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Abstract 13 

While single-cell ATAC-seq analysis methods allow for robust clustering of cell types, the 14 

question of how to integrate multiple scATAC-seq data sets and/or sequencing modalities is still 15 

open. We present an analysis framework that enables such integration by applying the CoGAPS 16 

Matrix Factorization algorithm and the projectR transfer learning program to identify common 17 

regulatory patterns across scATAC-seq data sets. Using publicly available scATAC-seq data, 18 

we find patterns that accurately characterize cell types both within and across data sets. 19 

Furthermore, we demonstrate that these patterns are both consistent with current biological 20 

understanding and reflective of novel regulatory biology. 21 

 22 

Background 23 

The Assay for Transposase Accessible Chromatin (ATAC-seq) subjects DNA to a hyperactive 24 

transposase in order to tag euchromatic regions of the genome for sequencing. ATAC-seq thus 25 

provides a quantitative estimate of genome-wide chromatin accessibility, and can be used to 26 

infer which genomic regions are most likely to interact directly with proteins and other 27 

biologically relevant molecules (1), (2). Specifically, accessibility at enhancers and promoters 28 

has considerable influence on the binding of transcription factors (TFs) and other transcriptional 29 

machinery (3). Quantification of accessibility at these regions enables the characterization of the 30 
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regulatory biology that defines cell types and samples of interest (1), (2). 31 

 32 

ATAC-seq data is often summarized by binning reads into data-defined genomic regions of 33 

frequent accessibility (generally termed peaks) or by aggregating the reads that contain 34 

annotated DNA motifs (e.g. transcription factor binding sites), which are collectively the targets 35 

of defined trans-acting factors (e.g. transcription factors) (4). Aggregating reads in these ways 36 

allows for a comparison of accessibility variation between samples and inference of the 37 

chromatin landscape of cell populations. However, the functional annotations available for these 38 

features are often incomplete, which can present significant challenges in the interpretation of 39 

ATAC-seq data, and can limit the integration of accessibility information across data sets. 40 

Furthermore, the high dimensionality and extreme sparsity of single cell ATAC-seq data 41 

(scATAC-seq) significantly compounds these analytic challenges, and further limits 42 

interpretation (5).  43 

 44 

Therefore, computational methods are necessary to determine the patterns of accessibility that 45 

differentiate the regulatory biology associated with disparate cell populations in scATAC-seq 46 

data. Current tools for scATAC-seq analysis robustly cluster and annotate cell types. For 47 

example, ChromVAR, BROCKMAN, Cusanovitch2018, and scABC (6), (7), (8), (9) all output 48 

both clustering and inferred transcription factor binding within clusters, using clustering accuracy 49 

as their primary metric to evaluate efficacy. SnapATAC and cisTopic additionally provide the 50 

ability to query upregulated pathways from scATAC-seq data, but are still most strongly oriented 51 

towards the goal of effectively differentiating cell populations (5), (10). These methods provide 52 

effective tools for the analysis of individual scATAC-seq data, but require further extension to 53 

integrate the information learned from multiple scATAC-seq experiments or multiple sequencing 54 

modalities. 55 
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 56 

We develop a framework to enable cross-study and cross-platform analysis of multiple scATAC-57 

seq data sets through the application of the Bayesian Non-Negative Matrix Factorization 58 

algorithm, CoGAPS, (11), (12) in conjunction with the transfer learning program projectR (13), 59 

(14). We demonstrate that CoGAPS simultaneously identifies robust cell types, upregulated 60 

pathways, and TF activity from scATAC-seq data. Notably, the projectR transfer learning 61 

method allows for the identification of the learned signatures of regulatory biology that we 62 

identify with CoGAPS within other datasets. Finally, we use matched RNA-seq data to provide 63 

orthogonal evidence for candidate regulatory mechanisms identified by our scATAC-seq 64 

analysis method. This workflow facilitates the development of consensus accessibility 65 

signatures for cellular populations using multiple data sets and data modalities. Furthermore, we 66 

demonstrate that combined CoGAPS analysis of scATAC-seq and scRNA-seq identifies novel 67 

biology, such as the association of the transcription factor Hnf4a in mammalian cardiac 68 

development. 69 

 70 

Results/Main 71 

The scATAC-CoGAPS algorithm 72 

CoGAPS is a sparse, Bayesian matrix factorization algorithm which decomposes a matrix of 73 

sequencing data into two output matrices, representing learned latent patterns across all the 74 

samples and genomic features of the input data (11), (12). The first of these is called the 75 

Amplitude matrix, and it contains a numerical representation of the degree to which each feature 76 

contributes to each latent pattern learned by the algorithm. The second is termed the Pattern 77 

matrix, which represents the degree to which each learned latent pattern is present in each 78 

single cell (Fig. 1A) (15). Latent patterns are intended to capture common accessibility across 79 

both genomic features and cells, and thus identify the regulatory biology common among cells 80 
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in the data (hereafter they will be referred to simply as patterns). The scATAC-CoGAPS 81 

algorithm takes as input a count matrix with reads aggregated across any relevant summary 82 

feature (e.g. peak regions or DNA motifs that identify TF binding sites).  83 

 84 

The values of the Pattern matrix can be used to distinguish cell types or cell populations specific 85 

to each chromatin-accessibility derived pattern. This correspondence allows us to annotate 86 

patterns as associated with a particular group of cells. In contrast to standard clustering 87 

methods, the patterns learned from CoGAPS can simultaneously identify patterns that delineate 88 

individual cell types as well those shared across cell types.  89 

 90 

The pattern identified by each row of the Pattern matrix corresponds to a set of gene weights in 91 

each column of thee Amplitude matrix. These weights provide information on which specific 92 

features (peaks, motifs, etc.) contribute the most to each pattern. In this way, features can be 93 

linked to the cell types or cellular states defined by associated patterns, which enables the 94 

identification of the active regulatory programs within each group of cells. Further, these learned 95 

