate criterion was used for temperature scheduling. (D) Total number of

simulations in runs for model M1 for different initial temperatures T1. The temperature updates were

performed using only the exponential decay scheme. The colors indicate individual iterations, starting at

the bottom with the simulations spent in the calibration iteration, and then from t = 1 upwards. (E,F)

KDE of simulations obtained for model M1 with one unknown dynamic parameter, and also estimating

the normal noise variance. (E) Comparison of a run using the stochastic acceptor, and a run using a noisy

model output. (F) Posterior estimates over the sequential iterations using the stochastic acceptor.

common assumption in systems biology. In model M2, we instead employed Laplace noise, which

is frequently used when the data are prone to outliers (Maier et al., 2017). Further, M1 was varied

in multiple regards to investigate various features of the algorithm.

Model M3 is an SDE model of intrinsic ion channel noise in Hodgkin-Huxley neurons based on

Goldwyn et al. (2011). We estimated the parameters dc describing the input current, and the

square root of the membrane area membrane dim. We assumed measurements to be available

for the fraction of open potassium channels K, and employed an additive normal noise model to

describe inaccuracies in the measurement process.

Model M4 describes the process of mRNA synthesis and decay, ∅ p1→ mRNA
p2→ ∅, we estimated the
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Table 1: Main properties of the considered models.

Id Description Type Noise model # Parameters # Data

M1 Conversion reaction ODE Normal 2 10

M2 Conversion reaction ODE Laplace 2 10

M3 Hodgkin-Huxley neurons SDE Normal 2 100

M4 Gene expression MJP Poisson 2 10

M5 STAT5 dimerization ODE Normal 13 48

M6 Tumor spheroid growth ABM Normal 7 30

transcription rate constant p1 and the decay rate constant p2. To capture the intrinsic stochasticity

of this process at low copy numbers, we sampled from the chemical master equation using the

Gillespie algorithm (Gillespie, 1977). We assumed the counts of mRNA molecules from a single

cell to be available at discrete time points. Data of this kind can be obtained e.g. by fluorescence

microscopy. We employed a Poisson noise model, which is frequently used for regression of count

data (Coxe et al., 2009).

Model M5 is an ODE model by Boehm et al. (2014) describing the homo- and heterodimerization

of the transcription factors STAT5A and STAT5B, for which three types of data with 16 mea-

surements each are available. In the original publication, additive normal measurement noise was

assumed, and optimal parameter point estimates obtained using optimization. We estimated 11

logarithmically scaled parameters of this model, including three standard deviations of the normal

noise model, one for each data type.

Model M6 is a multi-scale ABM model of spheroid tumor growth on a two-dimensional plane, as

described in Jagiella et al. (2017). Single cells were modeled as stochastically interacting agents,

coupled to the dynamics of extracellular substances modeled via partial differential equations.

For the three data types generated by this model, we assumed normal noise models of differing

variance. The model has seven unknown parameters. The simulation of this ABM model is

computationally relatively demanding, and a single forward simulation on the employed hardware

took already about 20 seconds. As often on the order of 1e5 to 1e8 forward simulations are required

for inference, the overall computation time was on the order of thousands of core hours.

For models M1-4 and M6, we created artificial data by simulating the model and then “noisify-

ing” the simulations by sampling from the respective noise distribution. Model M5 is based on

real data without known ground truth but reported literature values. For all models, we used
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uniform parameter priors over suitable ranges. A summary of the model properties is provided in

Table 1, and further details, including a visualization of the employed data, can be found in the

Supplementary Information, Section 7.

For parameter estimation, we used pyABC with a multivariate normal kernel with adaptive covari-

ance matrix as proposal distribution between populations, and a median strategy to update the

ε threshold under a uniform acceptance kernel (Klinger and Hasenauer, 2017). If not mentioned

otherwise, we used a population size of N = 1000.

3.2 Reweighting reliably corrects for bias

As the RCIS reweighting derived in Section 2.6 should allow for exact inference independent of the

normalization constant c, we compared the resulting sample distribution with the ground truth.

Therefore, we performed sampling for different values of c, for model M1 confined to one estimated

parameter (Figure 3A). The theoretical maximum value of the likelihood of the data D under the

model was determined by multi-start local optimization, yielding c̄ = maxθ π(D|y(θ), θ) ≈ 25.5.

