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ABSTRACT 34 

Many events we experience are binary and probabilistic, such as the weather (rain or no rain) 35 

and the outcome of medical tests (negative or positive). Extensive research in the behavioural 36 

sciences has addressed people’s ability to learn stationary probabilities (i.e., probabilities that 37 

stay constant over time) of such events, but only recently have there been attempts to model the 38 

cognitive processes whereby people learn – and track – non-stationary probabilities. The old 39 

debate on whether learning occurs trial-by-trial or by occasional shifts between discrete 40 

hypotheses has been revived in this context. Trial-by-trial estimation models – such as the delta-41 

rule model – have been successful in describing human learning in various contexts. It has been 42 

argued, however, that behaviour on non-stationary probability learning tasks is incompatible 43 

with trial-by-trial learning and can only be explained by models in which learning proceeds 44 

through hypothesis testing. Here, we show that this conclusion was premature. By combining 45 

two well-supported concepts from cognitive modelling – delta-rule learning and drift diffusion 46 

evidence accumulation – we reproduce all behavioural phenomena that were previously used 47 

to reject trial-by-trial learning models. Moreover, a quantitative model comparison shows that 48 

this model accounts for the data better than a model based on hypothesis testing. In the spirit of 49 

cumulative science, our results demonstrate that a combination of two well-established theories 50 

of trial-by-trial learning and evidence accumulation is sufficient to explain human learning of 51 

non-stationary probabilities. 52 

 53 

KEYWORDS 54 

Probability learning; change-point model; delta-rule; belief updating; hypothesis testing; drift 55 

diffusion model  56 
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INTRODUCTION 57 

The issue of how people learn and assess probabilities has been pivotal to the behavioural 58 

sciences at least since the Enlightenment and studied extensively, especially in psychology and 59 

behavioural economics. Typically, this has occurred in the context of assuming stationary 60 

probabilities in the environment (i.e., probabilities that stay constant over time). This research 61 

shows that people are good at learning probabilities from experience with relative frequencies 62 

(Edwards, 1961; Estes, 1976; Fiedler, 2000; Peterson & Beach, 1967). Yet, research on 63 

heuristics and biases shows that probability assessments are sometimes swayed by subjective 64 

(“intentional”) aspects, like prototype-similarity (representativeness) or ease of retrieval, 65 

leading to biased judgements (Kahneman & Frederick, 2005). People also appear to over-66 

weight extreme probabilities in their decisions when encountering them in numeric form 67 

(Tversky & Kahneman, 1992), but under-weight them when they are learned inductively from 68 

trial-by-trial experience (Hertwig & Erev, 2009). People frequently have problems with 69 

reasoning according to probability theory, leading to phenomena like base-rate neglect and 70 

conjunction fallacies (Kahneman & Frederick, 2005; Tversky & Kahneman, 1983), at least if 71 

they cannot benefit from natural frequency formats (Gigerenzer & Hoffrage, 1995) that 72 

highlight the set-relations between the events (Barbey & Sloman, 2007). 73 

Not all probabilities are stationary, as when, for example, the risks of default in a 74 

mortgage market fluctuate over time or the risk of hurricanes changes with a changing global 75 

climate. Since modelling how humans learn – and track – non-stationary probabilities involves 76 

changes in people’s beliefs about probability, it has (once again) highlighted the classical issue 77 

of whether people learn by trial-by-trial estimation or occasional shifts between discrete 78 

hypotheses (Bruner et al., 1956). A neuropsychological and psychophysical literature has 79 

suggested a cohort of models that estimate in a trial-by-trial manner (Nassar et al., 2012, 2010; 80 

Norton et al., 2019; Wilson et al., 2013, 2018) which is supported by the notion that learning 81 

rates are modulated by trial-level prediction errors registered in the anterior cingulate cortex 82 

(Behrens et al., 2007; Rushworth & Behrens, 2008; Silvetti et al., 2013). These ideas have now 83 

been challenged by a small, mostly recent literature (Gallistel et al., 2014; Khaw et al., 2017; 84 

Ricci & Gallistel, 2017; Robinson, 1964). Observations of stepwise, “staircase shaped” 85 

response patterns, explicit reports of perceived changes in the underlying probability and other 86 

phenomena have been claimed (Gallistel et al., 2014; Ricci & Gallistel, 2017) to be 87 

incompatible with trial-by-trial estimation and to require a model built on hypothesis testing. 88 

In this Theoretical Note, we scrutinise this notion through simulation and model comparison 89 

and find that it was premature: a trial-by-trial model based on two established mechanisms 90 
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accounts accurately for human data on probability estimation tasks and even outperforms the 91 

earlier proposed hypothesis-testing model. 92 

 93 

Tracking Probabilities in Non-Stationary Environments 94 

While there is a large literature on how people learn stationary probabilities, there are 95 

only a few studies that have addressed learning of non-stationary probabilities. In the studies 96 

claimed to support hypothesis testing, participants were asked to estimate the hidden Bernoulli 97 

parameter by adjusting a physical lever (Robinson, 1964) or a slider on a computer screen 98 

(Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017). In the latter three of those 99 

studies, this was framed as the proportion of green rings in a hypothetical box visualised on a 100 

computer screen (Figure 1A). On each trial, the participant could adjust a slider in a range 101 

between 0 and 100 percent as their current estimate, before locking in their guess and initiating 102 

the next draw from the box (i.e., the next trial). Participants performed 10,000 trials and, 103 

importantly, were free to choose to revise their estimate or to leave it unchanged on any trial. 104 

Data of interest are the realised outcomes from the Bernoulli process, the underlying true 105 

probabilities of the outcomes, and the participant’s estimates of these probabilities (Figure 1B). 106 

Most participants exhibited stepwise updating behaviour: for long periods they did not adjust 107 

their estimates, at other times more often, but never on every trial. One of the studies (Gallistel 108 

et al., 2014) included a button labelled “I think the box has changed” that allowed participants 109 

to indicate that they believed that there had been a change in the parameter of the Bernoulli 110 

process. Half of those participants were also provided with the option to retract their decisions 111 

by pressing a button labelled “I take that back” (so called “second thoughts”, see Figure 1A).  112 

 113 

Two classes of cognitive models: trial-by-trial estimation vs. hypothesis testing 114 

As in many areas of the psychology of learning, there are two different ways of explaining 115 

how people infer probabilities from experience: models with their origin in the associationist 116 

traditions of behaviourism, reinforcement learning, and connectionist models emphasise the 117 

continuous updating of beliefs “trial-by-trial”, while models with their origin in cognitive 118 

psychology emphasise the testing of and discrete shifting between hypotheses.  119 

 120 
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 121 

 122 

A defining feature of trial-by-trial learning mechanisms is that the internal beliefs are 123 

updated each time a new data point is observed. One famous example is the delta learning rule 124 

which was introduced by Widrow and Hoff (1960) as an algorithm for updating the weights of 125 

nodes in a connectionist network (see Widrow & Lehr, 1993, for a review). In psychology, the 126 

most famous model based on this rule is the Rescorla-Wagner model of classical conditioning 127 

(Rescorla & Wagner, 1972), but it has also been adopted in many other domains (Behrens et 128 

al., 2007; Busemeyer & Myung, 1988; Neal & Dayan, 1997; Verguts & Van Opstal, 2014).  129 

In the context of probability estimation, delta-rule learning can be implemented as130 

( ) 1 1
ˆ ˆ1t t tp p − −= − + , where ˆ

tp  is the probability estimate at time t, 1
ˆ

tp −  the previous estimate, 131 

δt−1 = 1 – Xt the prediction error at time point t−1, and γ the learning rate. The delta-rule 132 

Figure 1 | Experimental paradigm. (A) Screenshot of the task in Gallistel et al (2014). Khaw,

