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Abstract

Motivation: Unsupervised learning approaches are frequently employed to identify patient subgroups and

biomarkers such as disease-associated genes. Thus, clustering and biclustering are powerful techniques

often used with expression data, but are usually not suitable to unravel molecular mechanisms along

with patient subgroups. To alleviate this, we developed the network-constrained biclustering approach

BiCoN (Biclustering Constrained by Networks) which (i) restricts biclusters to functionally related genes

connected in molecular interaction networks and (ii) maximizes the difference in gene expression between

two subgroups of patients.

Results: Our analyses of non-small cell lung and breast cancer gene expression data demonstrate that

BiCoN clusters patients in agreement with known cancer subtypes while discovering gene subnetworks

pointing to functional differences between these subtypes. Furthermore, we show that BiCoN is robust to

noise and batch effects and can distinguish between high and low load of tumor-infiltrating leukocytes while

identifying subnetworks related to immune cell function. In summary, BiCoN is a powerful new systems

medicine tool to stratify patients while elucidating the responsible disease mechanism.

Availability: PyPI package: https://pypi.org/project/bicon

Web interface: https://exbio.wzw.tum.de/bicon

Contact: olga.lazareva@tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomarkers are essential for stratifying patients for diagnosis, prognosis,

or treatment selection. Currently, individual or composite molecular

biomarkers based on, e.g., expression, methylation, mutation status, or

copy number variation are used. Biomarker discovery has greatly benefited

from supervised methods that identify molecular features that have a

strong association with disease-relevant variables such as drug response,

†Joint last authorship

relapse, survival time, or disease subtype. Supervised methods are strongly

biased by our current understanding of diseases, in particular by disease

definitions that were established before rich molecular data became

available. While classical clustering methods have been successfully

applied in the past, e.g., to reveal gene signatures predicting breast cancer

subtypes (Parker et al., 2009; Nielsen et al., 2010), they group patients

based on the entire molecular profile, and overlook meaningful differences

limited to a subset of genes.

Biclustering aims to discover rows in a matrix which exhibit similar

behaviour across a subset of columns and vice versa (Hartigan, 1972). It

is suited for identifying disease-associated genes from gene expression
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data while stratifying patients at the same time (Prelic, 2006). As an NP-

hard problem (Tanay et al., 2002), biclustering is typically solved via

heuristics. In gene expression data, a bicluster defines a set of genes

and a set of patients for which these genes are co-expressed (Cheng

and Church, 2000). Co-expressed genes are not necessarily functionally

connected, rendering the result of biclustering difficult to interpret.

Molecular interactions represented as a network module can lead to more

interpretable, functionally coherent feature sets.

Many diseases are caused by aberrations in molecular pathways

or modules of functionally related genes (Berg et al., 2002). This

suggests to focus on gene modules for delivering more interpretable

and robust mechanistic explanations of disease phenotypes. Network

enrichment methods leverage prior information of molecular interactions

for identifying gene modules as subnetworks (Batra et al., 2017). These

are robust features for classification and disease subtyping (Alcaraz et al.,

2017). Few methods exist that can utilize molecular interaction networks

for patient stratification. Hanisch et al., 2002 use hierarchical clustering

after aggregating a correlation-based distance function for the expression

data and a shortest path distance in a molecular interaction network.

Although this method did not cluster patients, it was the first attempt

to infer a mechanistic difference between conditions. Two integer linear

programming methods were suggested (Yu et al., 2017, Liu et al., 2014)

both of which rely on the GeneRank (Morrison et al., 2005) algorithm

to incorporate network information. GeneRank depends on a parameter

θ describing the influence of the network whose choice is not straight-

forward and was shown to have a notable impact on the results (Yu et al.,

2017).

None of the above methods actively encourage connected solutions

and are thus not suited for discovering disease modules with mechanistic

interpretation. To overcome this issue, we developed BiCoN, a

network-constrained biclustering approach which employs Ant Colony

Optimization (ACO) as a heuristic. We show that BiCoN delivers

meaningful results on real-world datasets which can be compared with

other state-of-the art methods. We have validated our results on breast

cancer (TCGA Pan-Cancer) and non-small cell lung carcinoma (NSCLC)

datasets (Rousseaux et al., 2013) and found that BiCoN is robust to batch

effects and delivers biologically interpretable mechanistic insights into

disease subtypes.

