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Abstract

Motivation: Single cell RNA sequencing (scRNA-seq) enables transcriptional profiling at the level of
individual cells. With the emergence of high-throughput platforms datasets comprising tens of thousands
or more cells have become routine, and the technology is having an impact across a wide range of
biomedical subject areas. However, scRNA-seq data are high-dimensional and affected by noise, so
that scalable and robust computational techniques are needed for meaningful analysis, visualization and
interpretation. Specifically, a range of matrix factorization techniques have been employed to aid scRNA-
seq data analysis. In this context we note that sources contributing to biological variability between cells
can be discrete (or multi-modal, for instance cell-types), or continuous (e.g. pathway activity). However,
no current matrix factorization approach is set up to jointly infer such mixed sources of variability.
Results: To address this shortcoming, we present a new probabilistic single-cell factor analysis model,
Non-negative Independent Factor Analysis (NIFA), that combines features of complementary approaches
like Independent Component Analysis (ICA), Principal Component Analysis (PCA), and Non-negative
Matrix Factorization (NMF). NIFA simultaneously models uni- and multi-modal latent factors and can
so isolate discrete cell-type identity and continuous pathway-level variations into separate components.
Similar to NMF, NIFA constrains factor loadings to be non-negative in order to increase biological
interpretability. We apply our approach to a range of data sets where cell-type identity is known, and
we show that NIFA-derived factors outperform results from ICA, PCA and NMF in terms of cell-type
identification and biological interpretability. Studying an immunotherapy dataset in detail, we show that
NIFA identifies biomedically meaningful sources of variation, derive an improved expression signature for
regulatory T-cells, and identify a novel myeloid cell subtype associated with treatment response. Overall,
NIFA is a general approach advancing scRNA-seq analysis capabilities and it allows researchers to better
take advantage of their data. NIFA is available at https://github.com/wgmao/NIFA.
Contact: mchikina@pitt.edu

1 Introduction
Single-cell RNA sequencing (scRNA-seq) techniques have allowed
researchers to query the complexity of transcription regulation at an

unprecedented level of detail. scRNA-seq technologies have the power
to reveal both distinct cell types and transcriptional heterogeneity within
a defined cell population. However, as individual transcript measurements
are noisy and often difficult to interpret in isolation, scRNA-seq analysis
methods rely heavily on multivariate techniques.
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2 Mao et al.

Fig. 1. Illustration of the NIFA. Left: We assume there are three hypothetical cell clusters
and there are two latent components which point to arbitrary directions. Middle+Right: By
imposing multi-modal prior, we force the latent factors to rotate and align with the directions
that can best separate the cell-type identity.

As the the number and size of single-cell datasets increases, it becomes
important to develop methods that can quickly summarize the biological
information embedded in a scRNA-seq dataset as a set of interpretable
variables that can be used for downstream analysis. One kind of summary
measure is the identity and number of cell types present in a datasets. In
recent years there has been a proliferation of clustering methods designed
to address this problem (Kiselev et al., 2017; Butler et al., 2018). Clustering
approaches assume that the data is well described by a discrete set of cell
types, but in many cases, questions about continuous biological variation,
such as developmental trajectories or levels of pathway activation are also
of interest.

Such continuous variables do not conform to the assumptions of
clustering algorithms but can be effectively modeled as latent factors. For
example, cell-cycle variation has been repeatedly discovered in single-
cell data, both using sophisticated latent variable models (Buettner et al.,
2015) and simple Principle Component Analysis (PCA) (Kowalczyk et al.,
2015).

Of course, cell-type identity can also be thought of as a latent factor
and this observation underlies the popularity of Independent Component
Analysis (ICA) in single-cell pipelines. Unlike PCA which seeks directions
that maximize variance, ICA finds maximally independent or maximally
non-Gaussian directions (Hyvärinen and Oja, 2000).This property is well
suited for the analysis of single-cell datasets as directions that maximally
separate cell types are multi-modal and thus highly non-Gaussian. For this
reason ICA is used as dimensionality reduction pre-processing step (Butler
et al., 2018). However, the ICA formulation is not a proper likelihood
framework as it has no reconstruction error. A side effect of this is that
it requires a loading orthogonalization step to prevent latent variables
from collapsing. This rigid formulation restricts the interpretability of
individual components a criticism is also valid for PCA/SVD. For the case
of PCA/SVD, there are a number of alternative factor analysis methods
that produce more interpretable components by relaxing orthogonality and
introducing additional constraints, for example, NMF (Lee and Seung,
1999) and SPC (Witten et al., 2009). It is natural to ask if analogous
approaches can be applied to find interpretable multi-modal factors.