Stevens and Woodford (2017) and Ricci and Gallistel (2017) used a similar design but without

buttons for reporting that the box has changed or second thoughts. From “The perception of

probability,” by C. R. Gallistel, M. Krishan, Y. Liu, R. Miller and P. E. Latham, 2014, Psychological

review, Vol. 121, p. 96-123. Copyright 2014 by American Psychological Association. Reprinted with

permission. (B) Example of response data (black) in an experiment where the hidden Bernoulli

probability (red) was non-stationary and stepwise (Participant 1 in Gallistel et al, 2014).
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accordingly abstracts an online running estimate of the underlying probability and it has the 133 

advantage of being recursive: it operates without requiring access to memories going back 134 

further than the latest observation. 135 

By contrast, hypothesis-testing models assume that people learn about the world by 136 

testing between explicit hypotheses about the state of the world based on confirming or 137 

disconfirming feedback (Brehmer, 1974; Bruner et al., 1956). A defining feature of these 138 

models is that beliefs are updated in a discrete rather than gradual fashion, because observers 139 

hold on to a belief until sufficiently strong evidence has accumulated against it. Hypothesis 140 

testing models have been applied to, for example, research on reasoning (e.g. Klayman & Ha, 141 

1987; Oaksford & Chater, 1994; Wason & Johnson‐Laird, 1970), categorisation (Ashby & 142 

Valentin, 2017; Bruner et al., 1956), and function learning (Brehmer, 1974, 1980). Because a 143 

single data point typically provides little evidence about a hypothesis, these models predict that 144 

beliefs may sometimes stay unchanged over many outcome observations. Gallistel et al. (2014) 145 

formalised a hypothesis-testing model for the learning of non-stationary probabilities, which 146 

they called the “If it ain’t broke, don’t fix it” (IIAB) model. According to this model, 147 

participants assess after each new observation whether their current belief is “broke” and only 148 

update it if the answer is in the affirmative. The suggestion is that humans do not learn 149 

probabilities directly: they learn “change points” in the hidden Bernoulli parameter and use this 150 

information and memories of previous outcomes to infer probabilities. 151 

 152 

Empirical Phenomena Related to Human Estimation of Non-Stationary Probabilities 153 

To evaluate the plausibility of these two classes of models under non-stationary 154 

probabilities, Gallistel et al. (2014) identified a number of important empirical phenomena that 155 

any serious model should be able to reproduce. Table 1 provides an overview of these 156 

phenomena, which we divide into two categories: those related to slider updates and those 157 

related to participants’ conceptions of the generative function (“higher-order” beliefs).  158 

We identified an additional phenomenon that has not been reported before but may be 159 

informative about the underlying mechanisms: participants regularly make changes to the slider 160 

in the opposite direction of the colour of the last observation (e.g., decrease their estimate of 161 

the probability of a red outcome after observing a red outcome). In the three datasets considered 162 

in the present study, 23.6±1.6% (M±SE across participants) of the updates were of this nature. 163 

This phenomenon is unexpected under both the IIAB model and standard trial-by-trial models.  164 

Two of the phenomena (10 & 11) cannot be explained by either the proposed hypothesis 165 

testing model or a regular trial-by-trial model as specified here. We believe they could do so 166 
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with certain extensions, which we will come back to in the Discussion. Since these phenomena 167 

are a shared issue, and thus not diagnostic of the learning mechanisms that we are contrasting 168 

here, we will not consider them in our evaluations of the models. 169 

 170 

Table 1.  171 

Empirical phenomena observed in the probability tracking task with the mechanisms of the 172 

IIAB and the proposed mechanisms of our extended delta-rule that explain them. All 173 

phenomena reported by Gallistel et al. (2014) unless indicated otherwise. 174 

Empirical phenomenon Mechanism to explain the phenomenon 

Related to slider updates IIAB model Delta-rule model 

1. Stepwise updating of 

reported estimates of the 

tracked probability 

Slider updates follow belief 

updates, which only happen 

when there is sufficient evidence 

against the present hypothesis. 

Beliefs are updated on each trial, 

but they are accompanied by a 

slider update only when the 

discrepancy between the current 

belief and the slider value exceeds 

the response threshold. 

2. Unimodal step height 

distributions 

Small adjustments happen when 

the current hypothesis is refined 

in the troubleshooting stage or 

when a new hypothesis is close 

to the present one. Large updates 

happen when a new hypothesis 

is very different from the present 

one.  

The response threshold varies 

across trials. Small slider updates 

happen when the response 

threshold is low; large ones may 

happen when the response 

threshold is high.  

3. Rapid adjustment to 

changes(*) 

A sufficiently low threshold on 

hypothesis updating. 

A sufficiently low response 

threshold on initiating a slider 

update. 

4. Median response close 

to true p 

Maximum-likelihood updating 

of the internal estimate of the 

tracked probability. 

Gradient descent updating of the 

internal estimate of the tracked 

probability. 

5. Inconsistent updating 

(present paper) 

Unexplained by the original 

model but can be accounted for 

by adding a variable response 

threshold. 

Accounted for by the variable 

response threshold. 

Related to conception of 

generative function 
IIAB model 

Delta-rule model combined with a 

drift diffusion mechanism 

6. Rapid detection of 

change points 

A sufficiently low decision 

threshold during hypothesis 

testing (see Phenomenon 3). 

A sufficiently low bound in the 

drift-to-bound change detection 

mechanism. 

7. High hit rates on 

change-point reports 

A consequence of “rapid 

adjustment to changes”.  

A consequence of “rapid 

adjustment to changes”. 
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8. High false discovery 

rates on change-point 

reports (**) 

A consequence of “rapid 

adjustment to changes”. 

A consequence of “rapid 

adjustment to changes”. 

   

9. Occasional changes of 

mind about the last 

reported change point (“I 

take that back”) 

Incongruent observations are 

better described by expunging 

the last change point. 

Large prediction errors in the 

direction opposite to the most 

recently reported change point are 

interpreted as evidence that there 

was no change point after all. 

10. The average rate at 

which changes are 

reported decreases over 

time 

Unexplained by the original 

model. Can be explained by 

modifying priors but at the 

expense of explaining other 

phenomena.  

Unexplained by our version but 

explained by previous literature. 

Participants update their decision 

bound separation through learning. 

11. Declarative 

perception of periodicity 

(Ricci and Gallistel, 

2017) 

Unexplained by the original 

IIAB model, but can be 

accounted for by adding a 

separate function learning 

process. 

Unexplained by the original delta-

rule model, but can be accounted 

for by adding a separate function 

learning process. 

(*) Gallistel et al. (2014) refer to observations of adjustments of the response shortly after a change point as 175 

“rapid detection of changes” (emphasis added). We use the phrase “rapid adjustment” to avoid conflation of this 176 

phenomenon and high hit rates, which refers to the observation of participants clicking “I think the box has 177 

changed” after a change point. 178 

(**) Gallistel et al. (2014) reported “high hit rates and low false-alarm rates”. However, while they calculated the 179 

hit rate as reports of a change point in the interval between two change points divided by the number of change 180 

points (event level definition), the false alarm rate was calculated as the number of change point reports on trials 181 

without a change point divided by the total number of trials without a change point (trial level definition). When 182 

using an event-level definition for both metrics, only the hit rate is high and the false-alarm rate is (trivially) 183 

close to zero. In this task, we believe it is more informative to look at the false-discovery rate: the number of 184 

false alarms divided by the total number of change reports. 185 

 186 

The Main Arguments Against Trial-by-Trial Estimation Models 187 

Gallistel et al. (2014) argue that trial-by-trial models are unable to account for several of 188 

the phenomena listed above. The first one is the stepwise manner in which participants tend to 189 

adjust their estimates of tracked probabilities: they often leave the slider unchanged for long 190 

periods of time (Figure 1B), which seems in direct contradiction with any model that updates 191 

on a trial-by-trial basis. An additional and closely related argument against those models is 192 

based on the distribution of adjustment sizes. Besides making many small adjustments, 193 

participants also regularly make large adjustments. Large adjustments are hard to reconcile with 194 

the idea of gradual, trial-by-trial updating, because a single observation rarely causes a large 195 
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 9 

change in the estimated probability. Gallistel et al. (2014) argue that large adjustments and 196 

periods of constancy instead reflect discrete belief changes.  197 

One potential way to make a trial-by-trial model account both for large slider adjustments 198 

and periods with no adjustment is to assume that participants have a “response threshold” that 199 

prevents them from making slider updates when the difference between the current slider value 200 

and their internal belief is not sufficiently large to justify the effort. Such as threshold could 201 

reflect simple “laziness” (recall that they typically performed thousands of trials) or have a 202 

more sophisticated basis. While this kind of model produces stepwise response behaviour, it 203 

has another problem: it is unable to explain adjustments smaller than the response threshold. 204 

