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 2 

ABSTRACT 25 

Extensive research in the behavioural sciences has addressed people’s ability to learn 26 

probabilities of stochastic events, typically assuming them to be stationary (i.e., constant over 27 

time). Only recently have there been attempts to model the cognitive processes whereby people 28 

learn – and track – non-stationary probabilities, reviving the old debate on whether learning 29 

occurs trial-by-trial or by occasional shifts between discrete hypotheses. Trial-by-trial updating 30 

models – such as the delta-rule model – have been popular in describing human learning in 31 

various contexts, but it has been argued that they are inadequate for explaining how humans 32 

update beliefs about non-stationary probabilities. Specifically, it has been claimed that these 33 

models cannot account for the discrete, stepwise updating that characterises response patterns 34 

in experiments where participants tracked a non-stationary probability based on observed 35 

outcomes.  Here, we demonstrate that the rejection of trial-by-trial models was premature for 36 

two reasons. First, our experimental data suggest that the stepwise behaviour depends on details 37 

of the experimental paradigm. Hence, discreteness in response data does not necessarily imply 38 

discreteness in internal belief updating. Second, previous studies have dismissed trial-by-trial 39 

models mainly based on qualitative arguments rather than quantitative model comparison. To 40 

evaluate the models more rigorously, we performed a likelihood-based model comparison 41 

between stepwise and trial-by-trial updating models. Across eight datasets collected in three 42 

different labs, human behaviour is consistently best described by trial-by-trial updating models. 43 

Our results suggest that trial-by-trial updating plays a prominent role in the cognitive processes 44 

underlying learning of non-stationary probabilities.  45 

 46 

KEYWORDS 47 

Probability learning; change-point model; delta rule; belief updating; hypothesis testing  48 
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 3 

INTRODUCTION 49 

When making decisions, we often rely on subjective estimates of the probability that 50 

certain events will occur. Not surprisingly, the issue of how people assess – and should assess 51 

– probabilities has been pivotal to the behavioural sciences since at least the Enlightenment. 52 

How people learn, estimate, and reason with probability has thus been studied extensively, 53 

especially in psychology and behavioural economics. Typically, this has occurred in the context 54 

of assuming stationary probabilities in the environment (i.e., probabilities that stay constant 55 

over time). This research shows that people are good at learning stationary probabilities from 56 

experience with relative frequencies (e.g. Edwards, 1961; Estes, 1976; Fiedler, 2000; Peterson 57 

& Beach, 1967), and it has been suggested that frequencies are among the few properties of the 58 

environment that are encoded automatically (Zacks & Hasher, 2002). At the same time, the 59 

research on heuristics-and-biases shows that probability assessments are sometimes also 60 

swayed by subjective (“intentional”) aspects, like prototype-similarity (representativeness) or 61 

ease of retrieval, leading to biased judgements (Kahneman & Frederick, 2005). People also 62 

appear to over-weight extreme probabilities in their decisions when encountering them in 63 

numeric form (Tversky & Kahneman, 1992), but under-weight them when they are learned 64 

inductively from trial-by-trial experience (Hertwig & Erev, 2009). People frequently have 65 

problems with reasoning according to probability theory, leading to phenomena like base-rate 66 

neglect and conjunction fallacies (Kahneman & Frederick, 2005; Tversky & Kahneman, 1983), 67 

at least if they cannot benefit from natural frequency formats (Gigerenzer & Hoffrage, 1995) 68 

that highlight the set-relations between the events (Barbey & Sloman, 2007). 69 

However, not all probabilities are stationary, as when, for example, the risks of default in 70 

a mortgage market fluctuate over time or the risk of hurricanes changes with a changing global 71 

climate. A small and mostly recent literature has started to model the cognitive processes by 72 

which people learn – and track – non-stationary probabilities (Gallistel, Krishan, Liu, Miller, 73 

& Latham, 2014; Khaw, Stevens, & Woodford, 2017; Ricci & Gallistel, 2017; Robinson, 1964). 74 

Because this research addresses changes in people’s beliefs about probability it has (once again) 75 

highlighted the classical issue of learning by trial-by-trial updating or occasional shifts between 76 

discrete hypotheses (Bruner, Goodnow, & Austin, 1956), with the initial studies reporting 77 

support for processes of explicit hypothesis testing. In this article, we complement the existing 78 

literature in two ways. First, we report an experiment that investigates the robustness of the 79 

stepwise learning patterns that have been taken as evidence for hypothesis testing models over 80 

trial-by-trial updating models in the previous studies. Second, for the first time, we report a 81 
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formal comparison between the competing models, applied to our own data as well as data from 82 

two other laboratories. 83 

 84 

Tracking Probabilities in Non-Stationary Environments 85 

Several previous studies have started to address how people learn and reason with non-86 

stationary probabilities. They used tasks in which participants were presented with outcomes 87 

from a Bernoulli distribution that changed over time. Participants were asked to estimate the 88 

hidden Bernoulli parameter, by having them adjust a physical lever (Robinson, 1964) or a slider 89 

on a computer screen (Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017), with 90 

the option to change their estimate after each new observation.  91 

Most versions of this paradigm have asked participants to estimate the proportion of items 92 

of a certain colour in a hypothetical box visualised on a computer screen (Gallistel et al., 2014; 93 

Khaw et al., 2017; Ricci & Gallistel, 2017) (Figure 1A). The participants drag a slider to 94 

indicate a value between 0 and 100 percent to indicate their current estimate, before locking in 95 

their guess, which initiates another draw of an item from the box. The participant may then 96 

choose to revise their estimate or leave it unchanged. This procedure is repeated for many trials. 97 

The data of interest are the realised outcomes, the underlying true probabilities of the outcomes, 98 

and the participant’s estimates of these probabilities (Figure 1B). Most participants in previous 99 

studies exhibited stepwise updating behaviour: for long periods they did not adjust their 100 

estimates, at other times more often, but never on every trial. 101 

As in many areas of the psychology of learning, there are two different ways of explaining 102 

how people infer probabilities from experience: models with their origin in the associationist 103 

traditions of behaviourism, reinforcement learning, and connectionist models emphasise the 104 

continuous updating of beliefs “trial-by-trial”, while models with their origin in cognitive 105 

psychology emphasise the testing of discrete shifting between hypotheses.  106 

A defining feature of trial-by-trial models is that the internal beliefs are updated each time 107 

a new data point is observed. They can be further separated into at least two kinds: delta-rule 108 

and memory-based models. The delta learning rule was introduced by Widrow and Hoff (1960) 109 

as an algorithm for updating the weights of nodes in a connectionist network (see Widrow & 110 

Lehr, 1993, for a review). In psychology, the most famous model based on this rule is the 111 

Rescorla-Wagner model of classical conditioning (Rescorla & Wagner, 1972), but it has also 112 

been adopted in many other domains (Behrens, Woolrich, Walton, & Rushworth, 2007; 113 

Busemeyer & Myung, 1988; Neal & Dayan, 1997; Verguts & Van Opstal, 2014).  114 

In the context of probability estimation, delta-rule learning can be implemented as 115 
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 116 

 ( ) 1 1
ˆ ˆ1t t tp p − −= − +  (1) 117 

where ˆ
tp  is the probability estimate at time t, 1

ˆ
tp −  the previous estimate, δt−1 the prediction 118 

error at time t−1, and γ the learning rate. This rule has the advantage of being recursive: it can 119 

operate without access to memories going back any further than the latest observation.  120 

 121 

 122 

 123 

 124 

Memory-based models, on the other hand, rely on the memory of previously observed 125 

outcomes. They encode and then retrieve memories of events, often in the form of recency-126 

constrained samples, to calculate beliefs on-line. These models have been applied to a variety 127 

Figure 1 | Experimental paradigm. (A) Screenshot of our replication of the visual design of the

experiments by Gallistel et al. (2014), Khaw, Stevens and Woodford (2017), and Ricci and Gallistel

(2017). All text translated from Swedish to English and slightly enlarged for readability. (B) Example

of response data (black) in an experiment where the hidden Bernoulli probability (red) was

changing in a stepwise fashion (Participant 1 in Gallistel et al., 2014).
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of domains, including perceptual classification (Nosofsky & Palmeri, 1997), decision making 128 

(Lebiere, Stewart, & West, 2009), probability judgments (Costello & Watts, 2014; Juslin & 129 

Persson, 2002; Juslin, Winman, & Hansson, 2007), speech recognition (Gemmeke, Virtanen, 130 

& Hurmalainen, 2011), and consumption decisions (Mullainathan, 2002). Memory-based 131 

models have the advantage that, although they potentially draw on an extensive long-term 132 

memory, they are flexible in the sense that nothing needs to be pre-computed, but the 133 

computations are primarily performed at the time of judgement.  134 

By contrast, hypothesis-testing models assume that people learn about the world by 135 

testing between explicit hypotheses about the state of the world based on the confirming or 136 

disconfirming feedback (Brehmer, 1974; Bruner et al., 1956). Hypothesis testing models have 137 

been applied to, for example, research on reasoning (e.g. Klayman & Ha, 1987; Oaksford & 138 

Chater, 1994; Wason & Johnson‐Laird, 1970), categorisation (Ashby & Valentin, 2017; Bruner 139 

et al., 1956), and function learning (Brehmer, 1974, 1980). Because a single data point typically 140 

provides little evidence about a hypothesis, these models predict that the beliefs may sometimes 141 

stay unchanged over many trials. 142 

According to current theory, trial-by-trial models are unable to account for the stepwise 143 

patterns found in experiments where participants track non-stationary probabilities (Gallistel et 144 

al., 2014; Ricci & Gallistel, 2017) (Figure 1B). Instead, it has been proposed that the stepwise 145 

response pattern is caused by discreteness in how the participants update their beliefs, which 146 

Gallistel et al. (2014) formalised in a hypothesis-testing model that they named the “If it ain’t 147 

broke, don’t fix it” (IIAB) model. According to this model, participants assess whether their 148 

current belief is “broke” after each new observation and only update their belief if the answer 149 

is in the affirmative. The suggestion is that humans do not estimate probabilities directly: they 150 

estimate changes in the hidden Bernoulli parameter and infer probabilities from this. 151 

 152 

Purpose of this study 153 

In the present work, we address three potential weaknesses in previous studies. The first 154 

one is related to the available data. Four previous studies (Gallistel et al., 2014; Khaw et al., 155 

2017; Ricci & Gallistel, 2017; Robinson, 1964) have reported stepwise response updating in 156 

probability learning experiments with non-stationary probabilities. In three of those 157 

experiments (Gallistel et al., 2014; Khaw et al., 2017; Robinson, 1964), the underlying 158 

probability changed discretely. As noted by Ricci and Gallistel (2017), this is problematic, 159 

because it could mean that the discreteness in response patterns simply reflects the discreteness 160 

in the true underlying function, rather than discreteness in belief updating. Therefore, 161 
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competing models of probability learning should primarily be tested using data from 162 

experiments in which the Bernoulli parameter changes in a continuous fashion. To the best of 163 

our knowledge, the study by Ricci and Gallistel (2017) is the only one so far that has performed 164 

such an experiment. However, for three1 of their nine participants, the Bernoulli processes 165 

consisted of long periods of no change followed by a quite abrupt change, thus closely 166 

resembling a discretely changing parameter. Altogether, this means that current theories about 167 

human learning of non-stationary probabilities rely heavily on data from only six participants. 168 