2 Approach

2.1 Problem statement

Consider a matrix of expression values Xn×m with n genes and m

patients as well as G = (V,E), a molecular interaction network of gene

set V . We further consider P as the set of patients (samples) and construct

a bipartite graph B with genes V and patients P as node types connected

by weighted edges (v, p). Edge weights reflect the expression strength

for a given patient and come directly from expression values Xn×m. We

construct a joint graph J by mapping G onto B via the shared genes in V .

Given a user-specified cluster number c, our goal is to partition P into c

clusters P1, . . . , Pc, and to find c connected subnetworks V1, . . . , Vc of

minimal size Lmin and of maximal size Lmax such that patient groups

(clusters) are characterised by maximally differential expression in the

extracted subnetworks:

f(X,V, P, c) =
c

∑

i=1

(peni

c
∑

j 6=i

(X̄[Vi, Pi]− X̄[Vi, Pj ])) (1)

Where X̄[Vi, Pj ] is the average expression of genes of module i for

patients in cluster j, peni is a penalty term of Vi which penalizes too

small or too large, disconnected solutions:

peni =































|LCCVi
|

Lmin
if |LCCVi

| ≤ Lmin

Lmax

|LCCVi
|

if |LCCVi
| ≥ Lmax

1 otherwise

(2)

Where |LCCvi | is the size of the largest connected component in a

subnetwork Vi.

2.2 BiCoN algorithm

BiCoN is a heuristic algorithm that aims to find differentially expressed

subnetworks that can mechanistically explain patient stratification. This

combinatorial problem can be addressed by various metaheuristic

frameworks such as e.g. Genetic Algorithm (Banzhaf et al., 1998) or

Swarm Intelligence (Eberhart and Kennedy, 1995). We have chosen

Ant Colony Optimization (ACO) (Stützle, 2009) as the main framework

that performs exploration of the search space because of a good prior

experiences with ACO on similar problems (Alcaraz et al., 2012).

ACO is a nature-inspired probabilistic technique for solving

computational problems which can be reduced to finding optimal paths

through graphs. We use ACO to identify a set of relevant genes for each

patient which we subsequently aggregate into a global solution (Figure

1). A full description of the algorithm can be found in the Supplementary

Material, section "Algorithm description" and the pseudo-code can be

found below (Algorithm 1). Briefly, ants travel the joint graph J in three

phases which are repeated until convergence:

1. An ant performs a random walk within nodes that are highly connected

to a patient-node and makes greedy choices according to the objective

function (Equation 1) by choosing genes which are most relevant

to a patient (red lines in Algorithm 1, Supplementary Material).

The probability of selecting a gene for a certain patient depends on

the combined information from gene expression values (which are

encoded in the heuristic information matrix) and the ant’s "memories"

on whether the choice of this gene has led to a good quality

solution in the previous rounds (pheromone matrix). This is a classic

implementation of an ACO (Stützle, 2009). More details can be found

in Supplementary Material, section "Algorithm description".

2. Afterwards, the selected genes are used for clustering patients and for

extracting sub-networks relevant to each patient cluster. A candidate

solution is evaluated by the objective function score.

3. The best solution is used for updating the pheromone and probability

matrices for the next iteration.
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Fig. 1: Algorithmic framework of BiCoN.

Algorithm 1: BiCoN

input : Xn×m - expression matrix , Gn×n - molecular

interaction network, a - pheromone importance, b -

heuristic information importance, cl - cost limit, Lmin-

minimum solution subnetwork size, Lmax- maximum

solution subnetwork size, ρ - evaporation coefficient, K -

number of ants, IterMax - maximum number of

iterations allowed, ε - convergence criteria

output: genes cluster U , patients cluster V

1 Initialization;

2 H← HeuristicMat(X);

3 C← CostCalc(H);

4 T← InitialPher();

5 p← ProbUpd(t,H ,a,b);

6 IterCount← 0;

7 scores← [];

8 while (sMax-sMean> ε) AND (IterCount <IterMax) do

9 foreach ant in K do

10 paths← [];

11 end

12 foreach patient in m do

13 N← SearchRad(H);

14 path← RandomWalk(C,cl,N,P);

15 paths.add(path);

16 end

17 patientsClusters← ClusterPatients(paths,X);

18 genesClusters← ClusterGenes(paths, patientsClusters);

19 genesClusters← NetReduce(genesClusters);