patterns can be input to our projectR transfer learning method (13), (14) to query their 96 

occurrence in related cells in other scATAC-seq datasets.  97 

 98 

Assessment of regulatory programs from the amplitude matrix of scATAC-CoGAPS depends 99 

upon the features selected for summarization of the scATAC-seq data. The approach outlined 100 

here focuses on the annotation of both peaks and DNA motifs. When using open chromatin 101 

peaks to define our feature set, we employ two main analysis steps (Fig. 1B). First, we match 102 

peaks to genes that fall within the regions they cover, have promoters within these regions, or 103 

are in close proximity to these regions. These sets of genes can then be compared to known 104 

pathways via gene overlap analysis (16), returning significantly overlapping pathways. Peaks 105 
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can also be searched for known DNA motifs and their possible TF bindings. The frequency of 106 

these potential TF binding sites can inform an understanding of which regulatory effectors are 107 

characteristic of a specific cell population. While other analysis methods require one particular 108 

mode of feature summarization, CoGAPS allows for the use of any feature that facilitates 109 

aggregation of reads into a count matrix. If we instead use a feature space initially defined by 110 

DNA motifs, we can again match pattern-defining motifs directly to known TF binding sites to 111 

determine enrichment for particular TFs, often extending the number of unique regulatory 112 

patterns we are able to uncover from the data (compared to using a peak based feature space 113 

alone). However, given that a feature space of peaks provides more options to interrogate 114 

regulatory biology (i.e. pathways and TF binding vs TF binding alone), we employ peak 115 

summarization as default in our analysis throughout, and utilize a motif-defined feature space to 116 

supplement this analysis. 117 

 118 

scATAC-CoGAPS differentiates known cell identities in scATAC-seq data 119 

To demonstrate the capacity of CoGAPS to distinguish cell populations, we run the algorithm on 120 

publicly available scATAC-seq data published by Schep et al (6). These data derive from twelve 121 

cell cultures, comprising ten different known cell lines (listed in Supplemental Table 1). The cell 122 

lines in the data are generally well-characterized, which allows for validation of the cell-type 123 

specific regulatory programs predicted by scATAC-CoGAPS. Using peaks to define our feature 124 

space, we apply CoGAPS to search for seven patterns of accessibility in the data (see Methods 125 

for dimensionality selection). After the factorization, we associate each cell with a single pattern 126 

using the PatternMarker statistic included in the CoGAPS package (12). Pattern classifications 127 

learned by CoGAPS on this data set align well with a priori knowledge of cell line annotations 128 

(Fig 2., Supplemental Table 2). Cells belonging to the same cell line are almost always 129 
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classified within the same pattern (Adjusted Rand Index of 0.90). 130 

 131 

Pattern 1 and Pattern 2 perfectly classify K562 Erythroleukemia and TF1 Erythroblast cells, 132 

respectively. GM B-cell derived LCLs, BJ Fibroblasts, and H1 Embryonic Stem Cells each have 133 

2 or fewer cells misclassified by patterns 3, 4, and 5. We note that Pattern 3 captures all three 134 

cultures of GM lymphoblastoid cell lines (GM LCLs), indicating that CoGAPS is differentiating 135 

these cell lines via regulatory differences of biology rather than through technical artifacts of cell 136 

culture. Pattern 6 is most significantly associated with HL60 Leukemia cells, however, due to the 137 

sparse signal in pattern 6, the patternMarker statistic only assigns one HL60 cell to that pattern, 138 

and the rest to pattern 7. Pattern 7 is assigned most of the remaining cells in the data, and while 139 

it is most significantly associated with PB1022 Monocytes, it also shows signal across HL60 140 

Leukemia cells, Lymphoid-Primed Multipotent Progenitors, and the two AML patient cell lines. 141 

We hypothesize that the regulatory similarity derived from the shared hematopoietic origin of 142 

these cells is responsible for this common signal.  143 

 144 

While the CoGAPS solution described above is for seven patterns, the selection of an optimal 145 

dimensionality for unsupervised learning remains an open question, and there probably is no 146 

single correct number of patterns to use (17). Therefore, we also run CoGAPS to analyze the 147 

scATAC-seq data for additional dimensions. When increasing dimensionality beyond 7, 148 

CoGAPS finds patterns that more strongly differentiate Monocytes and Lymphoid-Primed 149 

Multipotent Progenitor cells, but still does not return patterns distinguishing the two Acute 150 

Myeloid Leukemia patient cell lines apart from Lymphoid Primed Multipotent Progenitors 151 

(Supplemental Fig. 1). For example, at the 13-pattern dimensionality, we observe that pattern 1 152 

mainly distinguishes monocytes, while pattern 10 now captures the unifying signal across HL60, 153 

LMPP, and AML patient cells. At the same time, with this higher dimensionality, patterns 4, 6, 8, 154 
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11, and 13 have very sparse signal and appear to identify only single cells. Thus, we observe a 155 

tradeoff at higher dimensions between improved differentiation of cell types and an increased 156 

number of sparse patterns. Based on our results across dimensions, we retain the seven-157 

pattern solution for our remaining analyses in order to optimize cell type differentiation while 158 

minimizing the number of sparse patterns that are only associated with a few cells. 159 

 160 

Analysis of accessible features predicts regulatory programs consistent with established biology 161 

of cell lines 162 

After using CoGAPS patterns from the seven-dimensional solution to define cellular populations, 163 

we use the values of the corresponding feature weights in the Amplitude matrix to ascertain 164 

which peaks contribute the most to each learned pattern using the PatternMarker statistic. The 165 

peaks identified by the PatternMarker statistic reveal the accessible features of the data that 166 

themselves strongly distinguish cell types, which we shall refer to as PatternMarker peaks (Fig. 167 