The first purpose of the present study is to study the robustness of previous findings by using a 169 

larger participant sample.  170 

A second potential weakness of previous studies is that the experimental design may 171 

unintentionally have invited stepwise behaviour. In all previous studies, participants were 172 

informed that the distribution they were inferring would change over the course of the 173 

experiment. If participants had reason to believe that the changes in the probability that they 174 

were tracking were discrete (e.g., because they were told that the box would be replaced “from 175 

time to time”), then this may have invited stepwise response behaviour. In addition to this, the 176 

bodily effort required to change one’s estimate was in all previous studies substantially greater 177 

than that needed to maintain it. Robinson (1964) had the participants adjust a lever while 178 

Gallistel et al. (2014), Ricci and Gallistel (2017) and Khaw et al. (2017) required them to move 179 

the computer mouse, adjust a slider and move the mouse back again before clicking “Next”. In 180 

contrast, maintaining one’s previous guess merely required pressing the left mouse button once 181 

(Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017) or no action at all (Robinson, 182 

1964). The asymmetry between the effort required to maintain or change the estimate may have 183 

affected the rate of re-estimations, especially when considering that participants performed 184 

10,000 trials.2 In Gallistel et al. (2014) and Ricci and Gallistel (2017) a further asymmetry 185 

existed in that a participant could move the slider by clicking right or left of its current position, 186 

which would make it jump a set distance. This made it easier to move it in large steps than in 187 

small ones. The second purpose of our study is to examine whether experimental design choices 188 

regarding instructions and response mode affect the degree of discreteness in response patterns. 189 

A third and perhaps the most important weakness of previous work is that competing 190 

models have never been tested against each other using formal quantitative model comparison 191 

methods. Gallistel et al. (2014) compared models mainly based on visual comparisons of 192 

 
1 Subjects S1, S3, and S4 in the “aperiodic” condition. 
2 We do not know the exact number of trials in Robinson (1964) but each of his subjects performed the task for 

about 15 hours, which is a substantial amount of time. 
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summary statistics in the participant data with those produced by the models. Khaw et al. (2017) 193 

performed model comparison with the Bayesian Information Criterion (Schwarz, 1978) but 194 

only between trial-by-trial models from the economic literature. The third purpose of this study 195 

is to perform a comprehensive, formal comparison of competing models.  196 

To summarise, the main contributions of the present article are as follows. First, we 197 

substantially increase the participant sample of data from learning experiments with 198 

continuously changing probabilities. Second, we investigate whether response effort and 199 

instructions affect the degree of discreteness in people’s response patterns. Third, we perform 200 

a rigorous, likelihood-based comparison of hypothesis-testing and trial-by-trial updating 201 

models on all available data, which has not been attempted before.  202 

 203 

EXPERIMENT 204 

Previous studies on human learning and tracking of a non-stationary probabilities 205 

interpreted stepwise response behaviour as evidence that participants update their internal 206 

beliefs in a discrete manner (Gallistel et al., 2014; Ricci & Gallistel, 2017). This interpretation 207 

rests on the assumption that the discrete learning pattern constitutes a fairly stable and robust 208 

phenomenon that derives from the participant’s mental shift between discrete hypotheses. In 209 

the present experiment we investigate the extent to which these results are sensitive to 210 

superficial specifics of the task, by experimentally varying two factors that we believe may 211 

affect the rate of re-estimations in the observed response behaviour. The first factor is the 212 

amount of information provided in the instructions to the participants about the non-stationarity 213 

of the probability they are asked to estimate. The second factor is the amount of effort required 214 

to make an update to the response slider. 215 

 216 

Method 217 

Participants. Sixty-two participants were recruited using posters advertising the study at 218 

several university campuses in Uppsala. Data from two participants were excluded from the 219 

analysis since they chose to terminate early. The mean age of those who completed the 220 

experiment was 24.7 (SD = 6.3). Forty-seven of these participants identified as female, eleven 221 

as male, and two as other. Participants were rewarded with gift vouchers for a major Swedish 222 

book shop chain (Akademibokhandeln). The total reward value depended on a participant’s 223 

task accuracy, with a minimum fixed to the approximate equivalent of USD 11 and the 224 
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maximum being approximately equivalent to USD 28.3 Two participants in Condition 1, six in 225 

Condition 2, six in Condition 3 and five in Condition 4 received a signature on a participation 226 

form instead of gift cards. The study was approved by the Regional Ethical Review Board in 227 

Uppsala and conducted according to the Declaration of Helsinki Principles. 228 

Stimulus and task. We replicated the visual design of the experiment described by 229 

Gallistel et al. (2014) to the best of our ability. The stimulus consisted of a screen showing a 230 

box labelled “Box of RINGS”, a bar with a slider, and a rectangle filled with red and blue dots 231 

(Figure 1A). At the beginning of each trial, a ring would move out of the box and then stay 232 

beside it until the end of the trial. The task of the participant was to estimate the proportion of 233 

blue rings in the box by changing the value indicated by a slider on a bar that was labelled with 234 

“0% - No blue” and “100% - Only blue” on the left and right ends, respectively. Adjusting the 235 

slider caused the proportion of red and blue dots in the square labelled “My current estimate: 236 

% blue rings” to change to reflect the new proportion indicated by the slider position, which 237 

was intended as a visual aid to help participants “see” their currently chosen estimate.  238 

 239 

Table 1.  240 

Overview of Experimental Conditions as Combinations of the Response Mode and the 241 

Instruction Mode. 242 

Condition Effort mode Response mode 

1 High effort Uninformed 

2 High effort Informed 

3 Low effort Uninformed 

4 Low effort Informed 

 243 

Conditions. The experiment followed a two-by-two factorial design, with “Response 244 

Mode” and “Instruction Mode” as the independent variables (see Table 1). The first variable 245 

had two levels: “Low Effort” and “High Effort”. In the High Effort response mode, participants 246 

revised their estimate by first clicking on the slider and then dragging it to adjust its value. 247 

When they were finished, they would click a “next” button to the right of the slider to initiate 248 

the next trial. In the Low Effort response mode of our experiment, no cursor or “next” button 249 

was visible, and the slider value would change whenever the mouse was moved. Participants 250 

initiated the next trial by a mouse click. The second independent variable also had two levels. 251 

 
3 Calculated using 2017 OECD purchasing power parity estimates. 
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In the “Informed” Instruction Mode, participants were explicitly informed about the non-252 

stationarity of the generative process: they were told that the contents of the box might change 253 

after each draw and that these changes would occur throughout the task. They were also told 254 

that the changes could be fast or slow and that their task was to track the proportion as it 255 

changed. Participants in the “Uninformed” Instruction Mode were not provided with this 256 

information. In all four conditions, the hidden Bernoulli parameter was a sinusoidal with a 257 

minimum of 0, a maximum of 1, and a period of 500. Its value at the very first trial was 0.50. 258 

Condition 2 is almost identical to the design described in Ricci and Gallistel (2017). To the best 259 

of our knowledge, the only difference is that in the original study, the slider would jump a set 260 

distance when the participant clicked to the left or right of it.4 261 

Procedure. At the start of the experiment, participants read a paper detailing that they 262 

were allowed to discontinue their participation at any stage; that the experiment would be 263 

divided into two sessions with a break in between; that the average difference between each of 264 

their guesses and the correct answer would determine their reward; and what the highest 265 

possible reward was. Meanwhile, a Swedish translation of the instructions found in Appendix 266 

A in Gallistel et al. (2014) was displayed on the screen, but without the passages relating to 267 

reporting that the box had changed. In the Low effort conditions, the relevant parts of the 268 

instructions were altered to explain how to answer using the Low Effort response mechanism. 269 

In the Informed conditions, paragraphs were added to explain that the box could be swapped 270 

every time a ring was put back into it, that these changes could be large or small, and that their 271 

task was to estimate the proportion of blue rings in the box and track it as it changed throughout 272 

the task (see the online materials at https://osf.io/zhv2r/ for English translations of the 273 

instructions). Participants were not told anything about how often they were supposed to make 274 

a change to the slider.  275 

When the participant indicated that they had read everything, the experimenter would 276 

approach them to ask if they had understood all that they had read and if they had any further 277 

questions. If asked a question regarding anything not revealed in the instructions, the 278 

experimenter would respond that he was unable to provide that information. Any question 279 

pertaining to practicalities of how to carry out the task would be clarified upon request. The 280 

participants then completed 1,000 trials before a pause screen was displayed, inviting them to 281 

take a break. At their leisure, participants were allowed to commence the second session of 282 

 
4 This subtlety was not mentioned in the methods of the original study and we only became aware of it when 

scrutinising the methods of Khaw et al. (2017) who mention it in relation to their own experiment. 
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1,000 trials. The length of the break varied strongly across participants, ranging from 12 283 

seconds to 17 minutes, with a mean of 3 minutes and 6 seconds.  284 

After finishing the experiment, the participants filled out post-test questionnaires with 285 

questions concerning their beliefs about the generative function, self-assessed statistics 286 

proficiency, age, gender and education. Finally, they were asked to draw the probability of 287 

drawing a blue ring as a function of trial count into a graph. The questionnaires were 288 

administered on paper and filled in with pen. However, we found little use for the questionnaire 289 

data and did not analyse them.5 290 

Analysis. All statistical analyses are performed using the JASP software package with 291 

default settings (JASP Team, 2019) and R (R Core Team, 2014). 292 

 293 

Results  294 

Accuracy. A visual inspection of the mean estimations (Figure 2A) shows that, on 295 

average, the participants tracked the wave-like pattern of the underlying probability reasonably 296 

well in all four conditions of the experiment. However, average accuracy is clearly highest in 297 

the condition where the participants were informed about the non-stationary generative function 298 

and making changes to the slider involved more effort (Figure 2B). We next perform statistical 299 

tests to determine if there is evidence for effects of Information Mode and Effort Mode on the 300 

root mean squared error (RMSE) between the generating probability and the participant’s 301 

estimate.  302 

Since the data violate the normality assumption of standard ANOVA analyses 303 

(Kolmogorov-Smirnov test, p<10−13), we apply a Kruskal-Wallis and a Friedman test, with the 304 

two between-participant conditions as fixed factors and repeated measurement across blocks of 305 

500 trials each. An initial main effects analysis suggests a main effect of Information Mode 306 

(H(1) = 8.919, p = 0.003) but not of Effort Mode (H(1) = 0.685, p = 0.408) or Block of Trials 307 

(χ2(3) = 1.043, p = .791). However, Dunn’s post hoc test between the four between-participant 308 

cells indicates that this main effect is secondary to the interaction between Information Mode 309 

and Effort Mode presented in Figure 2C, with significantly lower median RMSE 310 

(approximately 0.13) in the Informed, High Effort condition than in the other three conditions 311 

(median RMSE > 0.30; pholm < .020; see Appendix A for details on the Dunn’s post hoc test).  312 