20 s← Score(genesClusters, patientsClusters,Lmin,Lmax);

21 scores.add(s);

22 sMax← Max(scores);

23 sMean← Mean(scores);

24 Update parameters with respect to the best solution found;

25 T← PherUpd(T,sMax,genesClusters,patientsClusters,ρ);

26 p← ProbUpd(T ,H ,a,b);

27 end

3 Methods

3.1 Data collection and processing

3.1.1 Gene expression data

TCGA breast cancer data was obtained through the UCSC Xena

browser (https://xenabrowser.net/). The NSCLC dataset (accession

number GSE30219, (Rousseaux et al., 2013) was obtained using GEO2R

(https://www.ncbi.nlm.nih.gov/geo/geo2r/). Both datasets were retrieved

together with the corresponding metadata which contained annotated

cancer subtypes.

For the NSCLC dataset, gene probes were mapped to Entrez gene IDs.

If multiple probes corresponded to a single gene, the median value was

used. We applied a log2 transformation to account for skewness of the

data. Data were z-score transformed to indicate the magnitude of changes

in gene expression in individual samples and conditions compared to the

background. In most gene expression datasets, a majority of genes is lowly

expressed and does not vary to a larger extend. To account for this and to

improve run-time, BiCoN filters out genes with a small variance preserving

only the n most variant genes (here n = 3000).

3.1.2 Molecular interaction network

We used experimentally validated protein-protein interactions (PPI) in

H. Sapiens from BioGRID (version 3.5.176). The network consisted of

449,842 experimentally validated physical interactions between 16,830

genes.

3.2 Simulation of Batch Effects

To demonstrate that BiCoN is robust to batch effects, we simulate data

using a linear mixed effect model. We consider two variables: cluster

and batch. The variable cluster indicates whether a gene is part of the

foreground (cluster = 1 or cluster = 2) or the background (cluster = 0),

i.e. it is not differentially expressed. The variable batch indicates the study

or batch of expression values calculated as follows:

gi = β0+β1×batch+β2×cluster+γ1×cluster+γ2×batch+εi

(3)

where fixed effects parameters β0 (equal to 1), β1 and β2 (β1 = β2

= 2) are shared by all genes. Errors εi are independent and identically

distributed (with zero mean). The random effects parameters γ1 and γ2

follow a bivariate normal distribution with zero mean, and variance 1 and

2 respectively, i.e. the technical variance is twice the biological variance.

3.3 Benchmarking

To show how BiCoN results compare to commonly used clustering and

biclustering algorithms, we performed the following assessment for each

of the methods listed in Table 1:

• To show how BiCoN can recover PAM50 annotated breast cancer

subtypes (using TCGA data as a source), we computed Jaccard index

(an intersection of two sets over the union) between the known subtypes

and the resulting patients clusters/biclusters.

• To show how BiCoN can handle batch effect in comparison to other

methods, we simulated data as described in section 3.2 and computed

the overlap between known classes of patients and the resulting

clusters/biclusters. To avoid favouring the assumption of genes

connectivity used by BiCoN, we also repeated the simulation such that

the signal-carrying foreground genes are randomly distributed over the

network.

As a metric for comparison we used Jaccard index as it allows

to measure relationship between resulting biclusters and the actual
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Fig. 2: Robustness analysis. a) Objective function score versus the percentage of noisy data. b) Matthews Correlation Coefficient (MCC) with respect to

the known classes versus the percentage of noisy data. c) Correlation of objective function scores and MCC.

classes even when the patients biclusters overlap and do not include

all patients.

For all algorithms in Table 1, we chose parameters that maximize

performance for each of the methods.

4 Results and Discussion

We evaluated BiCoN on simulated and real data with respect to the

robustness of patient clustering and gene selection as well as robustness

to batch effects. Furthermore, two application cases illustrate the practical

use of BiCoN.

4.1 Robustness analysis

4.1.1 Noise robustness

To introduce varying levels of noise to a data set, we randomly select

between 0 and 90% of the genes and randomly permute their expression

values. A noise level of 0.1 means that the expression vectors of 10% of

genes were permuted. For each noise level, we average results over 10

independent runs.