3A). For most cell lines, the accessibility of the PatternMarker peaks learned from CoGAPS 168 

analysis better distinguishes the cell lines than the pattern weights themselves. This result 169 

suggests that the features CoGAPS learns reflect biologically relevant differences in 170 

accessibility between the cell populations that it is stratifying. Due to its increased granularity, 171 

this analysis provides further evidence that Pattern 6 is characteristic of HL60 Leukemia cells, 172 

and that the peaks associated with Pattern 7 are the most accessible in PB1022 Monocytes.  173 

 174 

The learned PatternMarker peaks can be associated with cell-specific regulatory mechanisms 175 

using pathway and transcription factor enrichment analysis (Supplemental Files 1 and 2). For 176 

example, Pattern 1 (the K562 Erythroleukemia-associated pattern) identifies the MSigDB 177 

HALLMARK HEME METABOLISM pathway as the most significantly associated with the cell 178 

line (Fig. 3B). This matches our biological expectation, as increased accessibility of or near 179 
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genes associated with Heme metabolism is consistent with the erythroid lineage K562 cells 180 

derive from. The second most significant pathway is HALLMARK MITOTIC SPINDLE, which 181 

suggests the uncontrolled division of this cancer cell line may be driven by epigenetic changes. 182 

 183 

Motif analysis from these accessible peaks further identifies TFs with the most accessible 184 

binding sites as potentially active regulators in the pattern-associated cell population. The top 15 185 

TFs enriched within the K562 cell associated pattern include TAL1, EGR1, RREB1, and NFE2 186 

which have all been associated with leukemia (18), (19), (20) or, in the case of NFE2, is an 187 

erythroid nuclear factor. TAL1 is a noteworthy hit, as K562 cells were used to establish TAL1 as 188 

a driver of leukemia (18), thus providing support for the validity of this approach. To measure 189 

the likelihood that the TFs are themselves expressed, we then find the relative accessibility 190 

signal at the peaks overlapping the genes of these candidate TFs. All of the above TFs 191 

identified from motif analysis also have increased gene accessibility compared to the average 192 

peak accessibility in K562 cells, with TAL1 having the highest relative accessibility (Supp. Fig. 193 

2). The accessibility of the gene is most notable for the peak overlapping with the transcriptional 194 

start site (TSS) of the gene, with the frequency of the accessibility signal decreasing among the 195 

peaks further from the TSS. 196 

 197 

The genes overlapping with the peaks that contribute most strongly to the Monocyte-associated 198 

Pattern 7 are enriched for the MSigDB HALLMARK INFLAMMATORY RESPONSE and 199 

HALLMARK TNFA SIGNALING VIA NFKB pathways (Fig. 3C). Both pathways are biologically 200 

consistent with the known role of monocytes in immunity and inflammation, as well as with the 201 

immunological roles of the other hematopoietic lineage cells secondarily associated with Pattern 202 

7. Within the top 15 TFs with the most enriched binding sites, IRF1, STAT1, CEBPA, and SPI1 203 

all have previously established roles in the regulation of monocytes (21), (22), (23), (24) and all 204 
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TF genes have increased gene accessibility relative to average for monocyte peaks in the data 205 

(Fig. 3C). The pathway and TF enrichment results for all other patterns are listed in 206 

Supplemental Files 1 and 2. Taken together, these results demonstrate the capacity of scATAC-207 

CoGAPS to identify regulatory features of biological relevance from scATAC-seq data.  208 

 209 

Summarization of the count matrix by DNA motifs extends the regulatory patterns CoGAPS 210 

learns from scATAC-seq 211 

While using peaks as summarization of ATAC-seq reads provides more avenues for 212 

downstream analysis, it has been previously shown that motif-level summarization is an 213 

additional information rich feature space for scATAC-seq analysis (6). Therefore, we compare 214 

our previous peak-level CoGAPS analyses for the Schep et al. data set (6) to motif-based 215 

CoGAPS analyses (labeled Pattern Defining Motifs in Fig 1B) of the same dataset to assess the 216 

impact of feature selection on the inferred regulatory programs. CoGAPS analysis of this motif-217 

based count matrix identified 10 total patterns from the data (Supplemental Figure 3A). Patterns 218 

4, 6, and 8 from this motif-level CoGAPS run differentiate GM-LCLs, BJ Fibroblasts, and TF1 219 

Erythroblasts, respectively.  220 

 221 

The other patterns identify additional cell populations that are not found when the data are 222 

analyzed using peak feature space (Supplemental Fig. 3A). For example, Pattern 10 identifies 223 

regulatory similarity between K562 Erythroleukemia cells and TF1 Erythroblasts, a pattern that 224 

peak based analysis does not find (Supplemental Fig. 3B). In Pattern 10, we identify high 225 

enrichment of candidate TF binding sites for GATA transcription factors, which are known to 226 

have critical roles in erythroid differentiation and are shared between Erythroleukemia and 227 

Erythroblasts (25). We additionally find that the PatternMarker motifs identified by CoGAPS in 228 

this analysis are nearly all different than the motifs found by peak-based analysis. When 229 
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patterns that seem to differentiate the same cell types are compared, less than 10% of the 230 

motifs identified by each analysis overlap (overlap for Fibroblast associated patterns is given in 231 

Supplemental File 3).  232 

 233 

These results suggest that using DNA motif-based summarizations identifies additional 234 

regulatory information from the same cell types contained within the same data, and directly 235 

supports the use of both peak and motif based summarizations to fully characterize the 236 

regulatory biology of cellular subpopulations in scATAC-seq data. Notably, motif-based 237 

summarization appears to better identify patterns of accessibility that are shared across multiple 238 

cell types, while peak-based summarization better differentiates individual cell types.  239 