To get an indication of how well participants performed in an absolute sense, we compare 313 

their accuracy to that of fictive observers who always responds 0.50 (Figure 2C, dashed lines) 314 

 
5 All questionnaire data are available in the online materials at https://osf.io/zhv2r/. 
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or randomly (Figure 2C, dotted lines). It is clear that despite that the average estimates track 315 

the functions in all conditions in Figure 2A, in three of the conditions the trial-by-trial accuracy 316 

in terms of RMSE is no better than what is expected from a participant who always responds 317 

with the probability 0.50. In sum: participants did not improve with training and although the 318 

average estimates tracked the underlying function, the trial-by-trial accuracy was poor in all 319 

conditions, except when the participants were informed about the nonstationary process and 320 

used the more effortful response method. 321 

 322 

 323 

 324 
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Figure 2 | Experimental results. (A) Average response in the four experimental conditions. (B)

Median slider value plotted as a function of the true value of the tracked probability. The error

bars indicate the interquartile range. (C) Median values of four summary statistics, split by

condition. The error bars indicate the 25% and 75% quantiles. The title of each plot specifies the

quantity on the y-axis. RMSE stands for root mean square error and KL stands for Kullback-

Leibler. The dashed lines indicate the expected value of the summary statistic for an observer

who responds randomly and an observer who always responds 0.50.
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Following earlier work (Gallistel et al., 2014; Ricci & Gallistel, 2017), we consider the 325 

Kullback-Leibler (KL) divergence as an alternative measure of accuracy. We perform the same 326 

analyses with the KL divergence as the dependent variable and find an initial main effect of 327 

Information Mode (H(1) = 8.656, p = 0.003) but not of Effort Mode (H(1) = 0.367, p = 0.544) 328 

or Block of Trials (χ2(3) = 2.187, p = 0.534). Dunn’s post hoc test shows that it is secondary to 329 

the interaction between Information Mode and Effort Mode (Figure 2C). The median KL 330 

divergence in the informed high effort condition (approximately 0.064) is significantly lower 331 

than in the other three conditions (median KL divergence > 0.267; pholm ≤ .030; see Appendix 332 

A for details on the Dunn’s post hoc test). Hence, the results are consistent between the RMSE 333 

and KL divergence. 334 

Step width. We next examine whether the experimental manipulations affect the average 335 

number of trials between slider updates, in previous studies referred to as “step width” (Gallistel 336 

et al., 2014; Ricci & Gallistel, 2017). The initial main effects analyses, with the same non-337 

parametric tests as we applied to the RMSE, suggest significant main effects of Information 338 

Mode (H(1) = 9.46, p = 0.002), Effort Mode (H(1) = 15.12, p < 0.001) and Block of Trials 339 

(χ2(3) = 69.33, p < 0.001). The main effect of Block of Trials is an increasing step width, and 340 

thus decreasing rate of re-estimation, with additional training. The main effects of Information 341 

Mode and Effort Mode are qualified by the interaction illustrated in Figure 2C. Dunn’s post 342 

hoc test shows that the median step width is significantly higher in the condition with no 343 

information about the non-stationarity of the process and a High Effort response mode 344 

(approximately 39) as compared to the other three conditions (medians between approximately 345 

2 and 9: pholm < 0.020, see Appendix A for details on Dunn’s post hoc test). In sum: with more 346 

training the step width increased somewhat, and it was much larger in the condition without 347 

information about nonstationary and a high-effort response mode. In other words, when the 348 

participants were uninformed that the probability would change over time and the response 349 

required more effort, they were more reluctant to change their estimate. 350 

Step height. Finally, we test if Information Mode and Effort Mode affected the average 351 

magnitude of the slider adjustments on trials when the estimate was updated, referred to as the 352 

“step height” in Gallistel et al. (2014) and Ricci and Gallistel (2017). Applying the same 353 

statistical tests as above, the results suggest main effects of Information Mode (H(1) = 14.633, 354 

p < 0.001) and Effort Mode (H(1) = 11.363, p < 0.001), but not of Block of Trials (χ2(3) = 355 

6.766, p = 0.080). Dunn’s post hoc test supports both a main effect of Information Mode and 356 

an interaction between Information Mode and Effort Mode, as illustrated in Figure 2C. The 357 

median step height was significantly greater with information about the non-stationarity than 358 
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without, both with the Low Effort response mode (medians 0.0312 vs. 0.0177; pholm = 0.043) 359 

and the High Effort response mode (medians .107 vs. 0.0445; pholm = 0.003), suggesting a main 360 

effect of information regardless of the amount of effort required to update the response. In 361 

addition, the Informed, High Effort condition had a higher median than all of the other three 362 

conditions, suggesting a (catalytic) interaction for this specific condition (see Appendix A for 363 

the full results of Dunn’s post hoc test). In sum, Block of Trials had no effect on the step height, 364 

but information about non-stationarity of the process increased it, especially when the high-365 

effort response mode was used. Thus, when the participants were told that the underlying 366 

probability could change over time, the changes they made were larger, and this was especially 367 

the case if the response mode required more effort.  368 

 369 

Discussion 370 

Although the average estimates track the sinusoid function in all conditions (Figure 2A), 371 

in absolute terms the trial-by-trial accuracy was poor in three of the four conditions, in the sense 372 

that the deviation from the true probability on a given trial was no smaller than expected from 373 

a participant who responds with 0.50 on each trial (median RMSE approximately 0.35, see 374 

Figure 2C). In part, of course, this reflects the relative complexity of the task the participants 375 

are faced with. It takes at least a few observations to get a reliable estimate of the underlying 376 

probability. When this probability changes on each trial – as in our experiment – the observer’s 377 

estimate will always lag behind the generating value. Optimal performance would require 378 

participants to infer the abstract function that relates the trial number to the true probability and 379 

to use this function to predict the true probability on the next trial. To induce this function from 380 

the “foggy” output of a constantly changing Bernoulli distribution is difficult, especially so if 381 

the observer is provided with only minimum information about the generative process. For this 382 

reason, some previous studies have assessed participant performance by comparing their 383 

responses to those of an optimal observer rather than to the true generating value (Gallistel et 384 

al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017). These analyses are helpful when 385 

investigating the degree of optimality of participants. However, here we are primarily interested 386 

in the relative performance between groups, for which any measure of accuracy seems suitable. 387 

The high accuracy and distinctly stepwise re-estimation behaviour observed in Ricci and 388 

Gallistel (2017) and the other previous studies were only replicated when the participants were 389 

informed about the non-stationarity of the process beforehand and used the more effortful 390 

response mode, which are the conditions under which it has previously been observed. Better 391 

performance with more accurate prior information about the task is obviously no surprise. But 392 
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this effect interacted with the effort required by the response mode in an interesting way. With 393 

a low effort response mode, there are frequent but small adjustments (median step width of 394 

approximately 5, suggesting about 100 re-estimations per block of 500 trials, of a median size 395 

of .03), and this holds regardless of whether participants are informed about non-stationarity or 396 

not. With the High Effort response mode, the pattern with relatively rare, large re-estimations 397 

only occurred with prior information that the process is non-stationary. The behavioural 398 

differences are indeed large. Participants without information about the non-stationarity and 399 

with the more effortful response mode rarely re-estimate and make rather small adjustments 400 

when they do (median step width of 39 trials, suggesting approximately 13 re-estimations per 401 

block of 500 trials, with a median size of .04). The participants with information about the non-402 

stationarity and with the more effortful response mode often change their estimates (median 403 

step width of 9 trials suggesting approximately 56 re-estimations per block of 500 trials) and 404 

usually by quite a lot (median step height of .11) The characteristic stepwise patterns of the 405 

predictions of the IIAB-model (Gallistel et al., 2014) were thus observed in only one cell and 406 

appear to arise under specific conditions, suggesting that rare but large re-estimations are not 407 

necessarily intrinsic to the cognitive process. 408 

An alternative explanation of the effects of the independent variables on step width and 409 

step height is that they merely reflect the fact that the Low Effort response mode results in an 410 

increase in the number of small, accidental adjustments. When the slider is “stuck” to the mouse 411 

cursor, participants might occasionally produce unintended adjustments. When the slider has to 412 

be dragged, this is less likely to occur. This kind of “shaky hand” error would decrease both the 413 

average step width and step height. There are relatively small negative main effects of having 414 

a low effort response mode on both of those dependent variables. Since we cannot rule out that 415 

the shaky hand effect exists, these should be interpreted with some caution. However, the 416 

substantial interaction between High Effort and Information Mode is not possible to attribute 417 

to such error. If unintentional adjustments as a result of the low effort response mechanism is a 418 

pervasive phenomenon, it should affect the results equally regardless of what information is 419 

provided. We would therefore argue that the main result of our experiment – that the previously 420 

observed stepwise updating arises as a result of particular combinations of circumstances – 421 

holds regardless of whether the Low Effort response mode increases the number of accidental 422 

adjustments. 423 

A tentative interpretation of the results is that people spontaneously tend to be “myopic”, 424 

only considering small samples of the most recent observations, which they project onto the 425 

next trial as an estimate of the probability. This estimate can, in principle, change from trial to 426 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.30.927558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.927558
http://creativecommons.org/licenses/by/4.0/


 16 

trial, as is consistent with the small and frequent adjustments produced by the participants in 427 

several conditions, and their overt expression of the estimate is affected by the effort required 428 

to produce the response, as is consistent with the significant effects of Response Mode. 429 

Intriguingly, the effortful response mode seems to have invited participants to consider larger 430 

sample sizes, allowing them to better track changes in the underlying probability. 431 

To conclude, a key implication of these results is that the discreteness of the response 432 

data seems sensitive to external factors, which calls into question whether it should be thought 433 

of as inherent to human probability inference as has been done in previous literature. Instead, 434 

the pattern may reflect adaptations to the particulars of the task at hand. In other words, it is 435 

possible that the internal belief updating is continuous and only the slider adjustments occur 436 

discretely.  437 

 438 

MODELLING 439 

According to the currently leading theory, human behaviour in probability estimation 440 

tasks is consistent with hypothesis-testing models and cannot be explained by any trial-by-trial 441 

updating model (Gallistel et al., 2014; Ricci & Gallistel, 2017). Above, we presented 442 

experimental evidence that calls the first part of this claim into question; the remainder of this 443 

paper is dedicated to evaluating the plausibility of the second part, by using formal model 444 

comparison techniques. Our approach makes four important methodological improvements on 445 

previous studies. First, instead of setting parameters manually, we use maximum-likelihood 446 

fitting to determine parameter values. Second, instead of fitting models to summary statistics, 447 

we fit them to the raw data. This way, we use all available information and avoid having to 448 

decide which statistics to look at and how to weight them against each other. Third, instead of 449 

evaluating goodness of fit through visual inspection of plots, we use formal model comparison 450 

techniques. Fourth, instead of evaluating the models only against our own data, we also include 451 

all available data from other studies in our analyses. 452 

 453 

Factorial model design 454 

When models differ from each other in multiple ways, it is hard to identify which factor 455 

explains the success of one model over another. To circumvent such identifiability problems, 456 

we apply a method known as factorial model comparison (van den Berg, Awh, & Ma, 2014). 457 