Here, we used c ∈ {20, 23, 25}. As already pointed out in Daly et al. (2017), this leads to a

decapitation of the posterior distribution, i.e. it flattens out at values of high probability. The

difference to the true posterior became smaller the larger c. However, if we corrected for the bias

introduced by the too low normalization according to (2), we obtained, even for the lowest c = 20,

a posterior that well matched the true distribution.

Employing the proposed strategy to automatically update c after each iteration to the highest

value so far, we observed for all test models that the value of c converged over time, larger jumps

taking place only in the first few iterations. E.g. for the 2-parametric model M1 with 100 data

points (Figure 3B), c converged to the theoretical minimum upper bound c̄.

3.3 Acceptance rate prediction works reliably

Next, we analysed the performance of the acceptance rate prediction introduced in Section 2.7 as

a means to choose temperatures. We ran six iterations for each of the models M1-3 and found
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that the deviations to the target value of γtarget = 0.3 are acceptable (Figure 3C). The fit was

already good at t = 1, thus allowing to find appropriate initial temperatures. As expected, the

fluctuations decreased for a higher population size. This shows that approximation (3) is sufficient

for the temperature adaptation.

While the acceptance rate criterion provided a means to adapt the temperature in early iterations,

the proposed temperatures T did in most cases not converge to T = 1, at which we have exact

inference. This was to be expected, as explained in Section 2.7, and necessitates the presence of a

secondary scheme ensuring T ↘ 1, for example the exponential decay scheme. We observed that

the acceptance rate criterion reliably proposed good initial temperatures and allowed for major

temperature jumps in the first iterations (accelerating convergence), while in later iterations the

exponential decay scheme took over (e.g. Supplementary Information, Figure S10).

To illustrate the importance of a proper selection of the initial temperature, we fixed it for model

M1 to different values (Figure 3D), employing only the exponential decay scheme with a fixed

number of iterations. Too small values of the initial temperature led to many simulations being

necessary in the initial iteration, sometimes even more than for the entire analysis using the self-

tuned initial temperature. Too high values of the initial temperature yielded little information

gain and resulted in a waste of computation time in the first iterations.

3.4 Approach allows to estimate noise parameters

In Theorem 1, we allowed the noise likelihood π(ȳ|y, θ) to be parameter-dependent for the stochastic

acceptor. To test the validity of this, we employed model M1 and estimated the standard deviation

σ of the normal noise model along with the rate constant θ1 (Figure 3E). Indeed, the posterior

distributions of both parameters obtained using the proposed algorithm match the ground truth.

In theory, also employing approach A2, i.e. a noisy model, should approximately allow to estimate

noise parameters. However, even after 6e6 simulations, compared to 1e5 for the stochastic acceptor,

the quality of the estimated posterior distribution for the noise parameter was considerably worse.

Meanwhile, parameter θ1 was well estimated.

The sequential improvement of the posterior distribution over the ABC-SMC iterations for the
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same model (Figure 3F) indicates that the temperature update scheme suggests steps with an

appropriate information gain.

3.5 Applicable to various model types and noise models

To evaluate how our proposed ASSA sampler performs on different types of dynamical models

p(y|θ) and noise models π(ȳ|y, θ), we studied models M1-4. Further, we compared ASSA to

alternative approaches: Firstly, we employed it with only one iteration, nt = 1, giving exact ABC-

rejection. Secondly, we set the normalization constant to c = ĉ = maxy,θ π(D|y, θ) where it is

ignored whether the model is able to simulate such values, as in the initial approach by Wilkinson

(2013). In addition, we compared ASSA to the noisy model sampler A2 in a sequential form. We

stopped runs when the acceptance rate fell below 1e-3, or exact inference with T = 1 was achieved.