 240 

Transfer Learning with projectR establishes the generality of the regulatory programs CoGAPS 241 

patterns capture 242 

Once we have established signatures of accessibility for cell populations in our data, we employ 243 

transfer learning with the R/Bioconductor package projectR (13), (14) to determine whether 244 

these signatures appear in similar cell populations from other experiments. Notably projectR can 245 

efficiently detect the presence of previously learned patterns of accessibility in separate 246 

scATAC-seq data as a means of in silico validation and discovery. This capability allows for the 247 

development of cell population-specific accessibility signatures based on CoGAPS results, 248 

which can be used to test for regulatory programs of interest in novel samples.  249 

 250 

We demonstrate projectR’s application to scATAC-seq by transferring the patterns learned in 251 

peak-level summaries of the Schep et al. (6) cell line data to scATAC-seq data from Buenrostro 252 

et al. (26), which contains 10 different hematopoietic lineage cell types labelled via 253 

Fluorescence Activated Cell Sorting (Supplemental Table 3). We project the monocyte-254 
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associated pattern (Pattern 7) from the Schep et al. data onto the Buenrostro et al. data and 255 

observe that the monocytes in the target data are most significantly associated to the 256 

accessibility pattern (Fig. 4A). Comparing average cell line association with the pattern in the 257 

target data may make the specificity of the monocyte association more visually clear (Supp. Fig. 258 

4). As previously noted, there is considerable Pattern 7 signal among other non-monocyte 259 

hematopoietic-lineage cells within the Schep et al. data set, and this is reflected in the general 260 

signal observed in the Buenrostro target data set.   261 

 262 

ProjectR can also provide information on the regulatory overlap between different cell types. In 263 

this case, it provides insight into the regulatory similarity between two distinct cell populations. 264 

For example, projection of the K562 Erythroleukemia cell line pattern from the Schep et al. data 265 

(Pattern 1) into the Buenrostro et al. data has the strongest signal in Megakaryocyte-Erythrocyte 266 

progenitors (Fig. 4B). This observation supports the presence of overlapping patterns of 267 

accessibility between these two populations, consistent with the expected regulatory similarity 268 

between Erythroleukemia and Erythrocyte progenitor cells.  269 

 270 

Analysis of matched scRNA-seq data validates regulatory programs learned from scATAC-271 

CoGAPS 272 

When scRNA-seq data is available for cells from the same experimental conditions as scATAC-273 

seq data, we can validate ATAC-CoGAPS predicted TF activity using transcription data of 274 

known TF gene targets. CoGAPS can be applied to the matched scRNA-seq data to find 275 

pattern-defining genes for each cell population as described in (12). These genes can be ranked 276 

on the basis of their contribution to each pattern (using the PatternMarker statistic), and then 277 

tested for enrichment in the set of genes known to be regulated by a candidate TF using Gene 278 

Set Enrichment Analysis (GSEA) (27) (Supp. Fig. 5). In this analysis method, genes known to 279 
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be regulated by a TF are used as the “pathways” input for GSEA with the ranked PatternMarker 280 

genes. 281 

 282 

No matching scRNA-seq data was available for the Schep et al. data set. Therefore, we sought 283 

to validate this method using matched scRNA-seq and scATAC-seq data from mouse 284 

embryonic cardiac progenitor cells at days 8.5 and 9.5 of development, as described by Jia et 285 

al. (28). We run CoGAPS on both data sets to learn 7 patterns in peak-level summarized 286 

scATAC-seq data and 6 patterns in the scRNA-seq data. There is much more regulatory 287 

similarity than dissimilarity between cardiac progenitors only one day apart in development, and 288 

thus the most distinctive patterns we find in the scATAC-seq data set are those that reflect 289 

sustained open chromatin across days 8.5 and 9.5 of development (Patterns 1 and 7)  (Supp. 290 

Fig. 6). As patterns 3 and 6 from the scRNA-seq experiment also have signal across all cells in 291 

the data, we continue by comparing the patterns found across cells rather than the patterns that 292 

stratify distinct cell populations. To make this comparison, we first find TFs enriched within the 293 

scATACseq data for all cells, and then list the genes known to be regulated by each of the TFs. 294 

Then, we find the PatternMarker genes from scRNA-seq from the patterns that show signal 295 

across all cell types (patterns 3 and 6). GSEA between the sets of genes regulated by the 296 

predicted TFs and the PatternMarker genes provides significant support for Tbx20 TF activity 297 

(FDR adjusted p-value of 0.015) and Hnf4a activity (FDR adjusted p-value of 0.042) across 298 

these developing cardiac cells (Fig. 5A, 5B). Tbx20 plays a major role in cardiac development 299 

(29), which is consistent with the known biology of embryonic cardiac cells. A homologue of 300 

Hnf4a was recently shown to play an important role in normal embryonic development of the 301 

chicken heart (30). This result corroborates that finding and suggests that Hnf4a may play a role 302 

in cardiac development across a wide phylogenetic range; particularly that it acts in mammals 303 

as well.  304 
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 305 

To investigate the accessibility of genes associated with Tbx20 using scRNA-seq, we find 306 

overlapping peaks of said genes within matched scATAC-seq data. The peaks corresponding to 307 

the Tbx2 gene and the Nkx2-5 gene are accessible across the cells in the data (fold 308 

accessibility 2.39 and 1.51, respectively), while Mef2c and Nppa peaks are less accessible than 309 

average (fold accessibility 0.84 and 0.30) (Fig. 5C, Supp. Fig. 7). The Tbx2 gene is particularly 310 

accessible in the peak overlapping with its transcriptional start site (fold accessibility 3.11). The 311 

lack of accessibility among the Mef2c and Nppa genes suggests that accessibility and gene 312 

expression do not always align, though we do observe general correspondence between the 313 

two data modalities, particularly in transcriptional start site overlapping peaks. 314 

 315 

Discussion 316 

Single-cell epigenomics methods such as scATAC-seq capture a wide array of regulatory 317 

features genome wide, but our ability to extract this information is still limited. Here we present 318 

the application of CoGAPS and projectR to scATAC-seq, providing an analysis framework for 319 