Just as in factorial experimental designs and factorial ANOVAs, this means that we pair every 458 

choice in one factor with every possible choice in the other factors. The goal is not only to 459 

identify the model that best captures the underlying process, but also to quantify evidence for 460 
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each factor level, much as an ANOVA quantifies the evidence for each of the main effects. We 461 

deconstruct the models that we consider here into two factors: the updating mechanism and the 462 

threshold mechanism. For convenience, Table 2 provides an overview of the most important 463 

mathematical terms and symbols appearing in the model specifications. 464 

 465 

Table 2. Overview of Mathematical Terms Used in the Model Specifications. 466 

Term Description 

truep  True value of the Bernoulli parameter that participants are trying to estimate (pg in 

Gallistel et al., 2014) 

sliderp  The current estimate of ptrue as represented by the slider (
gp̂  in Gallistel et al., 2014) 

observedp  The current estimate of ptrue based on the (latest) outcome observations (po in Gallistel 

et al., 2014) 

Ot The observed outcome (0 or 1) on trial t 

Ε Discrepancy between pslider and pobserved, measured as the absolute difference or KL 

divergence (comparable to E in Gallistel et al., 2014) 

N Number of trials since the last slider update took place 

T1 Threshold on ε, determining whether a slider update is performed (T1 in Gallistel et 

al., 2014); this parameter appears in all models 

T2 Threshold on the posterior odds of a change, determining whether the observer 

beliefs that a change point was missed (T2 in Gallistel et al., 2014); this parameter 

only appears in IIAB models 

Λ Learning rate; this parameter only appears in delta-rule models 

Α Memory weight; this parameter only appears in memory-based averaging models 

σunexplained Standard deviation of the normally distributed error term, which takes care of 

unexplained variance 

μT1, σT1 Mean and standard deviation of the distribution of T1 

 

 467 

 468 

Factor 1: Updating mechanism. This factor determines how and when the observer 469 

updates their belief about the hidden Bernoulli probability, ptrue. We consider three options: the 470 

IIAB mechanism, a delta-rule mechanism, and a memory-based averaging mechanism. The 471 

essence of the IIAB mechanism (Gallistel et al., 2014) is that it maintains a list of “change 472 

points” that is updated through hypothesis testing. The change points summarise at which 473 

earlier time points there was, according to the model, a change in ptrue and how large each 474 
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supposed change was. After making a new observation, the mechanism tests the hypothesis that 475 

“something is broke”. It does so by computing how much the currently held belief about ptrue – 476 

as encoded in the most recently registered change point – deviates from the estimate based on 477 

all observations since the last change point. When this discrepancy exceeds a threshold T1, it is 478 

concluded that “something is broke” and that it “needs fixing.” The updating mechanism then 479 

proceeds to a second stage, where three further hypotheses are tested about what might be 480 

wrong: the last registered change point was incorrect and must be expunged, it was at the wrong 481 

point and should be moved, or there has been a new change point after the last one encoded, 482 

which now needs to be registered. Once a decision has been made on this, the mechanism 483 

updates the list of change points accordingly and adjusts the slider value, pslider, to make it 484 

consistent with what is now the latest estimated change point. For a detailed description of the 485 

mechanism, see Gallistel et al. (2014). Importantly, since it can take many observations before 486 

it is detected that “something is broke”, slider updates in this type of model tend to happen in a 487 

discrete fashion.  488 

The second updating mechanism that we consider is the delta rule, which we abbreviate 489 

as “Delta”. Unlike the IIAB mechanism, the delta rule has no notion of hypothesis testing and, 490 

therefore, has no threshold on its belief updating. Instead, it updates its estimate of the hidden 491 

Bernoulli parameter after each new observation. It does so by computing a weighted average 492 

of the previous estimate, pobserved,t−1, and latest observation, Ot, through 493 

 ( )observed, observed, 11 ,t t tp p O −= − +  (2) 494 

where parameter λ is the learning rate. Another difference to the IIAB mechanism is that since 495 

an update is made on each trial, the magnitude of the updates will often be very small. However, 496 

considering that it is effortful in both time and energy to adjust the slider value, it seems 497 

reasonable to assume that observers only do so when the discrepancy between slider and belief 498 

has grown sufficiently large. Therefore, we impose a response threshold T1 on this discrepancy, 499 

such that a slider update is only made when it is considered to be worth the effort.  500 

The third and final updating mechanism that we consider is a memory-based weighted 501 

average, which we abbreviate as “M-Avg”. In this mechanism, the probability estimate is 502 

computed as  503 

 observed, 1
,

t

t i ii
p wO

=
=  (3) 504 
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where the weights decrease exponentially in history, 

1

t i

i t t j

j

w




−

−

=

=


. Parameter α is constrained 505 

to the range [0,1] and can be thought of as a history weight: the larger its value, the more weight 506 

is given to observations further back in time. If α = 0, then pobserved is equal to the last 507 

observation; if α = 1, then pobserved equals a plain average of all observations; if 0 < α <1, then 508 

pobserved is a weighted average of all observations, with higher weight given to more recent 509 

observations. Just as in the Delta mechanism, we include a response threshold such that slider 510 

updates are made only when the discrepancy between belief and current slider value is 511 

sufficiently large. 512 

Factor 2: Threshold mechanism. All three updating mechanisms described above involve 513 

a threshold, denoted as T1: the IIAB mechanism has an “is it broke” threshold that prevents 514 

hypothesis updating when there is too little evidence that something is wrong and the other two 515 

updating mechanisms have a response threshold that prevents slider updating when it is not 516 

worth the effort. In the original formulation of the IIAB model, the “is it broke” discrepancy is 517 

measured as KL divergence, ε=KL(pobserved || pslider)×n, where pobserved is an estimate of pblue 518 

based on the outcomes observed since the last change point, pslider is the currently held belief 519 

and n is the number of trials since the last update. For the response threshold in the other two 520 

mechanisms, however, a more obvious measure of discrepancy is the absolute difference, 521 

ε=|pobserved − pslider|. This is indeed what Gallistel et al. (2014) used in their implementations of 522 

delta-rule models. These two proposals differ from each other in two ways: the discrepancy is 523 

either measured as KL divergence (ε=KL(Δ)) or as an absolute difference (ε=|Δ|) and it is either 524 

multiplied by n (ε=KL(Δ)×n; ε=|Δ|)×n) or not. To dissociate the effects of threshold choice from 525 

effects of updating mechanism on goodness of fit, we cross these options factorially, which 526 

gives rise to four different threshold mechanisms. Combining each updating mechanism with 527 

each threshold mechanism results in a total of 12 models (see Table 3).  528 

Threshold variability. Since cognitive processes are generally noisy, it seems plausible 529 

that threshold T1 varies from trial to trial. Therefore, following the proposal by Gallistel et al. 530 

(2014), we draw the value of T1 on each trial from a normal distribution with a mean μT1 and 531 

standard deviation σT1, both of which are fitted as free parameters.  532 

 533 

Table 3. Overview of Factors and Factor Levels in the Factorial Model Design. The First 534 

Factor Specifies the Updating Mechanism, of Which Three are Considered: IIAB, the Delta 535 

Dule, and Memory-based Averaging. The Second Factor Specifies the Threshold Mechanism, 536 
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of Which Four are Considered: Absolute Error, Absolute Error Multiplied by the Number of 537 

Trials Since the Last Slider Update, KL Divergence, and KL Divergence Multiplied by the 538 

Number of Trials Since the Last Slider Update. 539 

Factor name Level name Level-related parameters 

Updating mechanism IIAB T2 

Delta λ 

M-Avg α 

Threshold mechanism 
observed sliderp p = −  

 µT1, σT1 

observed sliderp p n = −  
µT1, σT1 

( )observed sliderKL ||p p =  
µT1, σT1 

( )observed sliderKL ||p p n =  
µT1, σT1 

 540 

Model fitting methods 541 

 Due to the existence of latent variables in the IIAB models and the presence of trial 542 

dependencies, the proper likelihood function is intractable for some of the models. Therefore, 543 

we use a simplified, “custom” likelihood function for model fitting (Appendix B). We use the 544 

Bayesian Adaptive Direct Search (BADS) method (Acerbi & Ma, 2017) to find the parameters 545 

that maximise this function. In order to reduce the risk of terminating in local maxima, we run 546 

BADS thirty times with different initial parameter values. Prior to each run, we evaluate the 547 

likelihood function for five hundred randomly drawn parameter vectors and choose the vector 548 

that gives the highest outcome as the initial parameter vector for BADS. Results from a model 549 

recovery analysis confirm that these methods allow for reliable model comparison (see 550 

Appendix C). 551 

 552 

Benchmark dataset 553 

To get the most out of the model comparison, we fit the models to both our own data and 554 

the data from three previous studies, which were made available to us by the respective authors 555 

(Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017; see Table 4).6 The number of 556 

trials per participant varied from 2,000 to 10,000 across experiments, with a grand total of 557 

 
6 There is one other study using the same paradigm (Robinson, 1964), but it has no preserved record of the data 

known to us. 
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408,000 trials. To the best of our knowledge, all experiments were conducted in sessions of 558 

1,000 trials each, with breaks between consecutive sessions. Because of these breaks, we 559 

suspect that parameter values might not be stable across sessions. Therefore, we fit the models 560 

separately to each session, of which we have 408 in total (Table 4). All data are available online 561 

as a benchmark data set at https://osf.io/zhv2r/. 562 

 563 

Table 4. Overview of Datasets Used to Evaluate the Models. 564 

Exp. 

ID 

Study Underlying 

function 

Number of 

participants 

Number of 

trials per 

participant 

Number 

of trials 

per 

session 

Total 

number 

of 

sessions 

E1 Gallistel et al. (2014) Stepwise 10 10,000 1,000 100 

E2 Ricci & Gallistel 

(2017) 

Continuous 

(aperiodic) 

5 10,000 1,000 50 

E3 Ricci & Gallistel 

(2017) 

Continuous 

(periodic) 

37 9,000 (2x) 

10,000 (1x) 

1,000 28 

E4 Khaw et al. (2017) Stepwise 11 10,000 1,000 110 

E5 Present study Continuous 

(Condition 1) 

15 2,000 1,000 30 

E6 Present study Continuous 

(Condition 2) 

15 2,000 1,000 30 

E7 Present study Continuous 

(Condition 3) 

15 2,000 1,000 30 

E8 Present study Continuous 

(Condition 4) 

15 2,000 1,000 30 

 565 

Model comparison 566 

 We fit the twelve models (Table 3) separately to each of the 408 datasets (Table 4) for a 567 

total of 4,896 fits. In doing so, we include only the first 750 trials from each dataset, so that we 568 

can use the remaining 250 trials for cross validation.  569 

 Model comparison based on AIC values shows a large heterogeneity between participants 570 

(Figure 3A, left): there is not a single model that provides a good fit to all datasets and every 571 

model seems to perform well on at least one dataset. Despite this heterogeneity, it is clear that 572 