For the deterministic models M1 and M2, we could confirm that the distributions inferred by ASSA

closely matched the theoretical ones (Supplementary Information, Figure S9). Unfortunately, such

an analysis is not that easily possible for the stochastic models M3 and M4. Yet, the posterior

distributions obtained using ASSA for all four models are centered around the true parameters to

a degree that seems reasonable given model and data (Figure 4A). When other samplers of type

A3 reached T = 1, the estimated posteriors were similar in shape. The posterior approximations

obtained by the noisy model sampler A2 differed for three models from those obtained by ASSA,

indicating that this approach is not able to yield reliable results within a reasonable computational

budget.
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A

Figure 4: Method comparison for models M1-4. (A) Posterior marginals obtained using the five different

samplers. For runs that had to be stopped due to an acceptance rate below 1e-3, the last finished

population is shown. True parameters are indicated by dotted lines. The colored check marks indicate

the methods reaching T = 1, or for the noisy model an adequate approximation. (B) Total number of

simulations over all iterations. For samplers that had to be stopped early, in addition the estimated values

are shown hatched. (C) Effective sample sizes for the final posterior estimate obtained by each algorithm

in its last iteration.
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3.6 Substantial speedup compared to established approaches

A commonly used measure for efficiency of a sampler is the total number of required model simula-

tions. This is for dynamical models typically the time-critical part (see e.g. Jagiella et al. (2017)).

We found that for all models, ASSA required the least simulations (Figure 4B). For model M4 the

advantage was with a factor of 2 the smallest, which could be explained by the model itself being

very stochastic, so that simulating the noisy data was not unlikely. The other models possessed

more internal structure, i.e. a higher signal-to-noise ratio, such that model simulations close to the

noisy data were rather unlikely. For models M2 and M3, ASSA with c = ĉ, as well as the version

with nt = 1, was not even able to reach T = 1 in the computational budget, resulting in a higher

posterior variance due to an overestimation of the noise variance (see Figure 4A).

For our analysis, we provided all samplers with a computational budget which was by far sufficient

for ASSA. Unfortunately, for some runs with c = ĉ, this budget was still insufficient. To compare

the expected computational budget required for exact sampling, we made use of the roughly

inverse proportional dependence of the acceptance rate on the normalization factor c (3). With s

the number of simulations required by ASSA in the last iteration, we get the estimate ŝ = ĉ
c
s for

the required number of simulations for samplers using c = ĉ in the last iteration. The estimates

indicate that the sequential samplers with c = ĉ would require 4 and 20 orders of magnitude

more simulations than those with self-tuned c, on model M2 and M3, respectively (Figure 4B).

Even with massive parallelization, exact inference would thus not be possible without the proposed

self-tuning scheme for c.

On all models M1-4, ASSA required about 22, 11, 6, and 2 times less simulations, respectively,

than with nt = 1, indicating that the temperature selection scheme allows to efficiently bridge

from prior to posterior.

To assess the influence of the number of data points, we performed the inference for models M1-

3 for 10 to 1000 data points (Supplementary Information, Section 8.3). The value of ĉ grew

exponentially with the number of data points, while this was not the case for the highest c possible

under the model, c̄. Indeed, we found for models M1-3 that for ASSA the number of simulations

increased only moderately. The ratio ĉ/c with c the value used by ASSA in the last iteration

increased e.g. for model M1 from about 10 for 10 data points to more than 1e200 for 1000 data
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points. This indicates that ASSA scales well with the number of data points, while approaches

with too large c quickly become computationally infeasible.

While the number of required model evaluations provides information about the complexity, it does

not account for stability. This is assessed with the effective sample size ESS(w) := (
∑

iwi)
2/
∑

iw
2
i

(Martino et al., 2017), with wi denoting the importance weights. The ESS is a heuristic measure

of how many independent samples a population of particles obtained via importance sampling

effectively consists of, decreasing for more volatile weights. Since we inflate the weights by (2)

if the criterion exceeds 1, it is to be expected that ASSA has a lower ESS than the alternative

stochastic acceptors, which indeed was the case on the test models (Figure 4C). However, for all

models the ESS was still reasonably high, indicating that the population is not degenerated. E.g.

on model M3 an increase of the population size by 25% would presumably yield an ESS of more

than 1000. Compared to the orders of magnitude differences between sample numbers, this renders

ASSA highly efficient (Supplementary Information, Figure S13).

3.7 Scales to challenging estimation problems

To assess the performance of the proposed approach in practice, we considered the application

problems M5 and M6. Since the acceptance rates when updating c always to the highest so far

observed value were too low, once acceptance rates fell below 0.1 we employed a factor β of 20 and

10, respectively, as defined in Section 2.6.