Bayesian Non-Negative Matrix Factorization to uncover regulatory information from sparse, 320 

high-dimensional epigenomics data and project these learned patterns across data sets and 321 

sequencing platforms.  322 

 323 

CoGAPS (Coordinated Gene Expression in Pattern Sets) was originally developed for the 324 

analysis of gene expression data. The ability of CoGAPS to extract relevant patterns from 325 

different data sources is a great strength of the algorithm. Here, we leverage this capacity to 326 

develop a basic framework for integrative analysis of multiple scATAC-seq and scRNA-seq data 327 

sets. Since CoGAPS can be applied to any sequencing technology that can produce a count 328 

matrix, this framework we present has the potential to support the integrated analysis of 329 
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additional multi-omics data sets. The importance of this capacity continues to grow with the 330 

increasing affordability and concomitant ubiquity of sequencing technologies, and the massive 331 

and varied data sets such technologies produce. Furthermore, CoGAPS allows for the 332 

summarization of reads to any relevant genomic feature (e.g. peaks, DNA motifs, etc.) and 333 

facilitates the learning of a wider range of regulatory patterns than methods that require a 334 

specific summarization method. 335 

 336 

This study presents CoGAPS and projectR as a paired set of tools for cross-study analyses of 337 

regulatory biology from scATAC-seq data. The projectR transfer learning software is broadly 338 

applicable for features learned with unsupervised methods in addition to CoGAPS (14). This 339 

flexibility of projectR will support further cross-study analyses with emerging scATAC-seq 340 

methods (15). While this study demonstrates the robustness of CoGAPS for inferring regulatory 341 

biology from scATAC-seq data, we resolve different aspects of that biology at different 342 

dimensionalities and data summarizations. We hypothesize that accounting for these features 343 

across hyperparameters as well as additional features informed from ensembles of features 344 

learned from alternative methods are critical to resolve the complex landscape of regulatory 345 

biology encoded in the data, consistent with emerging literature on multi-resolution methods 346 

(31).  347 

 348 

We find that TF motif-based analysis tends to find more patterns that have signal across cell 349 

types, while peak-based analysis finds more cell type specific signal. We hypothesize that each 350 

peak mostly contains signal corresponding to one or a few genes, and therefore peaks more 351 

finely map cell populations to distinct cell types. Transcription factor motifs, on the other hand, 352 

contain signal corresponding to larger regulatory changes that are more likely to be shared 353 

between cell types, and thus analysis in this space yields more patterns with signal across cell 354 
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types. If this hypothesis is correct, it seems possible that an enhancer-based space could 355 

provide another higher order feature, that could identify more patterns of regulatory biology that 356 

act across multiple cell types.  357 

 358 

The projectR software package makes it possible to determine whether the patterns learned in 359 

one data set are present in others, and can do so in a way that is fast and easy to implement. 360 

This a major strength of the approach we present, as it helps to simultaneously extend and 361 

validate learned regulatory patterns, while also allowing for the comparison of regulatory biology 362 

in multiple scATAC-seq data sets. Most current scATAC-seq analysis methods are limited in 363 

application to a single data set and any results cannot be directly related to other data sets or 364 

analyses. This fact severely limits the efficiency of broad analyses, and the information that can 365 

be learned from distinct but complementary data sets. ProjectR thus synergizes with CoGAPS 366 

and has tremendous potential for use in analyzing disease-specific data sets. For example, if we 367 

can establish robust signatures of disease or treatment associated biology, such as genomic 368 

dysregulation and markers of drug efficacy, respectively, we can use CoGAPS and projectR to 369 

leverage clinical data for an improved understanding of disease mechanisms (32), (33) and to 370 

guide treatment decisions.  371 

 372 

Matrix factorization is well suited to the problem of understanding scATAC-seq data, as the 373 

technique learns patterns that distinguish both features and cells within the two factorized output 374 

matrices. This output is conducive to a more thorough analysis of the regulatory differences 375 

between the cell populations in the data than most available methods can provide. Thus, it is 376 

unsurprising that matrix factorization has been previously applied to scATAC-seq analysis (34), 377 

(35), (36). We use CoGAPS because the Bayesian optimization of the factorization has been 378 

previously shown to be more robust to initialization than gradient-based NMF, resulting in more 379 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.927129doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=7994836&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6789849&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5602536&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7617216&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7034585&pre=&suf=&sa=0
https://doi.org/10.1101/2020.01.30.927129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   
 

16 
 

biologically relevant patterns (11), (12), (37). Duren et al. and Zeng et al. each apply a coupled 380 

factorization for integrative analysis of multiple sequencing modalities, allowing for simultaneous 381 

clustering and investigation of regulatory biology (34), (35), (36). ProjectR can potentially be 382 

applied to the output of these coupled factorizations, allowing for transfer of these integrated 383 

patterns of regulatory biology across data sets. Coupled factorization may be a promising 384 

avenue for future development of integrative analysis with CoGAPS, and projectR will be able to 385 

serve in this context to determine whether different coupled factorization methods identify 386 

similar patterns of regulatory biology.  387 

 388 

We note that multi-platform data integration is a broad area of research, extending well beyond 389 

matrix factorization based approaches. Coupled correlation analysis has recently been applied 390 

to scATAC-seq and scRNA-seq, both allowing for integrative analysis and imputation of spatial 391 

transcriptomics information (38).  Linked Self-Organizing Maps have also been used in this 392 

context, providing the capacity to find differences between relatively similar cell types (39). In 393 

the area of experimental methods development, recent research has provided techniques for 394 

parallel sequencing of RNA, accessibility, and methylation from single cells, vastly lowering both 395 

the time and monetary cost of joint profiling of single cells (40), (41). Further, multiple efforts are 396 

underway to sequence transcriptomics and chromatin accessibility from the same single cell, 397 

which promises to improve the fidelity of multimodal analysis and the ability of multi-omics 398 

computational methods to learn the regulatory biology of constituent cell populations.  399 