As noted by Gallistel et al. (2014), a potential remedy is to make one further assumption, 205 

namely that the response threshold can vary across trials. This variability could reflect, for 206 

example, fluctuations in attention and motivation, or noise in neural and cognitive processing 207 

(Drugowitsch et al., 2016; Faisal et al., 2008). A more sophisticated proposal is that the variable 208 

threshold reflects a rational process in which participants trade off costs related to moving the 209 

mouse and cognitive processing against accuracy in task performance (Khaw et al., 2017). 210 

Gallistel et al. (2014) inspected the behaviour of a trial-by-trial model with a variable response 211 

threshold through simulations but were unable to find parameter settings that produced step 212 

height distributions resembling the empirically observed distributions. Importantly, however, 213 

they seem to have done this by manually trying out a number of different parameter settings, 214 

rather than by exploring the space exhaustively. In the present paper, we perform a more 215 

systematic search and show that a delta-rule model with a variable response threshold does, in 216 

fact, accurately reproduce the empirical distributions.  217 

Another major argument that Gallistel et al. (2014) make against trial-by-trial updating 218 

models is based on their observation that participants are able to detect changes in the Bernoulli 219 

parameter (Phenomena 6-9 in Table 1). They demonstrated this using a version of the task 220 

where participants were asked to press an “I think the box has changed” button whenever they 221 

thought that there had been a change in the generative process (see Figure 1A). Some of these 222 

participants were also given the option to report “seconds thoughts” about those reports by 223 

pushing a button labelled “I take that back.” (Figure 1A). Gallistel et al. (2014) interpret the 224 

ability to detect and reconsider changes as evidence that participants store a record of the 225 

previous change points in memory, over and above a summary representation of the outcomes 226 

thus far observed. They argue that such a record is incompatible with trial-by-trial estimation 227 

models, which have a much more condensed knowledge state. Here, we show that a delta-rule 228 

model extended with a standard drift-to-bound mechanism tracks changes in the underlying 229 
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Bernoulli parameter and can account for human reports of and second thoughts about such 230 

changes.  231 

Based mainly on the above arguments, Gallistel et al. (2014) ruled out the entire class 232 

of trial-by-trial estimation models as a possible explanation for human behaviour on probability 233 

estimation tasks. They argued that one instead needs a model with the conceptual richness of a 234 

hypothesis testing, “troubleshooting” process that identifies the most likely state of the world 235 

to have produced the data. They proposed such a model under the name “If It Ain’t Broke don’t 236 

fix it” (IIAB, described in more detail later) and used simulations to show that there are 237 

parameter settings that produce qualitatively similar data patterns as the phenomena observed 238 

in human data. Importantly, however, they did not fit the model to any data and they did not 239 

perform any quantitative model comparison against alternative models. 240 

 241 

Outline of this paper 242 

Gallistel et al. (2014) argued that trial-by-trial estimation models are qualitatively incompatible 243 

with human estimation of non-stationary probabilities. This paper presents a re-evaluation of 244 

that claim and an extension of their analyses. In the next section, we present the two main 245 

contending models: the IIAB hypothesis-testing model proposed by Gallistel et al. (2014) and 246 

a trial-by-trial estimation model based on delta-rule learning. Thereafter, we use simulations to 247 

examine whether the delta-rule model can reproduce the most important qualitative aspects of 248 

human data. Unlike Gallistel et al. (2014), we find that it accurately reproduces those patterns. 249 

Having established that there are no qualitative reasons to rule out the delta-rule model, we next 250 

examine how well both models account for actual data by fitting them to data from the three 251 

previous studies. We find that both models account well for most of the data, even though 252 

formal model comparison clearly favours the trial-by-trial model over the IIAB model for 253 

almost every participant. To paraphrase Mark Twain (White, 1897), our results indicate that the 254 

report of the death of trial-by-trial estimation models was an exaggeration. 255 

 256 

MODELS 257 

 258 

The IIAB model 259 

We provide a brief description of the “If It Ain’t Broke, don’t fix it” (IIAB) model here and 260 

refer the reader to Gallistel et al. (2014) for a more complete exposition and mathematical 261 

details. A key characteristic of this model is that it has a relatively stable internal belief about 262 

the tracked probability: it only updates this belief when there is sufficient evidence against the 263 
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current value. It proceeds in two stages. In the first stage, it tests whether the currently held 264 

belief about the tracked probability is “broke”. This test is performed by computing the 265 

discrepancy between the belief and the outcomes observed since the last registered change 266 

point. If the discrepancy – measured as Kullback-Leibler divergence – exceeds a decision 267 

threshold T1, it is concluded that something is “broke”. Each time this happens, the model enters 268 

a “troubleshooting” stage, in which it considers three hypotheses on why the current estimate 269 

may be “broke”: (i) there was a change in the generative process (“I think the box has 270 

changed”), in which case the model will register a new change point and update its estimate of 271 

ptrue accordingly; (ii) the previously registered change point was a mistake (“I take that back”), 272 

in which case the model will expunge the last recorded change point and update its estimate 273 

accordingly; (iii) the previous estimate of ptrue was wrong but the change point record is correct, 274 

in which case the model will update its estimate of ptrue but not register or expunge any change 275 

point. Hypothesis (iii) corresponds to concluding that the estimate was “broke” due to sampling 276 

error, but it is not assumed that such beliefs are recorded in memory. Gallistel et al. (2014) 277 

argue that these “troubleshooting” steps allow the IIAB model to explain behavioural 278 

phenomena related to the participant’s knowledge about the generative function (phenomena 279 

6-11 in Table 1). Since the updated estimate is always the average of all observations since the 280 

last believed change point, the model must retain the full sequence of observations since the 281 

second to last change point.  282 

The original version of the IIAB model has just two parameters: threshold T1 mentioned 283 

above and an additional threshold T2 that is used in the troubleshooting stage. While both 284 

thresholds are fixed, the evidence in the first stage is scaled by the number of trials since the 285 

last change (the sample size). The IIAB model will therefore become increasingly sensitive to 286 

small discrepancies between the current belief and the most recently observed evidence when 287 

no change point has been detected for a while. 288 

Predictions related to slider updates can be derived directly from the model’s internal 289 

belief state about the tracked probability. Predictions related to a participant’s reports of 290 

suspected changes in the generative process and changes of mind about those reports can be 291 

derived directly from the model’s “troubleshooting” stage. Hence, this is a rich model that 292 

makes predictions about all of the empirical phenomena listed in Table 1 except 11.  293 

 294 

The delta-rule model 295 

In contrast to the IIAB model delta-rule models update the estimate after every new observation. 296 