We use the NSCLC data set with two annotated subtypes as gold

standard: adenocarcinoma and squamous cell carcinoma. As evaluation

metrics, we consider the value of BiCoN objective function as well

as Matthews Correlation Coefficient (MCC) (Matthews, 1975) between

the proposed clusters and cancer subtype labels. The latter is meant to

demonstrate that BiCoN is able to recover cancer subtypes while inferring

a mechanistic explanation for the subtype differences. For this analysis,

we retain the 3000 most variant genes and set parameters Lmin = 10 and

Lmax = 25 to control the size of the solution.

Figure 2(a) shows a consistent decline in the objective function with

increasing noise, indicating that the algorithm is reacting reasonably to

the decline in data quality. Figure 2(b) shows that the algorithm is able to

recapture the cancer subtypes almost perfectly (average MCC higher than

0.9) up to a noise level of 0.3 where 30% of the data have been permuted.

Figure 2(c) shows a strong positive correlation between the objective

function value and MCC, which confirms that the objective function is

high when cancer subtypes are well separated.

4.1.2 Batch effect robustness

Batch effects are a common problem in data analysis (Goh et al., 2017)

and many methods have been proposed for removing batch effects from

data (Lazar et al., 2012). However, removing batch effects may also

remove biologically relevant group differences from the data. Batch effect

correction methods that are designed to retain group differences can lead

to exaggerated confidence in downstream analyses (Nygaard et al., 2016).

In unsupervised analysis, this issue is critical, since we, by definition, do

not know the relevant sample or patient groups a priori.

BiCoN is a graph-based method and, hence, it is not as strongly affected

by the global distribution of expression values as classical clustering

methods. Pre-processing methods that scale data to a certain range enforce

it to have certain mean and variance (e.g. z-scores) or make the distribution

more symmetrical (e.g. log2 transformation) are not ideal for batch effect

correction as they do not differentiate between signal and noise. In this

scenario, a graph-based method benefits from the assumption that the joint

signal of the genes in a subnetwork is stronger than that of individual genes.

To study if BiCoN can indeed tolerate batch effects, we simulate gene

expression data (see Methods for details) where we introduce a batch effect

with a larger variance than for the group difference. Our aim is to show

that BiCoN can leverage the network to recover the signal even if it is

overshadowed by batch effects.

We have simulated expression data for 2 × 20 foreground genes (two

biclusters) and for 1000 background genes. We also tested the performance

with 2 × 30, 2 × 40 and 2 × 60 foreground genes.

The network was simulated as three disjoint Barabasi-Albert graphs

(one for each of genes biclusters and one for background genes) (Barabási

and Albert, 1999) which were connected by random edges until they have

reached the same density as the BioGRID network (0.0013).

Figure 3(a) shows that the batches differ in their distribution, causing

hierarchical clustering to group samples by batch rather than by disease

phenotype. Figure 3(b) shows that differences due to batch effects are

eliminated after z-score normalization. We can also see that the difference

between the sample groups is now lost and can not be recovered by

hierarchical clustering. Figure 3(c) shows that in spite of this noise, BiCoN

can recover the disease phenotype together with the foreground genes.

Thus, when two datasets can be normalized separately (e.g. z-scores are

applied to each dataset), BiCoN is uniquely suited to cluster patients where

individual gene modules are disturbed. Even when the signal is obscured

by batch effects, the functional connection of solution genes in the network

(Figure 3 (d)) helps to robustly recover the signal.

To show how BiCoN results align with other clustering and biclustering

methods, we have simulated 10 datasets with batch effect and evaluated

the performance. To make sure that we do not put BiCoN in favour by

enforcing connectivity of genes, we also performed simulation with a

single Barabasi-Albert graph, where foreground genes were randomly

distributed (Figure 4).

Among the considered biclustering algorithms (Table 1), only Bimax

was capable of finding any clusters, while Plaid and QUBIC could not find

any structure in the given data regardless chosen parameters and therefore

were excluded from further assessment. The experiments showed that even

though the quality of the results drops when the foreground genes are not
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Table 1. Used algorithms

Algorithm Implementation Parameters Data processing applied

Bimax R package ’biclust’ minc:100, number:4 normalization, binarization

QUBIC R package ’biclust’ o:4 normalization, qualitative discretization

Plaid R package ’biclust’ row.release:0.5, col.release:0.9 normalization, binarization

Spectral Python library ’sklearn’ n_clusters:2, affinity: "nearest_neighbors" normalization