 400 

Conclusions 401 

The ATAC-CoGAPS analysis framework provides robust tools for identifying regulatory biology 402 

from scATAC-seq data. Further, it provides the capacity for integrative multi-omics analysis, as 403 

well as Transfer Learning of accessibility signatures across data sets. These characteristics 404 
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allow the ATAC-CoGAPS framework to produce consensus signatures of cell populations that 405 

apply across sequencing modalities and across variations in cellular conditions, which is 406 

infeasible with other currently available methods. 407 

 408 

Methods 409 

ATAC-CoGAPS Pipeline 410 

The ATAC-CoGAPS software is freely available as an R package from 411 

https://github.com/FertigLab/ATACCoGAPS. Briefly, this software package includes functions 412 

for preprocessing of scATAC-seq data to run the CoGAPS algorithm (version ≥ 3.5.13), as well 413 

as functions for subsequent analysis of the results. Each of the steps taken to perform the 414 

standard ATAC-CoGAPS workflow are demonstrated at https://rossinerbe.github.io/. All 415 

analyses performed to produce the results described in this work are available from  416 

https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code.   417 

 418 

Input reads from a scATAC-seq experiment are summarized into some feature space (peaks, 419 

DNA motifs, etc.) and into an input count matrix, features by cells. Specific preprocessing steps 420 

are outlined in the analysis code linked above. Next, the count matrix is input to the 421 

R/Bioconductor package CoGAPS. CoGAPS employs a sparse, Bayesian non-negative matrix 422 

factorization algorithm to decompose the scATAC-seq count matrix C, features by cells, into an 423 

Amplitude matrix A, features by learned patterns, and a Pattern matrix P, learned patterns by 424 

cells as described in (11) and (12). The primary parameter for the application of CoGAPS is 425 

then the feature level summarization and number of learned patterns, described in further detail 426 

below. To account for sparsity, we filter this input count matrix C is filtered to remove any 427 

feature or cell that is more than 99% zero. 428 

 429 
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The next steps of the ATAC-CoGAPS analysis framework then focuses on the output A and P 430 

matrices. Unless otherwise noted, all steps are functionalized within the ATACCoGAPS 431 

package and all outside packages used are wrapped within ATACCoGAPS functions (see the 432 

workflow at https://rossinerbe.github.io/ for detailed implementation with code). We first evaluate 433 

the results object from CoGAPS by plotting the Pattern matrix P (learned patterns by cells) to 434 

determine which patterns differentiate which cell populations. Annotations of patterns to cell 435 

populations are made using the PatternMarker statistic to determine the pattern each cell is 436 

most defined by, thereby clustering cells to each pattern. Alternatively, if a priori determined cell 437 

populations are known (e.g. by fluorescence activated cell sorting) we can determine which of 438 

these populations have significant signal in a pattern by calling the pairwise.wilcox.test R 439 

function for each pattern (not functionalized in ATAC-CoGAPS). The Adjusted Rand Index is 440 

used to quantify the overall clustering of CoGAPS on the Schep et al. data set (6) using the 441 

pattern to cell line annotations listed in Supplemental Table 2. Once these correspondences of 442 

pattern to cell type are annotated, we can then turn to the Amplitude matrix A (features by 443 

learned patterns). We apply the PatternMarker statistic to find the accessible features that most 444 

strongly contribute to each pattern, and thus most define the cell population they distinguish. 445 

The number of features used in these analyses is determined by thresholding of the 446 

PatternMarker statistic such that the feature is assigned to the pattern for which its association 447 

is scored most highly (12). 448 

 449 

Analysis of the amplitude matrix A also depends critically on functional annotation. If peaks are 450 

used as summarization, we first match peaks to genes within or near those regions using the 451 

GenomicRanges R package version 1.36.1 (42). We then find enrichment of those genes within 452 

known pathways from MSigDB (in this work we demonstrate this capability using Hallmark 453 

Pathways v7.0) (27), (43) using the GeneOverlap R package version 1.20.0 (16).  454 
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 455 

Additionally, peaks are matched to DNA motifs with potential TF binding sites using the 456 

motifmatchR Package version 1.6.0 (6). TFs with common possible binding sites in multiple 457 

PatternMarker accessible regions are returned, along with functional annotations, so the 458 

biological plausibility of a TF’s activity in a particular cell population based on known function 459 

can be considered alongside the enrichment results. Next, the accessibility of the peaks 460 

overlapping with the TF gene itself is evaluated relative to the general accessibility of peaks for 461 

that cell population to provide evidence as to whether the TF itself is expressed. For each peak 462 

that overlaps with the TF gene, the number of cells with accessible reads are counted within the 463 

cell population of interest. This number is averaged for all peaks overlapping the TF gene and 464 

then this average is divided by the average quantity of accessible cells for all peaks in the cell 465 

population. The resultant fold accessibility value is not intended as a precise quantification, but 466 

rather an approximate guide to assess whether a gene is generally accessible in a particular cell 467 

population. 468 

 469 

If the data is summarized to motifs before running CoGAPS using ATACCoGAPS preprocessing 470 

functions (which employ motifmatchR for motif matching), the downstream analysis is performed 471 

similar to the above. Common TF bindings are returned and assessed for relative accessibility 472 

to determine whether the TFs are likely to be themselves expressed in the cell population. 473 

Relative accessibility of the TF genes is calculated as described previously. 474 

 475 

Learned patterns can be projected into other data sets to determine if the signatures identifying 476 

cell populations within one data set apply more generally. We use the projectR package version 477 

1.0.0 (13), (14) to perform this analysis. If we use a peak feature space for transfer learning, 478 

peaks in the target data set must be matched to peaks in the source data set to project the 479 
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patterns learned in the source data set. We use the set of all peaks that have any overlap 480 

between the two sets as the features we project from and into. If we instead apply DNA motifs 481 

as the feature space, all motifs that occur in both data sets are used for projection. 482 