For model M5, we used a population size of N = 1e4 to guarantee stability of the results. The

posterior marginals (Figure 5) indicate that seven parameters can be accurately estimated, two

parameters can be constrained, and two parameters are non-identifiable. The posterior distribu-

tions recover the reported literature values (Boehm et al., 2014), which had been obtained by

optimization, and the parameter samples provide an accurate description of the experimental data

(Supplementary Information, Figure S14). Importantly, in addition to kinetic parameters our

approach was able to identify the standard deviations of the normal noise models on all three

parameters. In contrast, the application of a sequential version of the noisy model approach A2

performed worse and was in particular unable to fit all noise parameters. The ESS for the stochas-

tic acceptor was 1011 (using in total 8e6 simulations), for the noisy model only 83 (using in total
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12e6 simulations).

Figure 5: Posterior marginals for model M5, using ASSA and the noisy model sampler. The literature

MAP values are indicated by dotted lines.

For model M6, we used a population size of N = 5e2 due to the high simulation time of the model.

Again, the comparison of the posterior marginals with the noisy model, which was given a similar

computational budget as required by the stochastic acceptor, reveals that the stochastic acceptor

extracted overall more information (Supplementary Information, Figure S15), and the parameter

samples describe the considered data accurately under the assumed noise model (Supplementary

Information, Figure 16). Given the data, the parameters related to initial conditions cannot be

inferred well, but for the others the reference values are accurately matched. The numbers of

simulations were 4.0e5 and 3.2e5, with an ESS of 222 and 153, respectively for ASSA and the

noisy model sampler.

4 Discussion

Modern ABC and ABC-SMC algorithms allow to perform parameter estimation for complex mod-

els. However, while easy to apply, these algorithms can lead to wrong results if measurement noise
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is not correctly accounted for. Here, we discussed ways of dealing with noise and presented an

adaptive sequential importance sampling algorithm (ASSA), broadly applicable to various models

and noise models. We demonstrated, using several test models, that the proposed algorithm is

more accurate and up to orders of magnitude more efficient than existing approaches. We achieved

this efficiency gain by learning a required normalization constant in a self-tuned manner, correct-

ing for potential biases by reweighting, and by devising an adaptive tempering scheme which in

particular allows to find a good starting temperature. Thence, we were able to perform exact

likelihood-free inference on models on which this would have hitherto been impossible. Further,

we implemented the algorithm in the freely available toolbox pyABC.

Our approach is self-adaptive to the problem structure by learning good values for several tuning

parameters such as the initial temperature and the normalization constant. By learning proper

values for these parameters on the fly, our approach is both stable and applicable to diverse

problems, and gets rid of the need of manual tuning, which otherwise can be time-intensive. This

is a key difference to related approaches (e.g. Daly et al. (2017)), in which parameters are manually

adapted to the individual problems. Furthermore, the proposed approaches allows to estimate noise

levels, facilitating integrated analysis workflows (Hross et al., 2018).

Given that ABC has in the past been frequently applied without a proper noise formulation, the

question may be raised whether this may have lead to wrong parameter estimates. Unfortunately,

this is difficult to answer. However, since we have been able to apply exact likelihood-free inference

even to computationally demanding problems, we expect the algorithm to be broadly applicable

in the future, thus improving the reliability of parameter estimates for a broad spectrum of appli-

cations.

One possible path of future research is to investigate improved tempering schemes. The overall

required number of simulations depends both on the number of intermediate populations, and the

acceptance rates between steps. The exponential decay scheme we employed was rather loosely

motivated by analogies to parallel tempering MCMC. There exist approaches to dynamically ad-

just the temperature steps (Predescu et al., 2004; Vousden et al., 2015), however these are specific

to parallel tempering MCMC. For likelihood based SMC, there exist approaches that try to keep

the effective sample size constant (Latz et al., 2018), however it remains to be investigated whether

these are applicable in a likelihood-free context. Another interesting use of tempering is for ther-
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modynamic integration, allowing to compute Bayes factors. Thus, the presented algorithm could

potentially be extended to allow to perform model selection, as an alternative to e.g. Toni and

Stumpf (2010).

In conclusion, our results demonstrate the importance and the benefits of using proper noise

models. The proposed algorithms can exploit the structure of the noise model to perform exact

inference for computationally demanding models. As the implementation in pyABC facilitates

massive parallelization, this approach is also applicable to computationally demanding problems.
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