Hierachical Python library ’sklearn’ n_clusters:2 normalization

Nearest neighbors affinity was selected as it produced results with the highest Jaccard index for both instances
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Fig. 3: a) Two data sets with different distributions due to batch effects.b) The merged data sets after z-scores normalization. The batch effect vanishes,

but the disease phenotype is still not distinguishable. c) BiCoN is able to recover the initial disease phenotypes with Jaccard index of 0.92 (in average

after 10 runs) while extracting the 40 foreground genes out of 1000 background genes. d) The resulting subnetworks with all seeded solution genes are

colored with respect to their average expression in one cluster.

directly connected, BiCoN still performs significantly better than other

methods. This is due to the fact, that like a real PPI, the simulated network

had power-law node degree distribution which means that the network

diameter is rather small and therefore most of the nodes are still reachable

through hub-nodes even when they are not directly connected. Thus BiCoN

performance dropped when using random networks but still outperformed

other methods that are not network-restricted.

4.2 Application to TCGA breast cancer data

We applied BiCoN to the TCGA breast cancer dataset. We expected

BiCoN to be able to recover known subtypes assigned via the PAM50

gene panel (Parker et al., 2009; Nielsen et al., 2010). For the analysis,

we focused on patients with the most common molecular subtypes,

luminal (estrogen-receptor and/or progesterone-receptor positive) and

basal (hormone-receptor-negative and HER2 negative).
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Fig. 4: Jaccard indices between the patients clusters and actual subgroups (class 1 or class 2) as well as with batches of patients (batch 1 and batch 2) for

10 simulated datasets with a strong batch effect. a) When foreground genes are connected in a network, BiCoN clusters patients almost perfectly based

on the actual signal. b) When the foreground genes are randomly distributed in the network, BiCoN still achieves higher performance than other methods

As a proof of concept, we first showed that BiCoN can separate patients

into the two clinically well distinguishable subtypes luminal and basal.

Next, we applied BiCoN separately for patients with luminal and basal

subtype to investigate how patients are stratified in a more challenging

scenario. For each subgroup, we ran the algorithm 10 times and selected

a solution with the highest score based on the previous observation that

the highest objective function score corresponds to the highest correlation

between the resulting biclusters and the expected patient groups.

4.2.1 Luminal versus basal separation

As expected, the separation between patients with luminal and basal breast

cancer subtypes is straightforward. The clusters correspond to the subtype

labels. In Figure 5(a), the separation between patients groups matches the

PAM50 classification (average Jaccard index is equal to 0.995). BiCoN not

only performs as well as methods like hierarchical clustering (Figure 7)

(Jaccard index is equal to 0.96) but also yields two differentially expressed

subnetworks which explain subtype differences with a vastly lower number

of genes than a classical clustering method while offering a mechanistic

explanation of subtype differences.

The extracted subnetworks in Figure 5(b) show a strong difference in

expression. Note that while BiCoN restricts genes inside a bicluster to be

connected, it does not impose any relationships between two biclusters.

As a consequence, it is possible that the resulting subnetworks overlap.

In contrast to methods yielding gene signatures such as PAM50, BiCoN

focuses on revealing specific pathways. Enrichment analysis of cancer-

related pathways (Supplementary Material Figure S3) confirms strong

association of the resulting genes with breast cancer subtype-specific

signalling, in particular p53 signalling pathway (−log10 adjusted p-value

= 2.5).

Random-walks on scale-free networks are biased towards hub nodes

since these have a high degree (Gillis et al., 2014). BiCoN avoids this

hub bias as it performs random walks on the joint graph of a PPI and

expression data which is not scale-free. Consequently, the selected nodes

have approximately the same degree distribution as the input network

(Supplementary Materials Figure S1).

4.2.2 Luminal patient stratification

Next, we consider only patients that were originally classified as luminal

subtype to see if we can further stratify them into the known subtypes

luminal A and luminal B which are known to be difficult to separate

on the level of gene expression. Here, our solution does not agree with

the PAM50 classes (mean Jaccard index 0.53), although we observe two

clearly separable groups (Figure 6). To investigate possible differences

in cell type composition of the two clusters, we used the signature-

based deconvolution method xCell (Aran et al., 2017). xCell estimates

contributions of 64 immune and stromal cell types. In addition, it provides

aggregated scores such as an immune score, a stromal score and a

microenvironment score. xCell is based on harmonized data from 1,822

purified cell type transcriptomes from various sources and employs a curve

fitting approach for linear comparison of cell types. Clusters reported

by BiCoN show significant differences between cell types scores. The

strongest difference between patients is found in the Microenvironment

Score (−log10 p-value is over> 85), CD8+ T-cells (−log10 p-value >

79) and Immune Score (−log10 p-value>73). See Supplementary Figures

S4(a), S5(a) for details.