The most basic version of the delta-rule model does this using a recursive function of the form  297 
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 ( )B, B, 1
ˆ ˆ1t t tp p E −= − + , (1) 298 

where B,
ˆ

tp  is the estimated probability of the tracked event (in this case: of observing a green 299 

ring) on trial t, B, 1
ˆ

t t tE p X−= − is the prediction error, and 𝜆 ∈ [0,1] is the learning rate. This 300 

model thus proceeds by constantly adjusting its estimate of the tracked probability in the 301 

direction of the latest observed outcome: seeing a green ring slightly increases the observer’s 302 

estimate of the proportion of green rings in the box and seeing a red one decreases it. The higher 303 

the value of the learning rate, λ, the larger the trial-by-trial adjustments. In environments with 304 

frequent, abrupt changes in the generative process, it is beneficial to have a high learning rate 305 

because that will allow the model to catch up quickly to those changes. By contrast, in stable 306 

or very slowly changing environments it is better to have a slow learning rate, to avoid the 307 

estimates being overly sensitive to occasional unexpected outcomes. The environments used in 308 

previous studies on non-stationary probability tracking (Gallistel et al., 2014; Khaw et al., 2017; 309 

Nassar et al., 2010; Norton et al., 2019) are often a mixture of those two situations: long periods 310 

of stability with occasional, abrupt changes (Figure 1B). In such environments, it can be a 311 

disadvantage to have a single, fixed learning rate. Several modifications to the standard delta-312 

rule model have been proposed that might work better in mixed environments, for example the 313 

addition of a second kernel (Gallistel et al., 2014) and the use of a dynamic learning rate (Nassar 314 

et al., 2010). However, it has been shown in a similar task that the basic model typically 315 

performs as well as or even better than more complex alternatives (Norton et al., 2019). While 316 

we will consider two variants later (see Results), our main focus will be on the most basic, 317 

single-parameter version of the delta-rule, as specified by Equation (1).  318 

 319 

The cumulative prediction error as a predictor of changes in the generative process 320 

Gallistel et al. (2014) rightly point out that the delta-rule by itself cannot account for participant 321 

data related to explicit change point reports (phenomena 6-9 in Table 1). This is not surprising 322 

since the delta rule is a learning mechanism. To explain change point reports, it needs to be 323 

combined with a decision-making mechanism. One of the most established decision-making 324 

mechanisms to date is the drift-diffusion mechanism (Bogacz et al., 2006; Ditterich, 2006; 325 

Ratcliff, 1978), which finds broad support in behavioural, neurophysiological, and 326 

computational studies (Ratcliff, 1978; Ratcliff et al., 2016; Wagenmakers, 2009). Here, we will 327 

explore if it can also explain change point reports in probability estimation tasks.  328 
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A central quantity in delta-rule models is the trial-by-trial prediction error, that is, the 329 

difference between the predicted and observed outcome. When the generative process is stable 330 

and the observer’s estimate has homed in on a value close to the true value of the tracked 331 

variable, prediction errors tend to cancel each other out over trials (Figure 2, first 100 trials). 332 

After an abrupt change in the generative process (Figure 2, trial 100), however, there will 333 

typically be a burst of relatively large prediction errors with a sign that indicates the direction 334 

of the change. Hence, the cumulative prediction error is indicative of changes in the generative 335 

process: a value close to zero suggests a stable process; a large negative value suggests that 336 

there was a recent increase in the Bernoulli parameter; a large positive value suggests that there 337 

was a recent decrease in the Bernoulli parameter. Because of its diagnostic value, observers 338 

could use the cumulative prediction error to detect changes in the generative process when 339 

tasked to do so. This can be modelled by adding a standard drift-to-bound accumulator to the 340 

model and let it trigger an “I think the box has changed” response whenever the cumulative 341 

prediction error exceeds a decision bound (Figure 2). Fully in line with the philosophy of delta-342 

rule models, this cumulative error can be updated recursively and imposes negligible memory 343 

requirements. 344 

Importantly, drift-diffusion mechanisms can also explain “second thoughts”, which are 345 

known as “changes of mind” in the decision-making literature. This is done by introducing a 346 

temporary second bound at the moment that an initial decision has been made (e.g., Resulaj, 347 

Kiani, Wolpert, & Shadlen, 2009; Van den Berg et al., 2016). This bound will be crossed if the 348 

immediate post-decision information is sufficiently inconsistent with the original decision, 349 

triggering a change-of-mind response. A typical way to implement this bound is to use two 350 

parameters, specifying its height and lifetime. Because we have very little data on changes of 351 

mind (115 reports by 5 participants in a total of 50,000 trials), we take a simpler approach by 352 

setting the change-of-mind bound equal to the original bound but in the opposite direction of 353 

the detected change point, such that the lifetime of the bound is the only additional parameter 354 

required to model these rare responses. 355 

 356 

Response threshold 357 

Previous studies (Gallistel et al., 2014; Khaw et al., 2017; Robinson, 1964) have 358 

considered the possibility that participants do not adjust the slider when the difference to their 359 
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internal belief is too small. This could arise from participants economising their time costs1. 360 

Additionally, cognitive processes are noisy (Drugowitsch et al., 2016; Faisal et al., 2008) and 361 

participants’ levels of motivation and attention might fluctuate over time, why the discrepancy 362 

required for an update may vary. We will first model this as in Gallistel et al. (2014): as a 363 

threshold value for the required discrepancy drawn from a constrained Gaussian distribution. 364 

We will then test models where the threshold is drawn from a beta distribution. We parameterise 365 

both thresholds by their mean and variance.  366 

 367 

 368 

 369 

 370 

Response noise and lapse rate 371 

To account for inaccuracies in predicted slider settings – due to factors such as motor 372 

noise and model mismatch – we included response noise in all models. This noise was 373 

implemented as a beta distribution centred on the model’s predicted response, m, and was 374 

                                                 
1 For example, in the experiment by Gallistel et al. (2014), trials with an update took on average three times 

longer (4.22 ± 0.18 seconds) than trials without an update (1.39 ± 0.01 seconds). Responding on each trial would 

almost have tripled the median session time – from around 25 minutes to around 70 minutes. 

Figure 2 | A proposed mechanism to detect changes in a Bernoulli process based on

accumulation of prediction errors. Simulation of the cumulative prediction error in a delta-rule

model with a learning rate of 0.10. The true value of the Bernoulli parameter is 0.50 for the first 99

trials and then abruptly changes to 0.10. Before the change, the cumulative prediction error hovers

around 0, because positive and negative errors cancel each other out. At around trial 50 there is

almost a false alarm. Immediately after the change, the cumulative prediction error quickly

increases, because more positive estimation errors are experienced than negative ones. The

cumulative prediction error hits decision bound B1=3.0 at trial 109 which triggers an “I think the box

has changed” response, resets the cumulative prediction error to 0, and instates a temporary

change-of-mind bound (which is not being crossed in this example). The shape of the cumulative

prediction error looks different after the change, because after the model has learned the new

value of ptrue, the trial-by-trial prediction errors are 0.10 (on 90% of the trials) and −0.90 (on 10% of

the trials) while they were −0.50 and 0.50 (in 50% of the trials each) before the change.
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applied to trials on which a slider update was predicted. Since the variance of the beta 375 

distribution has an upper bound (equal to m – m2), we parameterised it as a relative value 376 

between 0 (no variance) and 1 (maximum variance). The (relative) variance was fitted as a free 377 

parameter. Moreover, we included a small lapse rate (1/1000) to account for lapses in attention 378 

and to avoid numerical instabilities in model variants without any other sources of stochasticity 379 

(such as the original IIAB model). 380 

 381 

RESULTS 382 

This section consists of two parts. First, following the approach by Gallistel et al. (2014), we 383 

perform simulations to re-assess the conclusion that a delta-rule model cannot reproduce the 384 

main qualitative phenomena observed in human data (Table 1). Next, we perform a likelihood-385 

based model comparison in which we quantitatively compare this model to the main contender, 386 

the IIAB model. Thereafter, we inspect the likelihood-based model fits in greater detail and test 387 

two alternative models from the literature. 388 

 389 

Reassessment of the conclusion that delta-rule model predictions are qualitatively 390 

inconsistent with data 391 

 The simulation results by Gallistel et al. (2014) suggested that delta-rule estimation 392 

models are unable to produce slider updates that are qualitatively similar to human behaviour. 393 