We propose Non-negative Independent Factor Analysis (NIFA) that
combines properties of ICA, PCA and NMF. As illustrated in Fig.
1, our approach simultaneously models uni- and multi-modal factors
thus isolating discrete cell-type identity and continuous pathway-level
variations into separate components. Furthermore, our model constrains
the factor loading to be non-negative providing greater biological
interpretability.

2 Methods overview

2.1 The statistical model

X represents a scRNA-seq matrix with dimension P -by-N , where P is
the number of genes and N is the number of cells. Given X , we want

Fig. 2. A schematic representation of the NIFA model. The gene × cells matrix X is
decomposed as a non-negative loading matrix A and a factor matrix S. We impose multi-
modal priors on the rows of S, but the exact number of modes is automatically determined
and thus can be one.
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Fig. 3. Parameters of the NIFA model are summarized in a directed acyclic graph.

to infer A which denotes loading matrix with dimension P -by-K and S
which stands for sources or latent variables with dimension K-by-N . We
denote the nth column ofX asXn = (X1n, X2n, . . . , XPn)T , the jth
row of A as ATj = (Aj1, Aj2, . . . , AjK) and the nth column of S as
Sn = (S1n, S2n, . . . , SKn)T (see Fig. 2). We assume the noise model
to be Gaussian with a single precision parameter β.

Xn|A,Sn, β ∼ N(0,Σ),Σ−1 = diag(β)P×P (1)

2.2 The prior distribution

Each latent variable is associated with M component distributions which
we assume follows a Gaussian distribution with µim as the mean and σim
as the inverse of the variance. εimn is a set of binary latent variables, and∑M
m=1 εimn = 1. IfSin is generated from component j, then εimn = 1

if m = j and εimn = 0 if m 6= j.

P (Sn|ε, µ, σ) =
K∏
i=1

M∏
m=1

N(Sin|µim, σim)εimn (2)

The loading matrixA is modelled with a truncated normal prior where
a = 0 and b = ∞ indicating each entry Aji falls within the interval
[0,∞). η and λ denotes the mean and the inverse of the variance. Φ(·) is
the cumulative distribution function of the standard normal distribution.

P (Aji|ηji, λi)

=(2π)−
1
2 (λi)

1
2 exp(−

1

2
λi(Aji − ηji)2) ·

1(Aji ≥ 0)

1− Φ(−ηjiλ
1
2
i )

(3)

The dependency structure of the IFA model is summarized in Fig. 3. We
assume the noise parameter β comes with a Gamma prior with parameter
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aβ and bβ . The membership indicator εimn comes with a Bernoulli prior
with mixing proportion πim. The µim is assumed to follow a Gaussian
distribution with parameters ρim and φim and the inverse of the variance
σ comes with a Gamma distribution with parameters aσim and bσim .

2.3 Parameter Inference

The joint likelihood P (X,A, S, ε, µ, σ, β) is as follows (Eq. 4).

P (X,A, S, ε, µ, σ, β) =

N∏
n=1

P (Xn|A,Sn, β)P (Sn|ε, µ, σ)

P∏
j=1

K∏
i=1

P (Aji|ηji, λi)
∏
i,m,n

P (εimn)
∏
i,m

P (µim)P (σim)P (β)

(4)

In order to efficiently infer the parameters, we apply variational
inference technique, more specifically, mean-field approximation
(Blei et al., 2017). By assuming each variational parameter is
independent of each other, we formulate the joint posterior distribution
Q(S,A, ε, µ, σ, β) (see Eq. 5) for the model and minimize the KL-
divergence between Eq.4 and Eq.5 to derive the expression q(·) for each
variational parameter as an approximation of single posterior distribution.