 
7 This experiment had 4 subjects, but we suspect that for one of them the responses were flipped between two 

sessions. We excluded this subject from our analyses.  
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some models perform better overall than others. In particular, the IIAB models generally fit 573 

worse than the Delta and M-Avg models. When averaging the relative AIC values across 574 

datasets (Figure 3A, right), the most successful model is the one with a memory-based updating 575 

mechanism and a threshold mechanism based on the absolute difference (M-Avg with ε=|Δ|). 576 

All other models have an average AIC value of at least 50 points larger, which would even 577 

under a very conservative criterion be reason to reject them all. However, given the 578 

heterogeneity at the individual level, it seems unwarranted to rule out individual models at this 579 

stage.  580 

 581 

Figure 3 | Model comparison based on AIC scores. (A) AIC-based comparison of the twelve

main models fitted to 408 datasets. Left: AIC values relative to the best-fitting model for individual

datasets. Right: Relative AIC values averaged across all datasets. (B) Model comparison split by

experiment, with the models ordered in the same way as in panel A.
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 Instead of looking at individual models, it may be more informative to look at the success 582 

of each factor level. To this end, we compute the log factor likelihood as proposed by Shen and 583 

Ma (2019) to quantify the evidence for each factor level (Figure 4). Consistently across 584 

experiments, the results reveal strong evidence against the IIAB updating mechanism, while 585 

the two trial-by-trial mechanisms perform approximately equally well in most experiments. In 586 

terms of threshold mechanisms, we observe that there is evidence against models that 587 

incorporate the number of trials since the last slider update, while there is approximately equal 588 

evidence for mechanisms based on the absolute difference and mechanisms based on KL 589 

divergence. 590 

 While AIC is widely used as a measure of fit, it is not necessarily a good measure of 591 

prediction due to possible overfit. Therefore, we next compare models based on the log 592 

likelihood of the last 250 trials of each session, which were not included during model fitting. 593 

The results of this cross-validation analysis (Appendix D) show a pattern that is largely similar 594 

to the AIC-based results: there is large heterogeneity at the level of individual datasets, models 595 

with an IIAB updating mechanism generally perform poorly, and there is no strong evidence in 596 

favour or against specific threshold mechanisms. However, the evidence is now more even 597 

between the Delta and M-Avg mechanisms and it is harder to distinguish between the threshold 598 

mechanisms.  599 

 600 

Figure 4 | Factor level comparison. Top: Evidence for each level in the first factor relative to the

most successful level, combined across all models. Bottom: Evidence for each level in the second

factor relative to the most successful level, combined across all models. The most successful

levels in each experiment are indicated by asterisks.
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Model fits  601 

The model comparison results provide insight into how well the models perform in 602 

relation to each other. However, those results would be of little value if all models were 603 

extremely poor descriptions of the data. Visual inspection of the fits indicates that the best 604 

model overall (M-Avg with ε=|Δ|) generally does a good job in describing the participant 605 

responses (see Figure 5 for a few examples; an overview of all fits can be found online at 606 

https://osf.io/zhv2r/). Across all 408 datasets, the average RMSE between the maximum-607 

likelihood fit of this model and the participant data is 0.139 ± 0.004. Consistent with the results 608 

of the formal model comparison, we find that the RMSE is higher for the best-fitting Delta 609 

model (0.142 ± 0.004) and the best-fitting IIAB model (0.153 ± 0.004).  610 

 611 

Parameter estimates 612 

An overview of the maximum-likelihood parameter estimates for each model is found in 613 

Appendix E. The estimate of σunexplained is on average smaller in the M-Avg and Delta models 614 

than in the IIAB models, suggesting that the latter kind of model leaves more variance 615 

unexplained than the former two, which is consistent with the model comparison results. In the 616 

best-fitting model (M-Avg with ε=|Δ|), the median value of this parameter is 5.64×10−2. This is 617 

rather small in relation to the response scale (0 to 1), which corroborates our earlier conclusion 618 

that the model provides a reasonably good account of the data. For parameters μT1 and σT1 we 619 

find median values equal to 0.470 and 0.207, respectively. These values indicate a relatively 620 

high response threshold with quite a high degree of trial-by-trial variability. We speculate that 621 

the variance captured by these parameters also includes other sources of variability in response 622 

behaviour (e.g., noise in the calculation of ε and variability in the applied learning rate or 623 

memory weight) which are not specified in the models.  624 

Finally, we estimate how much outcome history the winning M-Avg takes into account 625 

in its trial-by-trial estimates of ptrue. The memory weight in this model drops exponentially with 626 

history length, with a rate that is determined by parameter α. We quantify the history length as 627 

the number of trials that cover 95% of the total weight mass. Based on the maximum-likelihood 628 

estimates of α, we find a median length of 33 trials (25% quantile: 19 trials; 75% quantile: 97 629 

trials).  630 

 631 
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 632 

 633 

Model comparison with fixed thresholds 634 

All models that we have tested so far had a variable threshold. We next address two 635 

questions regarding this variability. First, how much do the fits suffer if the variable threshold 636 

is replaced by a fixed one? Second, do the conclusions that we draw from the model comparison 637 

depend on the existence of threshold variability? To answer these questions, we re-fit the twelve 638 

models with σT1 fixed to 0. While the AIC value worsens for each of the twelve models – by a 639 

minimum of 728±38 points – the model order is near-identical to the order we found with the 640 

models with variable thresholds (Figure 6A). Hence, while the assumption of variability in 641 
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fit was computed using a forward simulation using the maximum-likelihood parameter estimates.
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thresholds contributes strongly to the success of all tested models, our main conclusions do not 642 

critically depend on it.  643 

 644 

 645 

 646 

IIAB with a response threshold 647 

The IIAB models have a threshold at the belief updating stage, while the trial-by-trial 648 

updating models have a threshold at the response stage. This creates a potential interpretation 649 

problem regarding the model comparison results: is the relatively poor performance of the IIAB 650 

models due to its belief updating mechanism or due to it lacking a threshold at the response 651 

stage? Or, put differently: can the IIAB model be salvaged by adding a response threshold? To 652 

answer this question, we add a response threshold to the IIAB models and fit them again to all 653 

408 datasets. We find that this modification improves the average AIC values of the IIAB 654 

models by 200±6 points. However, despite this substantial improvement, the models still 655 

perform poorly compared to the trial-by-trial models (Figure 6B). 656 

Figure 6 | Results from additional model comparisons. (A) Model comparion results after

removing threshold variability. (B) Model comparison results after adding a response threshold to

the IIAB models. (C) Model comparison results after adding a second kernel to the Delta models.

(D) Model comparison results based on fitting models to full datasets instead of sessions.
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Two-kernel delta-rule model 657 

Under conditions where there are large and infrequent changes, as in much of the 658 

experimental data considered in this study, the standard versions of the delta-rule and memory-659 

averaging models face a problem. If a lot of weight is put on the most recent history (by having 660 

a high learning rate in the delta model or a low memory weight in the memory-averaging 661 

model), the model will quickly catch on to changes but exhibit excessive volatility during the 662 

long periods where the true probability is unchanged. If, on the other hand, it is only given a 663 

little weight, excessive volatility will be avoided but the model will be slow to catch on to 664 

sudden changes. As a potential solution, Gallistel et al. (2014) considered a two-kernel variant 665 

that keeps track of two running averages. One kernel has a fast learning rate and the other a 666 

slow one. When there is a sudden change, the discrepancy between the two estimates is large, 667 

which is used as a signal that there has been a change and that the fast kernel should be trusted. 668 

After some observations, the slow kernel will catch up and the discrepancy will decrease, 669 

signalling that the fast kernel is no longer relevant. The model will then revert to reporting the 670 

slow kernel’s estimate. A similar extension is conceivable for the memory-averaging model, 671 

by using two memory weights, but we limit our present analysis to the Delta model. 672 

We next test whether a two-kernel delta-rule model is a serious contender to the other 673 

models we have considered so far. The model keeps two estimates of the Bernoulli probability, 674 

pslow,t = (1−λslow)pslow,t−1 + λslowOt and pfast,t = (1−λfast)pfast,t−1 + λfastOt. On trials where the absolute 675 

difference between the two estimates is larger than a threshold Δc, the model takes pfast as its 676 

estimate of the Bernoulli probability; otherwise it uses pslow as its estimate. The model thus has 677 

two additional parameters compared to the standard delta-rule model tested above. As in the 678 

main analysis, we combine this updating mechanism with all four thresholding mechanisms 679 

(Table 3). We find that across all 1,632 fits, the additional kernel improves the AIC value of 680 

the delta-rule models on average by 133±5 points. In terms of model comparison, the two-681 

kernel delta-rule model with ε=KL(Δ) outperforms all other tested models (Figure 6C).  682 

 683 

Fits to full datasets 684 

In the analyses presented above, we have been fitting models to sessions of 1,000 trials 685 

each to allow for the possibility that parameters can vary between sessions. To verify that our 686 

conclusions do not critically depend on this choice, we next fit the models to the full datasets, 687 

that is, with only one set of parameters per participant. Although there are small differences in 688 

the model order (Figure 6D), the overall findings are the same as before: the M-Avg model with 689 

ε=|Δ| comes out as the overall best model and the four IIAB models perform poorly. Hence, the 690 
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general conclusions of our model comparison do not seem to critically depend on whether we 691 

fit the models to single sessions or to full datasets. 692 

 693 

Fits to summary statistics 694 

So far, we have been comparing models based on log likelihoods computed from fitting 695 

raw data. One might argue, however, that it is also important that a model captures key summary 696 

statistics derived from the raw data. In the context of probability estimation, Gallistel et al., 697 

(2014) argued that two important summary statistics are the step widths and step heights. While 698 

we agree with this, we are not convinced by their conclusion that it is impossible for any trial-699 

by-trial updating model to account for the empirical joint distributions of these statistics. The 700 

problem is that this conclusion was based on visual inspection of model behaviour for a 701 

supposedly small number of manually picked parameter settings, rather than on a systematic 702 

exploration of the parameter space.  703 

To investigate more formally how well the models are able to account for the empirical 704 

joint distributions of step widths and step heights, we use an optimisation algorithm to find the 705 

parameters that minimise the Jensen-Shannon divergence8 (JSD) between the empirical and the 706 

predicted distributions. Since repeated computation of joint distributions makes this 707 

optimisation very time-consuming, we fit the models with only one threshold variant in the 708 

second model factor. To make it unlikely that our choice biases the results in favour of the trial-709 

by-trial models, we choose ε=|Δ|×n for all three models, which was the most successful variant 710 

for the IIAB model in the main analysis (Figure 3). We fit these models to full datasets, because 711 

joint distributions for session-based data often contain too few data points for reliable fitting. 712 

The left panel of Figure 7A presents the empirical data that led Gallistel et al. (2014) to 713 

conclude that there are serious discrepancies between the kind of patterns generated by 714 

participants and those generated by trial-by-trial models. In contrast to their conclusion, 715 

however, we find that the three models perform approximately equally well, both visually 716 

(Figure 7A) and in terms of JSD (IIAB: 0.22±0.03; Delta: 0.22±0.04; M-Avg: 0.19±0.04). Also 717 

at the individual level, visual inspection of the fits does not indicate an advantage of the IIAB 718 

model over the M-Avg and Delta models in any of the experiments (Figure 7B). In fact, when 719 

averaging the JSD across all 89 participants (Figure 8A), the IIAB model accounts for the 720 

distributions substantially worse than the M-Avg and Delta models (IIAB: 0.28±0.017; Delta: 721 