Next, we excluded immune response related genes from the analysis

(based on xCell classification) to see if they obscure the signal specific

to the two luminal subtypes. Indeed, we now observed Jaccard indices

of 0.65-0.7 as well as strong correlation with stem cells, stromal

cells, endothelial and keratinocytes according to cell type deconvolution

analysis with xCell (Supplementary Material Figures S6). The recovered

subnetworks are enriched with keratin genes including KRT5, KRT14,

KRT17 and KRT6C which have previously been associated with breast

cancer (Karantza, 2011).

4.2.3 Basal patients stratification

Bertucci et al., 2012 characterised basal, also known as triple negative,

breast cancer as the most challenging breast cancer subtype with poor

prognosis despite relatively high chemosensitivity. Currently, there is no

targeted therapy and no routine diagnostic procedure specifically for this

subtype. Although no clinically relevant subgroups of the basal subtype

are known, BiCoN achieved a clear separation into two subgroups (Figure

8).
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Fig. 5: a) Biclusters for patients with luminal and basal breast cancer

subtype. b) Resulting subnetwork: nodes are colored with respect to their

mean expression in one of the clusters and thus nodes colored orange have

very high average expression in the cluster and the blue nodes have very

low expression values.

Derived subnetworks show robust correlation with immune system

response functions which is reasonable given that tumour samples are

infiltrated with leukocytes. Out of nine enriched pathways (Figure S2(a)

Supplementary Material), five have a direct connection to the immune

response, and two are infectious diseases which can be developed due

to poor immune system condition. Molecular function enrichment also

confirms the relation between the selected genes and immune response

(Figure S2(b) Supplementary Material). Cell type deconvolution analysis

with xCell shows a high correlation of the clusters with aDC, CD4+

memory T-cells, B-cells, CD8+ T-cells and other immune response

related cells (Supplementary material Figures S4(b) and S5(b)). Similar

to the results in luminal patients, our results indicate that basal breast

cancer patients can be clustered by the contribution of tumor-infiltrating

leukocytes, which is a key factor for prognosis and treatment via

immunotherapy.

5 Conclusion and Outlook

Classical biclustering methods were shown to perform sub-optimally when

non-intersecting, large patient subgroups are of interest as is often the
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Fig. 6: a) Biclusters for patients with luminal A and luminal B breast

cancer subtypes. b) Resulting subnetwork: nodes are colored with respect

to their mean expressions in one of the clusters and thus nodes colored

orange have very high average expression in the cluster and the blue nodes

have very low expression values.

case in patient stratification. Clustering methods, on the other hand,

are more suited for this task, but they use the whole gene set and do

not provide a mechanistic explanation of patient stratification. Therefore

BiCoN is uniquely suited to cluster patients along with extracting

fixed-size subnetworks capable of mechanistically explaining the patient

stratification. Moreover, simultaneous clustering of gene expression and

networks makes BiCoN robust to noise and more robust to batch effect

than typical clustering and biclustering methods.

BiCoN leverages molecular interaction networks in the analysis of gene

expression data to faithfully produce known subtypes as well as novel,

clinically relevant patient subgroups, as we could demonstrate using data

from TCGA. We stress that BiCoN and the concept of network-constrained

biclustering are not limited to gene expression data or protein-protein

interaction networks. We plan to apply BiCoN to other types of omics data

such as DNA methylation, copy number variation or single nucleotide

polymorphisms. We envision BiCoN to be useful for single-cell RNA-

seq data for uncovering differences in signalling between clusters of cells

and for the discovery of novel cell types. BiCoN, which is available as a

web-interface and a PyPI package, has tremendous potential to enhance

our understanding of diseases, cellular heterogeneity and putative drug

targets.
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Fig. 7: TCGA breast cancer subtypes identification by various algorithms

(for 10 runs). Jaccard index was computed as a best match between

produced patients clusters and the known breast cancer subtypes for BiCoN

and other well-known clustering and biclustering algorithms. BiCoN

shows performance which is comparable with other clustering algorithms

while also reveals functionally connected subnetworks which explain the

phenotype.
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