In particular, they were unable to find parameter settings that reproduced the distributions of 394 

step widths and step heights observed in human data (phenomena 1-3 in Table 1) and concluded 395 

that trial-by-trial models are, therefore, fundamentally unfit to account for human estimation of 396 

non-stationary probabilities. Here, we reconsider this finding by using an approach that differs 397 

from theirs in an important way: instead of manually trying out parameter settings, we 398 

systematically explore parameter space using an optimisation method. Specifically, we let the 399 

algorithm search for the setting that minimises the root mean squared deviation (RMSD) 400 

between the data and the model prediction for the summary statistic of interest (histograms of 401 

step width and height, cumulative number of updates, etc).  402 

 In this analysis, we use the exact same delta-rule model as tested by Gallistel et al. (2014), 403 

which has three parameters: the learning rate (λ), the mean of the (Gaussian) response threshold 404 

distribution (μτ), and the coefficient of variation of this distribution (cvτ); no response noise or 405 

lapse rate was included in the model at this stage. Just like Gallistel et al. (2014), we constrain 406 

cvτ to have a maximum value of 0.33. In contrast to their findings, we find that this model 407 

reproduces the step width and step height distributions very well (Figure 3). It also does an 408 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2020.01.30.927558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.927558
http://creativecommons.org/licenses/by/4.0/


 16 

excellent job in reproducing the other phenomena related to slider updates: the cumulative 409 

number of updates, the median response values, and the cumulative distribution of the latency 410 

between changes in the Bernoulli parameter and the next slider update.  411 

 412 

 413 

 414 

  415 

Figure 3 | Evaluation of qualitative predictions by the delta-rule model related to slider

settings. Results are shown for Participant 1 in each of the 4 analyzed datasets. The model

simulations results (red) were obtained by minimizing the root mean squared deviation (RMSD)

with the data (black). (A) Total number of slider updates (solid) and number of inconsistent slider

updates (dashed) as a function of trial number. (B) Distribution of the number of trials between

consecutive slider updates. (C) Distribution of the magnitude of slider updates on trials with an

update. (D) Median estimate of the tracked probability versus the median true value. (E)

Cumulative distribution of the number of trials between a change in ptrue and the next slider update.
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 Next, we extend the model with a drift diffusion mechanism on the prediction error and 416 

test if the resulting model can account for phenomena related to the conception of the generative 417 

function (phenomena 6-9 in Table 1). We find that the model accurately reproduces these 418 

phenomena too (Figure 4): the cumulative number of “I think the box has changed” responses; 419 

the cumulative number of “I take that back” responses; the cumulative distribution of the 420 

latency between a change in the generative function and the observer’s detection of the change; 421 

the hit rates, false discovery rates, and false alarm rates of box-change detections.  422 

 In conclusion, the predictions of a delta-rule model combined with a standard evidence 423 

accumulation mechanism are qualitatively consistent with human tracking and detection of 424 

changes in the parameter underlying a Bernoulli process. This means that the main argument 425 

that Gallistel et al. (2014) presented against trial-by-trial models does not hold and may stem 426 

from an inexhaustive exploration of parameter space. 427 

 428 

 429 

 430 

 431 

Figure 4 | Evaluation of qualitative predictions by the delta-rule model related to detection

of changes in the generative function (delta-rule model). The model simulations results (red)

were obtained by minimizing the root mean squared deviation (RMSD) with the data (black). (A)

Total number of “I think the box has changed” reports (solid) and “I take that back reports (dashed).

(B) Cumulative distribution of the number of trials between a change in ptrue and the next “I think

the box has changed” report. (C) Hit rates, false discovery rates, and false alarm rates on change

point detections.
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Likelihood-based model comparisons  432 

 The results so far show that just like the IIAB model, the delta-rule model is capable of 433 

explaining previously established facts about human performance on probability tracking tasks. 434 

But which of the two models explains them better? Although the above approach of inspecting 435 

summary statistics is useful for checking if a model’s predictions are qualitatively consistent 436 

with well-established facts, it cannot be used for quantitative model comparison. The main 437 

problem – as also noted by Gallistel et al. (2014) – is that there is no obvious way to weight 438 

misestimates in one summary statistic against misestimates in another, which makes it 439 

impossible to formulate a single measure to base judgements on.  440 

 To compare the models in a quantitative and more principled manner, we will next 441 

evaluate them based on likelihoods computed from raw data (see Supplemental Materials for 442 

details). This method has two major advantages over evaluating models based on their predicted 443 

summary statistics. First, it is a much more stringent evaluation because it takes all aspects of 444 

the data into account and describes them using a single set of parameters. Second, it allows one 445 

to evaluate model performance using a single, formal measure, such as the Akaike Information 446 

Criterion (Akaike, 1974) or cross-validated log likelihoods.  447 

 We fit the models to the raw data from four experiments (Table 4) reported in the three 448 

previous studies2. In each experiment, the number of trials per participant varied from 9,000 to 449 

10,000 and were divided over 9 or 10 sessions. In total, the data consists of 286,890 trials 450 

performed by 29 participants over 287 sessions. All data can be found at https://osf.io/zhv2r/. 451 

We limit these analyses to the slider update data, because “I think the box has changed” and “I 452 

take that back” responses were collected for only 10 and 5 of the participants, respectively. 453 

 We first compare the two models contrasted in Gallistel et al. (2014): a single-kernel 454 

delta-rule model with a variable response threshold and the IIAB model. We fit the models to 455 

all sessions jointly, that is, with a single set of parameters per participant. The delta-rule model 456 

accounts for the data overwhelmingly better than the IIAB model (Figure 5A): for each of the 457 

29 participants, the delta-rule model is favoured over the IIAB model by a difference of at least 458 

18020 log likelihood points (M±SE: 28654 ± 904)3. Hence, not only is the delta-rule model 459 

viable from a qualitative perspective, its quantitative account of the raw data is much better 460 

than that of the alternative model proposed by Gallistel et al. (2014). 461 

                                                 
2 There is one other study using the same paradigm (Robinson, 1964), but it has no preserved record of the data 

known to us. 
3 When fitting the models separately to each session, the average difference is 285±40 in favour of the delta 

model. Considering that log likelihoods scale linearly with the number of trials, this difference is comparable to 

that obtained by fitting the full datasets. 
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Table 4. Overview of Datasets Used to Evaluate the Models. 462 

Exp. 

ID 

Study Underlying 

function 

Number of 

participants 

Number of 

trials per 

participant 

Number 

of trials 

per 

session 

Total 

number 

of 

sessions 

E1 Gallistel et al. (2014) Stepwise 10 10,000 1,000 100 

E2 Ricci & Gallistel 

(2017) 

Continuous 

(aperiodic) 

5 10,000 1,000 50 

E3 Ricci & Gallistel 

(2017) 

Continuous 

(periodic) 

34 9,000 

 

1,000 27 

E4 Khaw et al. (2017) Stepwise 11 9,990 999 110 

 463 

  464 

 There are two major differences between the models that could explain the enormous 465 

difference in goodness of fit. First, they have different belief updating mechanisms: hypothesis 466 

testing in the IIAB model and trial-by-trial updating in the delta-rule model. Second, the delta-467 

rule model includes a threshold on the slider updates. Hence, it could be that the IIAB model 468 

performs poorly not because of its assumptions about how people update their internal beliefs, 469 

but rather due to lacking a response threshold. To examine the evidence for the belief updating 470 

mechanisms specifically, one must equalise the models in terms of the assumption about the 471 

response threshold. Therefore, we next fit a variant of the IIAB model with the exact same 472 

response threshold mechanism as in the delta-rule model. This version has a much better 473 

goodness of fit, but it is still outperformed by the delta-rule model for 25 out of 29 participants, 474 

with an average log likelihood difference of 271 ± 44 across all participants (Figure 5B). This 475 

dramatic change in the log likelihood difference suggests that a response threshold is of primary 476 

importance to quantitatively account for the data. 477 

 A response threshold can be implemented in many ways and which version is chosen can 478 

strongly affect the model fit (see Khaw et al., 2017). So far, we have followed Gallistel et al. 479 