Q(S,A, ε, µ, σ, β) =

N∏
n=1

q(Sn) ·
∏
j,i

q(Aji) ·
∏
i,m,n

q(εimn)

·
∏
i,m

q(µim)q(σim) · q(β)

(5)

The derivations of variational updates for our model are detailed in the
Supplement.

2.4 Hyper-parameters

Our model has a number of hyper-parameters, however, most of them
are Bayesian priors and have relatively little impact on the results. One
of the main hyper-parameters of considerable relevance is the number of
latent factors K. For the independent factor analysis model, the typical
approach is to calculate the likelihood or ELBO (variation lower bound),
comparing values directly or with BIC criterion (Krumsiek et al., 2012)
and selecting K corresponding to the optimal values. Since scRNA-seq
data often has thousands of cells the computation for likelihood-based or
ELBO-based tuning method is time-intensive and impractical. Instead we
can rely on variance-based method SVD with BIC criterion (Allen et al.,
2014) to figure out a conservative estimate of the number of latent factors.
Importantly we use this only as a reference value, we perform all our
evaluations across a range of K parameters.

We have one more discrete hyper-parameter which is the number of
Gaussian mixtures M for each latent factor. However, this parameter
needs to be just the maximum number of components one can expect to
find. Since our model fits the Gaussian mixtures by variational inference,
it has the desirable property that the number of mixture components is
determined automatically as some of the mixing coefficients go to 0. In
experiment we set this hyper-parameter to be be 4 and find that for non-
developmental datasets, where we expect to find discrete cell types, the
final number of modes is usually either one or two. This conforms to the
biological intuition that cell types differ from each other by a set of (not
necessarily unique) "marker" genes. Such marker genes typically have
a bimodal distribution corresponding to high and low expression. While
the distributions may overlap due to technical noise we typically do not
observe intermediate expression modes.
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Fig. 4. Evaluation on a simulated dataset. Boxplot of the correlation between simulated S
and those recovered by SVD, ICA (parallel), ICA (deflation), NMF and NIFA. We find that
the best performance is achieved by NIFA compared with all the other common methods.

3 Results

3.1 Simulation Studies

We simulate data with P = 2000, N = 500, K = 6 (number of factors)
andM = 2 (number of mixtures associated with each factor). We simulate
the latent factor independently but the columns of the loading matrix A
are correlated. Simulation details are described in section 5.3. For the
decomposition, we set K = 8 (all methods) and M = 3 to see if NIFA
can robustly recover the right latent factors given larger K and M , which
is often the case in practice. As shown in Fig. 4, none of the methods
can recover all latent factors since the loadings are highly correlated.
But NIFA is able to accurately recover most of latent factors compared
with alternative decomposition methods. NIFA also correctly recovers the
number of mixture components as one of the mixing coefficients goes to
0 (not shown).

3.2 Datasets included

We test NIFA on several gold or silver standard scRNA-seq dataset
(Gong et al., 2018). The gold-standard dataset contains relatively
homogeneous cell lines or the experimental conditions are well
controlled. The silver-standard dataset defines cell types based
on expert knowledge. The data is mostly downloaded through
(https://github.com/hemberg-lab/scRNA.seq.datasets) or corresponding
GEO repository. We also include simulated datasets generated by Splatter
(Zappia et al., 2017) using Kumar (Kumar et al., 2014) and Zheng (Zheng
et al., 2017) as simulation input. The complete sets of datasets are described
in Table 1.

3.3 Evaluation

There is a number of ways to evaluate factor analysis models. One natural
evaluation is the reconstruction error (see Levitin et al. (2019) for example).
However, for any decomposition there are infinitely many alternatives with
exactly the same reconstruction error, yet these may differ greatly with
respect to the individual factors and loadings. Instead of reconstruction
error we focus on evaluating the biological utility in several different ways.