0.17±0.013; M-Avg: 0.17±0.011).  722 

 
8 The Jensen-Shannon divergence is a symmetric variant of the Kullback-Leibler divergence and has the 

advantage that it is always finite, even when one of the inputs is zero. 
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 723 

 724 

Figure 7 | Model fits to summary statistics. (A) Left: Joint distribution of step widths and step

heights of all participants in E1 pooled together (cf. Figure 15 in Gallistel et al., 2014). Center:

pooled fits of the IIAB model. Right: pooled fits of the M-Avg model. (B) Subect-level joint

distributions of step widths and step heights and fits of the IIAB and M-Avg models. The first

participant of each experiment is shown. Fits of the Delta model look very similar to those of the M-

Avg model (see Supplementary Materials).
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 725 

 726 

At the level of individual experiments, the IIAB model has the worst JSD in seven of the 727 

eight cases (Figure 8B); the only exception is E3, where all models have approximately equal 728 

JSD, probably because it consists of only three participants. Overall, these results are consistent 729 

with our main analysis in the sense that the Delta and M-Avg mechanisms perform roughly 730 

equally well and better than the IIAB mechanism. However, it has to be noted that the JSD 731 

differences are very small in comparison to the AIC differences (Figure 3). This is because a 732 

summary statistic can never contain more information than the raw data from which it is 733 

derived, which follows from a theorem known as the data processing inequality (Cover & 734 

Thomas, 2005). We quantified this difference in a previous study (albeit in a different context), 735 

where we found that the summary statistics contained only 0.15% of the evidence present in 736 

the raw data (van den Berg & Ma, 2014). In light of this, we prefer to give more weight to 737 

likelihood-based comparisons than comparisons based on summary statistics. 738 

In conclusion, even if one considers the joint distribution of step widths and step heights 739 

as the sole criterion to evaluate models on, there seems to be no ground for ruling out trial-by-740 

trial models. If anything, the trial-by-trial models explain the data better than the hypothesis-741 

testing model. 742 

 743 

Slider updating consistency 744 

The three updating mechanisms considered in this study (IIAB, Delta, M-Avg) have in 745 

common that belief updates are always consistent with the most recent observation: observing 746 

Figure 8 | Model comparison based on fits to summary statistics. (A) Jensen-Shannon

divergence (JSD) between data and fit, averaged across all participants and expressed relative to

the M-Avg model. A larger values indicates a worse fit. (B) JSD values averaged across

participants and split by experiment.
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a blue increases the estimate of pblue and observing a ring of the other colour decreases it. 747 

However, we find that across all 89 participants in our dataset, on average only 75.8±1.8% of 748 

the updates were consistent with the most recent observation (range: 68.9% to 80.3%). Hence, 749 

about one in every four updates was made in the direction opposite to the most recent observed 750 

outcome. Threshold variability may be one source of these inconsistencies. To see why this is 751 

the case, suppose that a participant observes three blue rings followed by a red one. If the 752 

updating threshold happened to be high in the first three trials and low in the last trial, it can 753 

happen that a slider update is made only in the fourth trial.  754 

In agreement with our intuitions, we find that updating behaviour in the fits (to full 755 

datasets) is 100% for all M-Avg and Delta models without threshold variability. However, 756 

somewhat to our surprise, for the IIAB model we find that a small proportion of the updates 757 

(1.4±0.3% across all 89 participants) is inconsistent with the last observation. We suspect that 758 

this may have to do with the ability of the model to have “second thoughts”, that is, to take back 759 

an earlier made update. In any case, models without threshold variation predict much higher 760 

updating consistency than what is observed in the data.  761 

For models with threshold variation, we find substantially lower consistency values in the 762 

fits: 91.6±0.8% (IIAB with ε=|Δ|), 83.7±1.6% (Delta with ε=|Δ|), and 83.6±1.0% (M-Avg with 763 

ε=|Δ|). These results show that threshold variance may be one explanation for participants’ 764 

updating consistency rates. However, since they are still somewhat overestimated by these 765 

models, it is likely that there are other sources too. Participants could, for example, be inferring 766 

local sequential dependencies in the data. This would lead to beliefs of the form “the next ring 767 

will surely be red since I have just drawn three blue ones” as opposed to “there is a high chance 768 

of drawing a blue ring given that I have just drawn several of them”, and thus inconsistent 769 

updating. 770 

 771 

Discussion 772 

The most important point to take away from the modelling analyses is that – contrary to 773 

previous claims – we find no compelling evidence against trial-by-trial updating in human 774 

estimation of non-stationary probabilities. In fact, we find this class of models to be more 775 

successful at explaining behaviour than the hypothesis-testing models, with very high 776 

consistency: it holds across all eight available datasets; it holds for models with and without 777 

threshold variability; it is independent of whether model comparison is based on AIC values or 778 

on cross-validation; it is independent of whether model comparison is based on raw data or 779 
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summary statistics; it is independent of whether we fit the models to full data sets or per session; 780 

and it still holds if we add a second variable threshold to the IIAB model.  781 

It is difficult to say which of the two types of trial-by-trial models is the more successful 782 

one. When applied to data from probability estimation tasks, M-Avg models have a slight 783 

advantage over Delta models in AIC-based model comparison. However, the results are 784 

reversed in model comparison based on cross validation and in the results from the binary 785 

prediction task. Altogether, these results suggest to us that the two classes of models make very 786 

similar predictions, but that M-Avg models may be more susceptible to overfitting. 787 

Allowing the threshold to vary is important for any model to describe the participants’ 788 

behaviour well. This kind of variance could have multiple origins. For example, it could be that 789 

the neural representation of the threshold varies due to neural noise. Another possibility is that 790 

the revisions of the threshold depend on the participant’s level of attention, which may fluctuate 791 

over time, especially in long experiments of the type considered here. Similarly, the threshold 792 

as such can be interpreted in several ways. Gallistel et al., (2014) assumed any threshold to be 793 

an integral part of the estimation procedure, while Khaw et al., (2017) suggest that it arises from 794 

rational adaptation to the cognitive costs of updating. Yet others may envisage it as the result 795 

of motor “laziness”, which could be an equally rational outcome of a trade-off between motor 796 

cost and expected reward. All in all, the psychological interpretation of the updating threshold 797 

requires further study. 798 

Our finding that the two-kernel delta-rule model outperformed all other models on the 799 

probability estimation task suggests that participants may have been keeping track of both slow 800 

and fast changes in the probability that they were estimating. Another possible explanation is 801 

that they were in fact behaving as described by a single-kernel model that updates its learning 802 

rate as a function of the prediction errors, as suggested by Behrens et al. (2007). Intuitively, this 803 

mechanism should be able to solve the problem which a regular trial-by-trial model will face 804 

when tracking a function with large but infrequent changes: that the estimate sometimes needs 805 

to be highly sensitive to new observations and at other times less sensitive in order to track it 806 

well. This is an interesting question for future work. 807 

Lastly, we made an interesting observation which to the best of our knowledge has not 808 

been reported before: a rather large proportion of the slider updates was inconsistent with the 809 

most recent draw from the Bernoulli distribution. While threshold variability may be part of the 810 

explanation, we suspect that there are other sources too. Since the origin of these inconsistencies 811 

could be informative about the underlying belief updating mechanism, further investigation of 812 

this issue could lead to important improvements of the theories. 813 
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GENERAL DISCUSSION 814 

 While there is an extensive literature on human estimation of stationary probabilities 815 

(Edwards, 1961; Estes, 1976; Fiedler, 2000; Peterson & Beach, 1967), research on estimation 816 

of non-stationary probabilities has only just begun. An important observation made by the 817 

studies that have been pioneering this area is that humans tend to report their probability updates 818 

in a stepwise manner (Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017; 819 

Robinson, 1964). Ricci and Gallistel (2017) posited that explaining this kind of behaviour is 820 

the number one challenge for any model based on trial-by-trial updating. In this article, we took 821 

up this challenge and scrutinised the claim in two ways. First, we reported empirical data which 822 

investigated the malleability of these observed stepwise behaviours, and which expanded the 823 

empirical data base for distinguishing between the different models considerably. Second, we 824 

evaluated the different models using more rigorous likelihood-based model comparisons, 825 

applying them both to our new data and to the data sets from three previously published studies. 826 

 In the experiment, using two novel manipulations, we found evidence that particulars of 827 

the experimental design affect the discreteness in the response patterns, in turn suggesting that 828 

the stepwise behaviours need not exclusively or mainly be a signature of hypothesis testing. In 829 

particular, the finding that the extent of stepwise behaviours is strongly affected by the effort 830 

required to produce the response indicates that there are covert changes in beliefs that are not 831 

disclosed when there are asymmetric costs of maintaining vs. changing the response. The rate 832 

of stepwise behaviour was also affected by instructions about the non-stationarity of the 833 

process, indicating that there are a priori adaptations of the process that are responsive to 834 

instructions (e.g., changes in the priors across a hypothesis space or changes in the sampling 835 

window effectively used for estimation). The characteristic patterns of rare and large changes 836 

observed in the previous studies were not general, but mainly observed in one of the four 837 

experimental cells.  838 

 Furthermore, using rigorous model comparison methods, we found that not only our own 839 

data, but also all previous data sets are better accounted for by models based on trial-by-trial 840 

updating than by models based on hypothesis testing. This conclusion held across eight data 841 

sets and across a variety of different criteria for evaluating the fit of the models. However, we 842 

should immediately point out that the ambition of this article is not to proclaim the death of 843 

hypothesis testing models, but rather to suggest that the reports of the death of trial-by-trial 844 

learning models have been greatly exaggerated. Ultimately, we would expect that – as is true 845 

in most areas of cognitive science – the mind is able to draw on several different cognitive 846 

processes for learning about a property as fundamental to adaptation as probability. 847 
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More challenges 848 

While the modelling results presented above may appear conclusive, Ricci and Gallistel 849 

(2017) raised several additional challenges for trial-by-trial models in excess of the question of 850 

how to explain stepwise updating. Here, we briefly address these. The first one is to explain 851 

that “participants perceive the changes themselves” when there are abrupt and large changes. 852 