(2014) by assuming a variable threshold in the shape of a Gaussian distribution with a constraint 480 

on the magnitude of the noise. We will now test an alternative version by making two changes. 481 

First, we remove the constraint on the amount of variance (cvτ ≤ 0.33) because its justification 482 

is unclear to us and it may have limited both models’ ability to account for participants’ 483 

                                                 
4 This experiment had 4 subjects, but we suspect that for one of them the responses were flipped between two 

sessions. We excluded this subject from our analyses.  
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response behaviours. Indeed, for all but one of the participants we find that the fitted coefficient 484 

of variation of the response threshold was at the maximum of 0.33. Second, we switch to a beta 485 

distribution because, unlike the Gaussian distribution, it produces responses that are properly 486 

bounded between 0 and 1. The goodness of fit increases substantially for both the IIAB and 487 

delta-rule model, by 650 ± 130 and 495 ± 121 log likelihood points, respectively. The delta-488 

rule model still outperforms the IIAB model for 27 out of 29 participants, with an average 489 

difference of 125 ± 20 (Figure 5C).  490 

  491 

 492 

Figure 5 | Model comparison results. Model performance is expressed as the log likelihood of

the delta-rule model (LLHdelta) relative to that of the IIAB model (LLHIIAB). Positive numbers indicate

a better fit for the delta-rule model. (A) A delta-rule model with a constrained Gaussian response

threshold versus the original IIAB model (without a response threshold). (B) A delta-rule model with

a constrained Gaussian response threshold versus an IIAB model with the same response

threshold. (C) A delta-rule model with a beta-distributed response threshold versus an IIAB model

with the same response threshold.
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Altogether, these results show that from a quantitative model comparison perspective the delta-493 

rule accounts better for the data than the IIAB model. We checked that this conclusion is robust 494 

to changes in the assumptions about the lapse rate and the response noise (see Supplemental 495 

Materials). Because the beta distribution provides a much better fit, we will employ it in the 496 

remaining analyses. 497 

 498 

Evaluation of qualitative phenomena under maximum-likelihood parameters 499 

 Likelihood-based model comparison is a powerful tool to evaluate models against each 500 

other in a quantitative and principled way. However, results of such relative comparisons are 501 

of little value if none of the models provides a decent account of the data. To verify that this is 502 

not the case, we next examine the models’ qualitative predictions under maximum-likelihood 503 

parameters. Using these parameter settings, the delta-rule model reproduces the qualitative 504 

phenomena related to slider settings almost as well as in the earlier RMSD-based fits (Figure 505 

6). Moreover, it also accounts well for the raw, trial-by-trial slider settings (Figure 7). The 506 

maximum-likelihood fits of the original IIAB model (i.e., without response threshold) are very 507 

poor (Figures S2 and S3 in Supplemental Materials). After adding a response threshold, the fits 508 

become visually of similar quality to those of the delta-rule model (Figures S4 and S5 in 509 

Supplemental Materials), which once again highlights that the assumption of a response 510 

threshold seems important to account for the data. 511 

 512 

Parameter estimates 513 

 Response threshold distributions in the delta-rule model. Inspection of the maximum-514 

likelihood estimates of the response thresholds suggests that there is large variation in the trial-515 

to-trial thresholds (Figure 8). As a result, the choice of whether or not to update the slider on 516 

any given trial is only partially determined by the discrepancy between the internal belief and 517 

the current slider value. Previous literature (Biele et al., 2009; Gonzalez & Dutt, 2011) has 518 

suggested a completely discrepancy-independent mechanism called “inertia” where the 519 

decision to update is determined by the flip of a weighted coin. We tested this mechanism by 520 

replacing the response threshold with a constant probability of updating on each trial, 521 

implemented as a free parameter. This mechanism makes the fits substantially worse for 27 of 522 

the 29 participants, with an average of 69 ± 14 log likelihood points over all participants. This 523 

suggests that the update decision at least in part depends on the discrepancy between the internal 524 

belief and the current slider value. 525 

 526 
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 527 

 528 

 Response noise in the delta-rule model. The median estimate of the (relative) variance of 529 

the beta response noise distribution is 0.058 (IQR: 0.041). To get an intuition of the magnitude 530 

of this noise, we performed a model simulation. Using each participants’ maximum-likelihood 531 

parameter estimates, we computed the RMSD between predicted slider updates before and after 532 

adding response noise, in a fictitious experiment in which the tracked probability was uniformly 533 

distributed between 0 and 1. We find that the RMSD equals 0.118 ± 0.007. This seems 534 
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Figure 6 | Delta-rule model behavior under maximum-likelihood parameter estimates. Data

(black) are shown for Participant 1 in each of the 4 analyzed datasets. The model predictions (red)

were obtained by simulating responses using the maximum-likelihood estimates of the parmater

values. (A) Total number of slider updates (solid) and number of inconsistent slider updates

(dashed) as a function of trial number. (B) Distribution of the number of trials between consecutive

slider updates. (C) Distribution of the magnitude of slider updates on trials with an update. (D)

Median estimate of the tracked probability versus the median true value. (E) Cumulative distribution

of the number of trials between a change in ptrue and the next slider update.
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reasonable, because it is in the same order of magnitude but smaller than the (model-free) 535 

RMSD between the tracked probability and the actual participant responses (0.189 ± 0.009). 536 

Hence, the model assigns approximately half of the slider error magnitude to response noise. 537 

 538 

   539 

 540 

Figure 7 | Examples of trial-by-trial slider settings of delta-rule model under maximum-

likelihood parameter estimates. For visualisation purposes, only the central 2,000 trials are

shown for each dataset.
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 Decision threshold in the IIAB model. The decision threshold parameter in the IIAB 541 

model – which controls when the model considers the current belief to be “broke” and in need 542 

of an update – is estimated to be close to 0 for every participant (M=0.032, SE=0.018). This 543 

means that the IIAB model captures the data best when setting its parameters in such a way that 544 

it essentially becomes a trial-by-trial estimation model and accounts for stepwise behaviour 545 

through the response threshold.  546 

   547 

 548 

 549 

 550 

 551 

Two-kernel delta-rule model 552 

Under conditions where there are large and infrequent changes, as in much of the 553 

experiment data considered in this study, the standard version of the delta-rule faces a problem. 554 

If a lot of weight is put on the most recent history (by having a high learning rate), the model 555 

will quickly catch on to changes but exhibit excessive volatility during the long periods where 556 

the true probability is unchanged. If, on the other hand, recency is given only a little weight, 557 

the model will avoid excessive volatility but be slow to catch on to sudden changes. As a 558 

potential solution, Gallistel et al. (2014) considered a two-kernel variant that keeps track of two 559 

running averages with different learning rates. The model switches between these two running 560 

averages, allowing it to keep up with sudden changes while avoiding excessive volatility. 561 

Gallistel et al. (2014) rejected this model because it was allegedly unable to produce unimodal 562 

step height and step width distributions, which is not the case when we model it with a beta 563 

Figure 8 | Maximum-likelihood estimates of the variable response thresholds in the delta-rule

model (different colors indicate different participants). The threshold is visualised as the

cumulative probability distribution of making a slider update as a function of the size of the

discrepancy between the internally held belief about the tracked probability and the current

slider value. For most participants, the probability of performing a slider update increases with

this discrepancy.
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response threshold. We find that this version outperforms the regular delta-rule by 38.8 ± 6.1 564 

log-likelihood points (see Supplemental Materials for implementation details). Having the 565 

flexibility to weight evidence differently at different times thus seems important. 566 