 483 

We apply CoGAPS to scRNA-seq data in order to validate candidate TFs identified by scATAC-484 

seq analysis. First, patterns that distinguish the same cell populations are identified. Then, the 485 

PatternMarker statistic is used to rank the scRNA-seq genes most associated to each pattern. 486 

The TFs identified as described above in scATAC-seq are matched to annotations from the 487 

TRRUST database version 2 (44) which list the genes the TFs are known to regulate. These 488 

gene sets are compared to the scRNA-seq CoGAPS based gene rankings by gene set 489 

enrichment analysis implemented with the fgsea R package  version 1.10.1 (45). TFs with 490 

significant enrichment of the genes they are known to regulate are considered to be supported 491 

by multimodal analysis. 492 

 493 

CoGAPS Hyperparameters 494 

All CoGAPS analyses presented in this manuscript are performed with CoGAPS version 3.70.0. 495 

Factorizations are performed in parallel across random subsets of features using the genome-496 

wide option (12) (which should be used unless there are more cells the features, in which case 497 

the single-cell option should be used instead) and 10,000 iterations. The only remaining free 498 

input parameter for CoGAPS is then the number of patterns, n, to learn from the data. The input 499 

matrix is features by cells, the Amplitude matrix is features by n, and the Pattern matrix is n by 500 

cells. We note that selecting the number of patterns for unsupervised learning methods is an 501 

open question in machine learning. Previously, we and others have found that pattern 502 

robustness and chi-squared statistics for goodness of fit across a range of values of n provide 503 

performance metrics for selection of n (46), (47). A priori knowledge of the set of conditions or 504 
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populations each cell derives from can provide an initial heuristic for the selection of n. Several 505 

CoGAPS runs can be performed in parallel to test different numbers of patterns. After these 506 

CoGAPS runs, a Chi-squared test can be performed on the output to determine the goodness of 507 

fit of the results and provide numerical guidance on the question of how well different numbers 508 

of patterns fit the data. 509 

 510 

Public Data 511 

This study presents analyses on publicly available scATAC-seq data from (6) (GSE99172), (26) 512 

(GSE96769), and (28) (https://github.com/loosolab/cardiac-progenitors on 8/7/2019). In all 513 

cases, data were obtained at peak summary (see papers for alignment and peak calling details). 514 

Both the Schep et al. 2017 and the Buenrostro et al. 2018 scATAC-seq datasets were 515 

downloaded with peaks of equal width. The peaks called for the Jia et al. 2018 data set were not 516 

of equal width, so counts were normalized by dividing the values of each peak by its nucleotide 517 

width. Motif counts were obtained using ATACCoGAPS software to convert peak counts to motif 518 

counts. The scRNA-seq data set from Jia et al. 2018 contains matched single cells to the 519 

scATAC-seq dataset. These data were also obtained from https://github.com/loosolab/cardiac-520 

progenitors on 8/7/2019 as normalized counts. Prior to running CoGAPS, all peaks and cells 521 

that were more than 99% sparse were filtered out of the data (32,789 peaks and 528 cells for 522 

the Schep et al. data set and none for the Jia et al. data set (as it was pre-filtered by Jia et al.)). 523 

CoGAPS was run for 7, 13, and 18 patterns in this work on the Schep et al. 2017 data set. 524 

CoGAPS was run for 7 patterns on the scATAC-seq data set and 6 patterns on the scRNA-seq 525 

data from Jia et al. 2018.526 
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Figures 

Figure 1 

 

 

A Diagram of Non-negative Matrix Factorization as applied to scATAC-seq data by ATAC-

CoGAPS. The Counts matrix (features by cells) is factorized into the Amplitude matrix (features 
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by learned patterns) and the Pattern matrix (learned patterns by cells). The patterns in the 

Pattern matrix differentiate cell populations, while the same patterns in the Amplitude matrix 

reveal the differentially accessible features of those cell types. These cell type specific patterns 

of accessibility can then be used to learn regulatory features that differ across cell populations. 

B Diagram of the analysis approach applied for cell type associated features found by CoGAPS. 

Features used to produce the input count matrix can be either accessible peaks or DNA motifs. 

Pattern defining peaks identified by CoGAPS are either matched to genes for gene overlap 

analysis or matched to DNA motifs to infer TF binding potential. Pattern defining motifs are 

matched to enriched to TFs, likewise to infer accessible binding sites and thus TF activity in 

identified cell populations. 

 

Figure 2 

 

Heatmap of the Pattern matrix with cells matched to learned patterns. The color gradient of the 

heatmap reflects the Pattern Matrix weights for each cell for each pattern, which indicates the 

degree to which each pattern is found in each cell, as learned by CoGAPS. Cells are labelled by 
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both Pattern Marker pattern assignment as well as known cell line and culture of origin. Patterns 

1-5 all very sharply distinguish a particular cell line. Pattern 6 only captures one cell. Most of the 

remaining cells are assigned to pattern 7, leaving only 5 cells unclassified. 

 

Figure 3 

 

A The PatternMarker statistic is used to find the 50 most pattern-distinguishing peaks for each 

pattern. The counts recorded at these peaks from the scATAC-seq experiment are binarized for 
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accessibility and plotted across all cells in the data. B,C Examples of the MSigDB Hallmark 

Pathways with significant overlap to genes matched to PatternMarker peaks (the 4 most 

significant pathways for each pattern) and Transcription Factors with high numbers of possible 

binding sites in PatternMarker peaks. TFs listed are those that are both within the top 15 list of 

TFs with the most enriched binding sites and have highly plausible functional annotations for 

activity in these cell lines. Fold accessibility refers to the peaks overlapping with the region of 

the TF gene, relative to other peaks in the K562 Erythroleukemia cell line and PB1022 

Monocyte cell line, respectively. 