The authors considered the possibility of a trial-by-trial model with both a slow and fast kernel, 853 

the latter of which should be able to detect abrupt changes. However, they rejected that model 854 

because they were unable to find parameter settings that produced summary statistics matching 855 

the patterns in participant data. Here, we performed a rigorous model comparison and found 856 

that the two-kernel delta-rule model actually beats all other models that we tested. Based on 857 

this finding, we believe that it would be interesting for future work to examine to what extent 858 

perceptions of abrupt changes in a two-kernel Delta-rule model coincide with those perceived 859 

by participants. 860 

Another challenge posited by Ricci and Gallistel (2017) is to explain that participants 861 

sometimes have “second thoughts about previously perceived changes in the hidden 862 

parameter”. An elegant property of the IIAB model is that the prediction of second thoughts is 863 

integral to its updating mechanism. However, we believe that it would be wrong to reject trial-864 

by-trial model based on the fact that they need additional assumptions to account for second 865 

thoughts, because they might very well be governed by a separate process. A circumstance (in 866 

this case a button) which explicitly invites people to re-evaluate their previous beliefs might 867 

induce them to do so, but that is not to say that such behaviour must be integral to the iterated 868 

online estimation which the present paradigm investigates. 869 

A final challenge posited by Ricci and Gallistel (2017) is to explain that participants are 870 

able to extract abstract information about the function that guides the true value of the 871 

probability that they are tracking. In line with their findings, we observed in the post-experiment 872 

questionnaires that many participants produced something that resembled a sinusoidal function 873 

when asked to draw the function they believed they had been tracking. An appealing feature of 874 

the IIAB is that the higher-order structure of the generative function may be derived from its 875 

record of change points. However, the same is true for the M-Avg models, which keep a history 876 

of previous outcomes. As was the case with the issue of second thoughts, we argue that 877 

inference of the underlying function may be governed by a mechanism that is separate from the 878 

updating mechanism. We agree with Ricci and Gallistel (2017) that such a mechanism should 879 

rely on some sort of sequence memory, but that does not imply that the updating must too. To 880 

shed more light on this, more data are required about the relation between sequences of 881 
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observed outcomes and the kind of abstract structures that participants infer from these 882 

sequences.  883 

 884 

Heterogeneity in updating strategies 885 

Our model comparison results were unambiguous when considered at the group level: the 886 

M-Avg mechanism accounted best for the data, followed by first the Delta mechanism and then 887 

the IIAB mechanism (Figures 3 and 4). However, at the level of individual participants, we 888 

observed substantial heterogeneity in the results (Figure 3A). There are two possible 889 

explanations for this. First, there may be true heterogeneity in the underlying cognition, in 890 

which case it would be misleading to consider only group-level results. Second, the 891 

heterogeneity could be an artefact caused by limitations of the analysis, such as the finite size 892 

of the dataset, the use of a custom likelihood function, and the lack of guarantee that the 893 

optimisation algorithm always converged to the maximum of this function. Indeed, the model 894 

recovery analysis (Appendix C) showed some misclassifications even when the true model was 895 

in the set of fitted models, although never between updating mechanisms. We can, at present, 896 

neither rule out nor confirm that different individuals used different updating strategies. 897 

 898 

Limitations 899 

A first limitation of the present study is that we did not test hybrid models. Since the main 900 

goal was to scrutinise previous conclusions drawn about the viability of trial-by-trial models, 901 

we considered the testing of hybrid models outside the scope of the present work. However, 902 

since hypothesis-testing and trail-by-trial updating are not necessarily mutually exclusive, the 903 

most promising models might be ones that combine the two processes.  904 

We also mentioned above that there remain unexplained differences between the observed 905 

consistency rates and those predicted by the models. Intuitively, one possible cause is that 906 

participants infer sequential dependencies within random processes (Ayton & Fischer, 2004). 907 

A participant who is under the impression that, say, three blues in a row indicate that the next 908 

ring is most likely going to be red should update inconsistently after observing that sequence. 909 

This has not been addressed in our experimentation or modelling, but experimental data exists 910 

from a paradigm similar to our own. Toda (1958) rigged the Bernoulli sequence in his 911 

probability estimation task in such a way that there were sequential patterns in the outcomes, 912 

allowing him to study if these were inferred through observing the participants’ subjective 913 

probabilities. He inferred from the data that participants estimate probabilities in a way that is 914 

approximately the Bayesian solution of a higher order Markov process – a non-trivial trial-by-915 
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trial model. We are, however, reluctant to accept this conclusion. The problem is that the 916 

probability estimates in Toda’s task were derived indirectly from decisions in an ultimatum 917 

bargaining game and thus likely to have been affected by first-mover advantage and people’s 918 

fairness concerns (Güth, 1995; Güth & Van Damme, 1998; Slembeck, 1999; Thaler & Camerer, 919 

1995). This may have biased his estimates. Future studies could adapt the present task with 920 

Toda’s (1958) rigged sequences to see if this increases the inconsistency rates beyond those in 921 

a non-rigged control condition. 922 

Another limitation is that we performed model comparisons based on a custom likelihood 923 

function, because the proper likelihood function was intractable. Even though model recovery 924 

analysis confirmed that the chosen function allowed for reliable model comparison, better 925 

choices might have been possible and could have led to more conclusive results in terms of 926 

distinguishing the four threshold mechanisms in the second model factor. We constructed the 927 

custom likelihood function mainly based on “educated guesses” of what aspects are important 928 

to consider. An alternative and probably better way would have been to derive a likelihood 929 

function by starting with the proper one and then make simplifications until it becomes 930 

tractable. 931 

Lastly, during our debriefings, some participants reported that they counted or chunked 932 

the observations. This could possibly imply a trivial dual-strategy hypothesis: some people 933 

attempt to solve the task by counting, a strategy which is highly inefficient in the chaotic world 934 

outside of the laboratory. When they update intuitively, they use a different system which does 935 

not require working memory retention of observations. Manipulating working memory capacity 936 

may confirm or reject this hypothesis and inform future studies which want to use similar tasks 937 

– since most scientists presumably will be more interested in the second, intuitive system we 938 

must know if we need to control for counting. 939 

 940 

Relation to behavioural economics 941 

In their seminal work “Theory of Games and Economic Behavior”, originally published 942 

in 1944, von Neumann and Morgenstern (2007) begin by recognising the fact that a “universal 943 

system” of economic theory is not achievable in the foreseeable future, largely due to the lack 944 

of a sufficient body of empirical observations. In anticipation of that, they make-do with “some 945 

commonplace experience of human behavior” to demonstrate the mathematical framework we 946 

today recognise as game theory. These behavioural assumptions have been criticised by 947 

behavioural economists and cognitive psychologists (e.g. Mullainathan & Thaler, 2015; 948 

Schoemaker, 1982; Tversky, 1975). Some studies have introduced modifications (e.g. Caplin 949 
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& Leahy, 2001; O’Donoghue & Rabin, 1999), but there have been few comprehensive 950 

replacements. A well-validated, robust theory of probability perception would be an important 951 

step towards such an end. We believe that the present work is a contribution to the construction 952 

of such a theory.  953 

 954 

 Concluding remarks 955 

To the best of our knowledge, the first study that investigated human estimation of non-956 

stationary probabilities directly was performed in 1964 (Robinson, 1964). After that, it took 957 

another 50 years before a serious modelling attempt was initiated to obtain an understanding of 958 

the mechanism behind this important cognitive function (Gallistel et al., 2014). That attempt 959 

culminated in a rejection of the entire class of trial-by-trial models and the proposal that humans 960 

instead use hypothesis testing to track non-stationary probabilities. Here, we scrutinised that 961 

proposal and found that there is actually much stronger evidence for trial-by-trial updating than 962 

for hypothesis testing. Hence, the rejection of trial-by-trial models seems to have been 963 

premature. However, considering the juvenility of this field of research, we believe that it would 964 

be equally wrong to use these results to rule out hypothesis-testing models. In the end, it may 965 

turn out that humans use a mix of strategies. Therefore, future studies might benefit from 966 

starting to look into hybrid models instead of continuing to restrict themselves to one particular 967 

class. In doing so, they should strive to bring all the findings – from function learning through 968 

binary choice to probability inference – under one umbrella. That way, applied researchers such 969 

as economists may find important uses for the work. 970 
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APPENDIX A – Dunn’s post hoc comparisons 1133 

Table A1. Dunn’s Post Hoc Comparisons of RMSE Between Conditions. 

Condition z-score Wleft Wright p pbonferroni pholm 

HE-UI  HE-IN  4.297  42.333  14.933  < .001  < .001  < .001  

  LE-UI  1.599  42.333  32.133  0.055  0.329  0.165  

  LE-IN  1.526  42.333  32.600  0.063  0.381  0.165  

HE-IN  LE-UI  -2.697  14.933  32.133  0.003  0.021  0.014  

  LE-IN  -2.770  14.933  32.600  0.003  0.017  0.014  

LE-UI  LE-IN  -0.073  32.133  32.600  0.471  1.000  0.471  

 1134 

Table A2. Dunn’s Post Hoc Comparisons of Kullback-Leibler Divergence Between Conditions. 

Condition z-score Wleft Wright p pbonferroni pholm 

HE-UI  HE-IN  4.098  42.200  16.067  < .001  < .001  < .001  

  LE-UI  1.589  42.200  32.067  0.056  0.336  0.148  

  LE-IN  1.652  42.200  31.667  0.049  0.296  0.148  

HE-IN  LE-UI  -2.509  16.067  32.067  0.006  0.036  0.030  

  LE-IN  -2.446  16.067  31.667  0.007  0.043  0.030  

LE-UI  LE-IN  0.063  32.067  31.667  0.475  1.000  0.475  

 1135 

Table A3. Dunn’s Post Hoc Comparisons of Step Width Between Conditions. 

Condition z-score Wleft Wright p pbonferroni pholm  

HE-UI  HE-IN  2.718  47.933  30.600  0.003  0.020  0.013  

  LE-UI  3.293  47.933  26.933  < .001  0.003  0.002  

  LE-IN  4.924  47.933  16.533  < .001  < .001  < .001  

HE-IN  LE-UI  0.575  30.600  26.933  0.283  1.000  0.283  

  LE-IN  2.206  30.600  16.533  0.014  0.082  0.041  

LE-UI  LE-IN  1.631  26.933  16.533  0.051  0.309  0.103  

 1136 

Table A4. Dunn’s Post Hoc Comparisons of Step Height Between Conditions. 

Condition z-score Wleft Wright  p pbonferroni  pholm  

HE-UI  HE-IN  -3.230  27.800  48.400  < .001  0.004  0.003  
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Table A4. Dunn’s Post Hoc Comparisons of Step Height Between Conditions. 