 567 

An approximately Bayesian delta-rule model 568 

Nassar et al. (2010) suggested a delta-rule variant inspired by the same Bayesian change point 569 

detection model (Adams & MacKay, 2007) as the IIAB model. Their “approximately Bayesian 570 

delta-rule model” explicitly considers two hypotheses after each new observation: either there 571 

has been a change in the true, covert probability or there has not. Unlike the IIAB model, it 572 

performs no discrete hypothesis testing but instead balances the relative evidence of these two 573 

possibilities trial-by-trial. This balancing can be rewritten (see Nassar et al., 2010, and 574 

Supplemental Materials for details) as a delta-rule with an adaptive learning rate. 575 

We find that this model outperforms the IIAB model by 70 ± 25 log likelihood points, 576 

but performs worse than the regular delta-rule model by 55 ± 20 log-likelihood points. Nassar 577 

et al. (2010) also suggested a non-normative variant that allows underweighting of likelihoods 578 

by raising them to a power. When the power is equal to 0, this model reduces to the regular 579 

delta-rule model for all but the first few trials (and can thus not perform much worse than that 580 

model). This non-normative variant performs better than the regular delta-rule model, by 31 ± 581 

11 log-likelihood points, but often underweights likelihoods heavily (Figure S6 in 582 

Supplemental Materials). In sum, this version of an adaptive learning rate does seem to improve 583 

on the regular delta-rule model if it is allowed to deviate from normativity. 584 

 585 

Slider updating consistency 586 

Why do people regularly make a slider update that is inconsistent with their last 587 

observation, such as decreasing their estimate of the probability of red outcomes after observing 588 

a red outcome? In a basic delta-rule model, response updates are always consistent with the 589 

most recent observation: observing a red ring increases the estimate of the probability of 590 

observing a red ring and observing a ring of the other colour decreases it. In the IIAB model, 591 

the “second thoughts” mechanism might on rare occasions cause inconsistent updating (4.50 ± 592 

0.65% of all slider updates under the maximum likelihood parameter values). 593 

One potentially important source of inconsistent updating is the response threshold. For 594 

example, a momentarily high threshold might suppress a downwards adjustment of the slider 595 

but it will never suppress a downwards adjustment of the internal belief. If the threshold on the 596 

next trial happens to be lower, and the new observation increases the internal belief by less than 597 
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it was decreased on the previous trial, the reported estimate will be adjusted downwards – which 598 

would be inconsistent with the last observation. Indeed, the maximum-likelihood fits of the 599 

IIAB model and delta-rule model with a response threshold predict that 31.8±0.8% and 600 

22.1±0.9% of the slider updates, respectively, are inconsistent. Hence, the IIAB model slightly 601 

overestimates the empirical proportion of 23.6±1.6% (BF10 = 305; two-tailed paired-samples t-602 

test), while the predictions of the delta-rule model are consistent with the data (BF10 = 0.36).  603 

 604 

DISCUSSION 605 

Previous studies where participants track a non-stationary Bernoulli distribution (Gallistel 606 

et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 2017; Robinson, 1964) have consistently 607 

observed stepwise, “staircase-like” response patterns. It has been claimed that this pattern and 608 

related phenomena are inconsistent with trial-by-trial learning models and are instead indicative 609 

of discrete, stepwise learning through hypothesis testing (Gallistel et al., 2014; Ricci & 610 

Gallistel, 2017). This claim constitutes a serious challenge to the neuropsychological literature 611 

which connects trial-by-trial learning of probabilities (Nassar et al., 2012, 2010; Norton et al., 612 

2019; Wilson et al., 2013, 2018), encoding of prediction errors in the anterior cingulate cortex 613 

(Behrens et al., 2007; Rushworth & Behrens, 2008; Silvetti et al., 2013) and the experience of 614 

surprise (Lavín et al., 2014; Preuschoff et al., 2011). 615 

In the present paper, we argue that the rejection of trial-by-trial learning in human 616 

probability estimation was premature because it was based on an incomplete investigation of 617 

the predictions made by delta-rule models: parameter space was explored manually and no 618 

model fitting was performed. To reassess the earlier drawn conclusions, we reanalysed data 619 

from three previous experiments (Gallistel et al., 2014; Khaw et al., 2017; Ricci & Gallistel, 620 

2017) using rigorous model fitting and model comparison methods. Our findings demonstrate 621 

that a dual process of two broadly supported computational theories – the delta-rule for online 622 

learning of a latent variable and the drift-diffusion model for making categorical decisions – 623 

makes predictions that are qualitatively highly consistent with the observed phenomena. We 624 

thereby account for them by reference to the assumptions of two of the most well-established 625 

theories of learning and evidence accumulation rather than by introducing new assumptions 626 

that are specifically tailored to account for said phenomena. Moreover, quantitative model 627 

comparison showed that the delta-rule model actually accounts better for the data than the 628 

proposed IIAB model in which learning proceeds through hypothesis testing. These conclusions 629 

hold across all tested data sets and are robust to changes in the modelling assumptions about 630 

the shape of the response threshold distribution, the assumed lapse rate, and the presence of 631 
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response noise. In the (paraphrased) words of Mark Twain (White, 1897), we conclude that the 632 

report of the death of trial-by-trial estimation models was an exaggeration. We will immediately 633 

add, however, that we do not take this to imply the death of hypothesis testing models. 634 

Ultimately, we would expect – as is true in most areas of cognitive science – the mind to be 635 

able to draw on several different cognitive processes to estimate a property so fundamental to 636 

adaptation as probability. Our central claim here is that two of those might be delta-rule learning 637 

and drift diffusion decision making. 638 

 639 

Theoretical importance and implications of a variable response threshold 640 

Adding a variable response threshold greatly improves model fits. One reason is that 641 

participants make inconsistent updates which are incompatible with the original models, why 642 

their likelihoods are punished each time an inconsistent update occurs. The variable threshold 643 

allows the models to account for this. The response threshold thus does not merely “soak up 644 

noise” but is required by both the IIAB and delta-rule model to explain inconsistent updating 645 

and other empirical phenomena (Table 1). We therefore emphasise that a variable response 646 

threshold does not represent a “nuisance term”, akin to adding an error term to a regression, but 647 

constitutes a theoretical proposition which is tentatively supported by our results. 648 

Evaluation of the fitted response thresholds revealed that many distributions were so 649 

broad that the choice of whether or not to update on any given trial becomes partly stimulus-650 

independent. Completely stimulus-independent thresholds have elsewhere (Biele et al., 2009; 651 

Gonzalez & Dutt, 2011) been termed “inertia”. For two of the 29 participants, a coin-flip 652 

mechanism did indeed provide a better quantitative fit than the response threshold mechanism. 653 

However, for the vast majority of participants it did not, which suggests that updating is at least 654 

in part driven by stimulus-dependent factors (as also concluded by Khaw et al., 2017). For other 655 

participants, we obtained threshold distributions such that the probability of updating the 656 

response increased with the discrepancy between the current response and the internal estimate. 657 

Updates were disproportionately unlikely under very small discrepancies and 658 

disproportionately likely under very large discrepancies. We interpret this as a resistance to 659 

updating, as opposed to a suppressive threshold – the term we have hitherto used. Participants 660 

are reluctant to update (perhaps due to the motor cost) but balance this against their wish to 661 

respond correctly. They care about not being very wrong, but not so much about being exactly 662 

right. In economics, the idea that learning can be influenced by a trade-off between the costs of 663 

updating and the gains from a more accurate belief has been formalised in the “rational 664 

inattention” literature (Sims, 2003). The stepwise response pattern in the present Bernoulli 665 
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distribution task has been taken to support this idea (Khaw et al., 2017). The reluctance 666 

interpretation of our threshold distributions stated above is different to rational inattention in 667 

that it supposes that the overt response, and not the covert belief, is affected by the trade-off. 668 