 

Figure 4 

 

A Projection of peak accessibility associated primarily with monocytes in the Schep data set into 

the Hematopoietic lineage Buenrostro data set. The Monocytes in the Buenrostro set are the 

cell type most significantly associated with the pattern, as determined by a pairwise Wilcoxon 

Rank Sum Test. B Projection of the accessibility signature associated with the K562 

Erythroleukemia cell line in the Schep data into the hematopoietic lineage data. This signature is 
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most significantly associated with Megakaryocyte-Erythrocyte Progenitor cells.  

 

Figure 5 

 

A qqPlot of p-values for gene set enrichment analysis of the Transcription Factors’ gene 

networks predicted from scATAC-seq CoGAPS and the genes ranked by scRNA-seq CoGAPS. 

B Known genes regulated by Tbx20 and their PatternMarker ranks from CoGAPS analysis in 

matched scRNA-seq.  C Accessibility at the Tbx2 gene in the scATAC-seq data, showing the 

correspondence of its accessibility and expression levels across mouse cardiac progenitor cells, 
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at embryonic days 8.5 and 9.5. The Transcriptional Start Site overlapping peak (marked with 

TSS) is the most consistently accessible. 

 

Supplemental Figures 

Supplemental Figure 1 

 

The Pattern matrix is plotted for CoGAPS runs using A 13 and B 18 patterns for the Schep et al 
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data. Several sparse signal patterns are observed. The monocyte pattern becomes more clear 

and a LMPP and patient leukemia pattern emerges, which are not seen when running the 

algorithm for 7 patterns. Pathway enrichment and TF prediction results are robust across 

different pattern numbers (ie. the patterns that distinguish the same cell types return the same 

most significant pathways and most enriched TFs for patterns defining the same cell lines) (see 

Analysis Code). 

 

Supplemental Figure 2 

 

Plot of the binary accessibility of TAL1 overlapping peaks, revealing higher accessibility in K562 

Erythroleukemia cells and providing evidence of its specific expression in that cell line. The peak 

overlapping with the Transcriptional Start Site is marked as TSS and is more consistently 

accessible among K562 cells than any other TAL1 overlapping peak. 

 

Supplemental Figure 3 
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A Plot of the Pattern matrix after running CoGAPS with DNA motif summarization on the Schep 

et al data. The only parameter differences from the peak summarization are that this data is run 

for 10 patterns and it is run across fewer parallel cores due to there being fewer motifs than 

peaks. B Plot of a pattern found by CoGAPS in the Schep data set when it was run using motif 

summarization rather than peak summarization (the same as the 10th pattern plotted in A, 

plotted alone for increased visual clarity). Both TF1 erythroblasts and K562 Erythroleukemia 

cells are strongly associated with this pattern. We do not identify a similar pattern with 

summarization to peaks. 
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Supplemental Figure 4 

 

Boxplot of the pattern weight for the transfer of the monocyte associated pattern from the Schep 

data into the Buenrostro data. The monocytes in the Buenrostro data are most significantly 

associated with the pattern as evaluated by a Wilcoxon Rank Sum Test. 
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Supplemental Figure 5 

 

Diagram of the analysis method employed to validate ATAC-CoGAPS candidate using matched 

scRNA-seq data. The TFs identified by ATAC-CoGAPS are first matched to the sets of genes 

they regulate. Then, CoGAPS is run on the scRNA-seq data and PatternMarker genes are 

identified. GSEA is performed between the TF gene sets and the PatternMarker genes to 

provide transcription-based validation of TF activity.  
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Supplemental Figure 6 

 

The Pattern matrices plotted for both scRNA-seq and scATAC-seq from matched cardiac 

development data derived from mouse embryos and published by Jia et al. scRNA CoGAPS 

finds more differentiating patterns, while most of the scATAC patterns are unifying across the 

similar cell types, suggesting scRNA-seq is either identifying populations subtypes that scATAC 

does not capture or is identifying batch effects in the RNA-seq data. 
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Supplemental Figure 7 
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Plot of peaks with overlapping accessibility for the A Mef2c, B Nkx2-5, and C Nppa genes in the 

Jia et al. cardiac progenitor data. 

  

 

Supplemental Tables 
 
Supplemental Table 1 
 

Cell Line Cell Type 

K562 Erythroleukemia 

TF1 Erythroblast 

GM-LCL B cell derived Lymphoblastoid cell line 

BJ Foreskin Fibroblast 

H1ESC Embryonic stem cell 

HL60 Leukemia (derived from human acute 
promyelocytic leukemia) 

LMPP Lymphoid Primed Multipotent Progenitor 

PB1022 Monocyte 

SU070 Acute Myeloid Leukemia, Patient 070 

SU353 Acute Myeloid Leukemia, Patient 353 

 
List of the cell lines used in the Schep et al. data set, including the corresponding acronyms 
used to describe and label them. 
 
Supplemental Table 2 
 

Pattern Corresponding Cell Line(s) AUC 

1 K562 Erythroleukemia 1.00 

2 TF1 Erythroblast 1.00 

3 GM-LCL 0.996 

4 BJ Fibroblast 0.999 

5 H1ESC 0.999 

6 HL60 Leukemia 0.505 

7 PB1022, LMPP, SU070, SU353 0.86 

 
Annotations of patterns to cell types and the area under the receiver operating curve for these 
correspondences based on PatternMarker pattern assignment of each cell. 
 
Supplemental Table 3 
 

Cell Type Abbreviation Cell Type 

CLP Common Lymphoid Progenitor 

CMP Common Myeloid Progenitor 

GMP Granulocyte-Monocyte Progenitor 

HSC Hematopoietic Stem Cell 

LMPP Lymphoid Multipotent Progenitor 

MEP Megakaryocyte-Erythrocyte Progenitor 
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mono Monocyte 

MPP Multipotent Progenitor 

pDC Plasmacytoid Dendritic Cell 

UNK Unknown (derived from bone marrow) 

 
List of the cell lines used in the Buenrostro et al. data set, including the corresponding acronyms 
used to describe and label them. 
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