Condition z-score Wleft Wright  p pbonferroni  pholm  

  LE-UI  1.861  27.800  15.933  0.031  0.188  0.063  

  LE-IN  -0.324  27.800  29.867  0.373  1.000  0.373  

HE-IN  LE-UI  5.091  48.400  15.933  < .001  < .001  < .001  

  LE-IN  2.906  48.400  29.867  0.002  0.011  0.007  

LE-UI  LE-IN  -2.185  15.933  29.867  0.014  0.087  0.043  

 1137 

Legend: HE is High Effort, LE is Low Effort, UN is Uninformed, and IN is Informed. 1138 

Wleft and Wright are the summed ranks of the condition in the leftmost and second to leftmost 1139 

column, respectively. Non-integer values are due to rank ties. 1140 

 1141 

 1142 

APPENDIX B – Custom likelihood function 1143 

 1144 

In its most general form, the log likelihood function for the models considered in this 1145 

study takes the form 1146 

 ( ) ( )1,..., 1 1, , 1 1, , 1

1

log | , , log | , , , ,
n

t t t t

t

p p R R O− − −

=

=R θ ψ O θ ψ  (4) 1147 

where R={R1, R2, …, Rn} is a vector with subject responses for all n trials, θ is a vector with 1148 

parameter values, ψ is a matrix with latent variables, and O={O1, O2, …, Om} is a vector with 1149 

all Bernoulli outcomes observed by the subject. The IIAB model has multiple time-varying 1150 

latent variables, including a list of change points and parameters of a beta distribution 1151 

representing the observer’s prior belief that any given trial is a change point (see Table 1 in 1152 

Gallistel et al., 2014). The existence of these latent variables in combination with the fact that 1153 

the model predictions are not independent across trials makes evaluation of the likelihood 1154 

function computationally prohibitive.  1155 

To circumvent this problem, we construct a “custom” likelihood function that captures 1156 

the main aspects of the likelihood function proper in a computationally tractable way, yet still 1157 

allows for reliable model comparison, which will be verified by a model recovery analysis 1158 

(Appendix C).  1159 
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We believe that there are two important aspects that the likelihood function should cover 1160 

in order to allow it for reliable model fitting and comparison. First, obviously, it should punish 1161 

models for discrepancies between the predicted slider value and the slider value chosen by the 1162 

subject. Second, since one of the main differences between the models is when they predict 1163 

slider updates, it is probably also important that the likelihood function punishes models that 1164 

predict slider updates on trials where the subject made no update and vice versa. With this in 1165 

mind, we choose to compute the likelihood of parameters θ for model M as follows. Let Rsubject 1166 

denote the vector with subject responses and O the vector with observed Bernoulli outcomes. 1167 

First, we compute the model’s predicted response vector RM. Assuming for the moment that 1168 

there is no threshold noise, RM is a deterministic function of θ and O for all models that we 1169 

consider here. We can obtain RM efficiently using a forward simulation of the model, feeding 1170 

it with O while fixing the parameters to θ. After obtaining RM, we compute the probability of 1171 

the subject response on each trial t as follows, 1172 

 1173 

 ( )
( )

subject, subject, 1 M, M, 1

subject, M, subject, subject, 1 M, M, 1

subject, M, unexplained

0 0,  0

| 0 0,  0

; , otherwise,

t t t t

t t t t t t

t t

R R R R

p R R R R R R

N R R 

− −

− −

 − = − 


 −  − =



 (5) 1174 

where N(x; μ, σ) is a normal distribution with mean μ and standard deviation σ, evaluated at 1175 

point x. This function strongly punishes models that predict an update when the subject did not 1176 

make an update (first line of last expression in Eq. (5)) or vice versa (second line). If, on the 1177 

other hand, the updating behaviour is consistent between model and subject (third line), the 1178 

probability of the subject response is measured as a draw from a normal distribution centred on 1179 

the response predicted by the model. This normal distribution can be thought of as a way to 1180 

capture variance in the data that is left unexplained by the model: the better the model, the 1181 

smaller the estimate of σunexplained. Part of this variance could be due to variability in motor 1182 

responses, but there may be other sources too. To avoid log likelihoods equal to negative 1183 

infinity, we assume in each model that the observer sometimes produces a random response 1184 

drawn from a uniform distribution on [0,1]. We fix the rate of such random responses to 1 in 1185 

1,000 trials.  1186 

So far, we have assumed fixed thresholds in our construction of the likelihood function. 1187 

However, all models that we consider here have a variable threshold, which makes the 1188 

predictions non-deterministic: for a fixed set of parameters θ and input vector O, prediction RM 1189 

varies from run to run. To approximate the probability of the subject’s response under a variable 1190 
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response threshold, we average the model prediction over 100 runs. We thus obtain the 1191 

following custom log likelihood function: 1192 

 ( ) ( )
100

subject, M,

1 1

1
log | ,

100

n

t t

t i

L p R R
= =

 
=  

 
 θ  (6) 1193 

where p(Rsubject,t | RM,t) is as specified in Eq. (5). 1194 

 1195 

APPENDIX C – Model recovery 1196 

 1197 

 We created a group of five synthetic data sets from each of the twelve models with 1198 

threshold noise, giving a total of sixty synthetic datasets. Next, we used maximum-likelihood 1199 

estimation to fit the twelve main models twenty times to all datasets. For each fit, we computed 1200 

the Akaike Information Criterion (AIC; Akaike, 1974). At the level of individual data sets, 1201 

AIC-based model comparison picks out the correct model in forty-six of the sixty cases (Figure 1202 

C, Panel A). In the remaining fourteen cases, a mistake was made with respect to the second 1203 

modelling factor, that is, the threshold mechanism. This indicates that at the individual level, 1204 

our methods are adequate for selecting the right updating mechanism (IIAB, Delta or M-Avg), 1205 

but it has some difficulties in selecting the right threshold mechanism. At the group level, on 1206 

the other hand, the correct model was selected in all cases (Figure C, panel B). These results 1207 

also indicated that the quality of fit improved very little after about ten runs of the optimizer 1208 

(Figure C, panel C).  1209 
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 1210 

 1211 

  1212 

Figure S1 | Model recovery results. (A) AIC-based model comparison at the level of individual

datasets. The colours indicate the AIC value of each individual fit relative to the best-fitting model

in the respective dataset. Each column has a single best-fitting model, which by definition has a

relative AIC value equal to 0. The red boxes indicate for each group of datasets which model

generated them. In 46 of the 60 synthetic datasets, the correct model was selected (dark blue

cells in the red boxes). In the remaining 14 datasets, an error was made in the inference of the

mechanism behind the computation of E. No errors were made in the inference of the updating

core mechanism (IIAB, Delta, M-Avg), meaning that these mechanism are highly identifiable, even

at the level of individual subjects. (B) Relative AIC values averaged within each group of synthetic

datasets that share the same generative model. In all 12 groups, the generative model was

correctly selected as the model with lowest average AIC. Hence, all 12 models are identifiable at

the group level, even when the group contains as few as 5 subjects. (C) The results in panels A

and B were obtained by fitting each model 20 times with different initial parameter estimates. To

assess how many runs are required for stable model comparison performance, this panel shows

the average increase in maximum log likelihood as a function of the number of times each model

was fitted. After approximately 10 runs, the average increase in maximum log likelihood rarely

exceeds 1. In our analysis of human data, we fit each model 30 times.
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APPENDIX D – Cross validation results 1213 

 1214 

In our main analysis, we fitted the models to only the first 750 trials in each dataset. Model 1215 

comparison based on the log likelihood of the remaining trials (Figure D) are largely 1216 

consistent with the AIC-based results (Figure 3). 1217 

 1218 

 1219 

Figure S2 | Model comparison based on cross-validated log likelihoods. (A) Left: Log

likelihood values relative to the best-fitting model for individual datasets. Right: Relative log

likelihood values averaged across datasets. One may notice that the cross-validated log likelihood

differences are smaller than the AIC differences presented in Figure 4. There are two reasons for

this. First, AIC is defined as (roughly) twice the log likelihood and, second, the AIC values were

based on three times the number of trials (750 vs 250). Hence, to make the cross-validated log

likelihoods comparable to the AIC-based results, one should multiply them by a factor of 6. (B)

Factor level comparison based on cross-validated log likelihoods. Top: Evidence for each level in

the first factor, combined across all models. Bottom: Evidence for each level in the second factor,

combined across all models. The most successful levels in each experiment are indicated by

asterisks.
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APPENDIX E – Maximum-likelihood parameter estimates 1220 

 1221 

Table E1. Maximum-likelihood Estimates of the Parameters of the IIAB Models. 1222 

Model Parameter 25% Quartile Median 75% Quartile 

IIAB, ε=|Δ| μT1 8.79 × 10-5 9.15 × 10-3 4.05 × 10-2 

 σT1 1.23 × 10-2 2.08 × 10-2 3.63 × 10-2 

 T2 1.17 1.60 7.62 

 σunexplained 6.04 × 10-2 8.50 × 10-2 0.120 

IIAB, ε=|Δ|×n μT1 2.37 × 10-3 0.693 1.52 

 σT1 1.01 1.68 3.53 

 T2 0.573 0.927 4.23 

 σunexplained 4.31 × 10-2 6.33 × 10-2 9.80 × 10-2 

IIAB, ε=KL|Δ| μT1 2.04 × 10-4 1.31 × 10-3 1.12 × 10-2 

 σT1 2.23 × 10-3 8.97 × 10-3 2.29 × 10-2 

 T2 1.04 1.53 5.66 

 σunexplained 5.54 × 10-2 8.15 × 10-2 0.117 

IIAB, ε=KL|Δ|×n μT1 2.83 × 10-4 0.199 0.904 

 σT1 0.274 0.637 1.23 

 T2 0.736 0.984 1.79 

 σunexplained 4.33 × 10-2 6.69 × 10-2 9.70 × 10-2 

 1223 

Table E2. Maximum-likelihood Estimates of the Parameter Values of the Delta-rule Models. 1224 

Model Parameter 25% Quartile Median 75% Quartile 

Delta, ε=|Δ| μT1 0.142 0.373 0.807 

 σT1 5.59 × 10-2 0.162 0.374 

 λ 2.94 × 10-2 9.27 × 10-2 0.150 

 σunexplained 2.91 × 10-2 6.03 × 10-2 9.66 × 10-2 

Delta, ε=|Δ|×n μT1 0.918 5.74 27.2 

 σT1 0.465 3.02 13.0 

 λ 1.95 × 10-2 8.81 × 10-2 0.147 

 σunexplained 3.87 × 10-2 6.61 × 10-2 0.101 

Delta, ε=KL|Δ| μT1 0.152 0.689 2.41 

 σT1 7.90 × 10-2 0.456 2.22 

 λ 3.40 × 10-2 9.67 × 10-2 0.155 

 σunexplained 2.92 × 10-2 6.02 × 10-2 9.04 × 10-2 

Delta, ε=KL|Δ|×n μT1 0.848 5.81 46.5 
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 σT1 0.638 3.73 26.1 

 λ 2.39 × 10-2 8.75 × 10-2 0.140 

 σunexplained 3.83 × 10-2 6.44 × 10-2 0.101 

 1225 

Table E3. Maximum-likelihood Estimates of the Parameter Values of the Memory-averaging 1226 

Models. 1227 

Model Parameter 25% Quartile Median 75% Quartile 

M-Avg, ε=|Δ| μT1 0.253 0.470 0.854 

 σT1 5.75 × 10-2 0.207 0.402 

 α 0.854 0.911 0.969 

 σunexplained 2.98 × 10-2 5.64 × 10-2 8.22 × 10-2 

M-Avg, ε=|Δ|×n μT1 1.52 6.36 33.0 

 σT1 0.678 3.18 13.4 

 α 0.866 0.919 0.982 

 σunexplained 3.83 × 10-2 6.56 × 10-2 9.81 × 10-2 

M-Avg, ε=KL|Δ| μT1 0.223 0.761 2.75 

 σT1 7.07 × 10-2 0.494 2.63 

 α 0.843 0.908 0.962 

 σunexplained 3.24 × 10-2 5.70 × 10-2 8.43 × 10-2 

M-Avg, ε=KL|Δ|×n μT1 1.42 7.34 41.0 

 σT1 0.848 4.36 21.5 

 α 0.858 0.913 0.971 

 σunexplained 3.81 × 10-2 6.35 × 10-2 9.21 × 10-2 

 1228 

 1229 

 1230 
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