Our modelling here does not answer which version is correct and we do not hold our findings 669 

against rational inattention as a framework. We merely raise this point to caution against too 670 

high “blanket” confidence in belief level interpretations, which might be appropriate for some 671 

tasks but not for others. 672 

Inertia and resistance (or rational inattention) are, seemingly, two distinct theoretical 673 

propositions as to how the mind times response updates. It may be that there is true 674 

heterogeneity in what mechanisms are used or that there exists a single mechanism which can 675 

express itself in two (ostensibly) different ways. Regardless of how internal estimates are 676 

updated, the process which mediates their expression as overt behaviour is scientifically 677 

interesting in itself and deserves further attention. 678 

 679 

Observation weighting is intrinsic to the theories 680 

We equalised the delta-rule model and the IIAB model on the assumption of a variable 681 

response threshold to show that this, although important, is not what drives the conclusions. 682 

Another difference is that the delta-rule model effectively performs unequal weighting of all 683 

observations while the IIAB model performs equal weighting of a substring of observations 684 

(those that occurred since the last or second to last change point). The weighting schemes are 685 

defining features of the theories the models embody. The IIAB model implements the theory 686 

that “the perception of Bernoulli probability is a by-product of the real-time construction of a 687 

compact encoding of the evolving sequence by means of change points” (Gallistel et al., 2014). 688 

Under unequal weighting of observations, the model contradicts this theory – the percept is no 689 

longer deduced from the change points. Associative theories instead suppose that the percept is 690 

no by-product but learned in itself by gradual adaptation. The delta-rule model has no 691 

conception of change points and can therefore not use them to define the relevant observations. 692 

The way that observations are weighted thus cannot be held constant across models; instead, it 693 

is an integral and defining feature of the mechanisms that we have sought to contrast. 694 

 695 

Alternative models 696 

We also found that a delta-rule which simultaneously estimates two kernels 697 

(Supplemental Materials) performs better than the regular, one-kernel delta-rule. Taken 698 

literally, this model continuously entertains two beliefs and selects one to report on each trial. 699 
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However, studies have indicated that learning rates in similar tasks are not fixed but adapted as 700 

a function of the prediction error modulated by the estimated volatility (Behrens et al., 2007; 701 

McGuire et al., 2014) or possibly other aspects of the choice environment (Lee et al., 2020). 702 

With this in mind, one could view the two-kernel model as an analogue for a single kernel 703 

model with an adaptive learning rate. We are therefore reluctant to interpret our results as 704 

evidence that people actually simultaneously hold dual beliefs about a single probability. Future 705 

studies might want to pool a larger number of datasets (from non-Bernoulli distribution tasks 706 

too) and compare various adaptive learning rate models to multi-kernel models. A multi-kernel 707 

interpretation also suggests that people should be able to report several earnest estimates at any 708 

one point, which should be possible to observe in an experiment. 709 

Despite the supposed importance of an adaptive learning rate, an approximately Bayesian 710 

delta-rule model from the neuropsychological literature (Nassar et al., 2010) performs better 711 

than the hypothesis testing model but worse than the regular delta-rule. Allowing it to 712 

underweight likelihoods helps, in line with a previous observation (Nassar et al., 2010). 713 

However, with this change the model’s original theoretical claim (that people are approximate 714 

Bayesians who balance two hypotheses trial-by-trial) becomes less distinct from the more 715 

general notion of the learning rate being inconstant. Our tentative interpretation is that the 716 

common problem of the (normative) Bayesian delta-rule and the IIAB is not that they adapt 717 

observation weights (which is supported by other evidence, see Behrens et al., 2007; Krugel et 718 

al., 2009) but could be that they do this by considering a limited number of discrete hypotheses. 719 

Costello and Watts (2014, 2016, 2018) have suggested that a range of results from various 720 

probability judgement and decision tasks, including the present paradigm, could arise from 721 

normatively correct judgements being perturbed by constant memory noise. They simulated a 722 

hypothesis testing model (Costello & Watts, 2018) with the same two stages/three hypotheses 723 

structure as the IIAB. They argue that, if there is constant memory noise, updates from re-724 

estimation will be biased towards 0.5 and updates from acceptance of a new hypothesis will be 725 

biased towards the extremes. These effects should cancel out, making the estimates accurate on 726 

average (phenomenon 4, Table 1). If estimates are actually made trial-by-trial, and hypothesis 727 

testing is a separate drift-diffusion process, Costello and Watts’s (2018) framework predicts a 728 

constant bias towards 0.5, which seems inconsistent with the available data. 729 

 730 

Unexplained phenomena 731 

Phenomena 10 and 11 (Table 1) cannot be explained by neither the IIAB nor the delta-rule 732 

model as implemented here. However, both models could in principle be extended to do so. 733 
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Gallistel et al. (2014) noted that participants’ frequency of change point reports on 734 

average decreased per session (phenomenon 10). They concluded that the IIAB cannot explain 735 

this under the regular priors used to explain the other qualitative phenomena, and that they had 736 

to substitute special priors tailored to this summary statistic. It is, however, easy to imagine a 737 

process where the threshold in the troubleshooting stage, T2, is not fixed but adapted over time. 738 

This would result in a changing change point detection frequency. Analogously, the drift-739 

diffusion literature explains this kind of effect as decision bound separation being adapted 740 

through learning (Liu & Watanabe, 2012; Zhang & Rowe, 2014). 741 

In Ricci and Gallistel (2017), some participants were able to correctly report having 742 

drawn from a sinusoidal during the debriefing (phenomenon 11). A central theoretical 743 

proposition of the IIAB (see pp. 106, Gallistel et al., 2014) is that people do not perceive 744 

probabilities per se but “deduce” them from a (sparse) memory of change points. To generate 745 

a declarative belief of a continuous functional form from a discrete set of memories, it would 746 

require some function learning mechanism (e.g., Brehmer, 1974) which interpolates between 747 

the “datapoints”. For the delta-rule model, we need the mechanism to be recursive. There exist 748 

several such function learning models, some of which are specifically adapted to non-stationary 749 

environments (Speekenbrink & Shanks, 2010) and some of which use a version of delta-rule 750 

learning (DeLosh et al., 1997). The perhaps most famous of the latter is the EXAM model 751 

(Mcdaniel & Busemeyer, 2005). 752 

In sum, we do not view phenomena 10 and 11 as evidence against either model but 753 

rather as avenues of future research. Investigating phenomenon 10 involves opening a black 754 

box by trying to establish a structured explanation of aspects which we here model as free 755 

parameters. Investigating phenomenon 11 would involve attaching a third process of function 756 

learning to what we suggest could be a dual process of delta-rule online learning and drift 757 

diffusion decision making (in line with the “Linnaean” approach to cognition; Millroth et al., 758 

2021). 759 

 760 

Limitations of modelling 761 

The trial-by-trial learning models tested here are recursive: they update a compact 762 

knowledge state and do not require any sequence memory. However, any recursive function 763 

can be reformulated as an iterative function (Church, 1936b, 1936a; Turing, 1937) which 764 

repeatedly generates a new knowledge state from a sequence memory. Hence, to what extent 765 

people retain the sequences they have observed is ultimately not a question that can be answered 766 

by model comparison alone. We have demonstrated that a recursive, compact knowledge state 767 
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model is possible, which it previously was thought not to be, but future studies should perform 768 

falsification tests (Popper, 1968) through experimental manipulation. 769 

 770 

Concluding remarks 771 

We have demonstrated that it was premature for the previous literature to rule out trial-by-772 

trial learning models of probability perception. In the spirit of cumulative science (Walter 773 

Mischel, 2009), the raw data and observed phenomena can be better explained by a dual process 774 

of delta-rule online learning and drift-diffusion evidence accumulation. That being said, this 775 

previous research has highlighted that a complete theory of probability perception must account 776 

for hypotheses about the generative process and how these affect our online estimates. Outside 777 

the laboratory, probabilities are learnt from experiences in their context. It seems likely that 778 

external, higher-level beliefs about this context – about volatility, sequentiality and trends in 779 

the generative process – can influence our online beliefs.  780 
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