3.3.1 Cell-type identification
One of the desirable properties of an interpretable factor analysis is that
there is one-to-one correspondence between the factors and a known data
generating variable. In the case of scRNA-seq data the gold or silver
standard of cell-type identity is one such variable. In the ideal case each
cell-type corresponds to a unique factor in the model. In order to evaluate
this property we compute maximum one-to-one correlations between
factors and cell-type assignments (Fig. 5). We find that on average our
NIFA model performs better than NMF and ICA at this cell-type detection
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Abbreviation Protocol Evidence Type Tissue Cells Cell Types
Camp (Camp et al., 2017) SMARTer Homogeneous cell line Gold Human: Liver 777 7
ImmunoTherapy (Sade-Feldman et al., 2018) Smart-Seq2 k-means clustering Silver Human: Metastatic melanoma 16,291 11
Klein (Klein et al., 2015) inDrop Principal genes identified by PCA Silver Mouse: Embryonic Stem Cells 2,717 4
Kolodziejczyk (Kolodziejczyk et al., 2015) SMARTer Homogeneous cell line Gold Mouse: Embryonic Stem Cells 704 3
Li (Li et al., 2017) SMARTer Homogeneous cell line Gold Human: Colorectal Tumors 561 9
Liu (Liu et al., 2019) 10x drop-seq k-means clustering & specific markers Silver Mouse: Tumor immune cells 1,607 13
Nestorowa (Nestorowa et al., 2016) Smart-Seq2 hierachical clustering & specific markers Silver Mouse: Hematopoietic Stem Cells 1,656 9
Olsson (Olsson et al., 2016) SMARTer Flow cytometry & cell sorting Gold Mouse: Hematopoietic Stem Cells 382 4
SimKumar4easy (Duò et al., 2018) NA Simulated Gold NA 500 4
SimKumar4hard (Duò et al., 2018) NA Simulated Gold NA 499 4
SimKumar8hard (Duò et al., 2018) NA Simulated Gold NA 499 8
Zhengmix4eq (Duò et al., 2018) NA Simulated Gold NA 3,555 4
Zhengmix4uneq (Duò et al., 2018) NA Simulated Gold NA 6,414 4
Zhengmix8eq (Duò et al., 2018) NA Simulated Gold NA 3,971 8

Table 1. The complete set of datasets evaluated in this study. Gold datasets are those where cell-types are determined due to the experimental design (for example
by sorting cells). Silver datasets are those where cell-types were assigned from the data using biological prior knowledge.

task. Importantly, while there can be large differences between NMF and
ICA the performance of NIFA (which combines features of both) always
tracks with the best method.

3.3.2 Pathway enrichment
Of course, one important feature of factor analysis models is that the
factors should be interpretable even in the absence of any ground truth
knowledge. In such cases the factors are interpreted by inspecting the
genes in their loading. The expectation is that for a factor that captures a
unique biological variable (which could be binary cell-type or continuous
pathway activation) the top loading genes are enriched for a few known
functional modules. We evaluate this property by computing pathway
enrichment for each factor as a hypergeometric test with the top 500
genes as foreground. This evaluation strategy allows us to evaluate
the general biological validity of the model, independently of cell-type
annotation. In this way the model can be credited for finding factors which
capture pathway or cell-type signals even if these do not correspond to
an annotated cell type. The pathway databases we use are "canonical
pathways" from MsigDB (Liberzon et al., 2011) and a comprehensive
set of cell-type markers from xCell (Aran et al., 2017). For canonical
pathways we excluded pathways that had greater than 20% overlap with
ribosomal or mitochondria genesets (defined as "KEGG_RIBOSOME"
and "KEGG_OXIDATIVE_PHOSPHORYLATION" respectively). We
found that these are consistently enriched but provide little biological
insight as variation is these pathways is often technical.

We then quantify the overall biological enrichment of a single loading
vector as the mean fold enrichment for pathways that are significant at
FDR<0.05. Pathway enrichment metrics summarized across all factors
are plotted in in Fig. 6 and Fig. 7 for canonical pathways and xCell
respectively. We find that not surprisingly the performance of all methods is
much better for real biological datasets than simulated ones (Zhengmix4eq,
Zhengmix4uneq, Zhenmix8eq). We also find that among the biological
datasets NIFA is a consistently top performer in both "canonical pathway"
and xCell evaluations, though the effect is more dramatic for xCell.

3.4 In-depth evaluation of the Sade-Feldman et al.
immunotherapy dataset

Antibodies that block immune checkpoint proteins, including CTLA4,
PD-1, and PD-L1 are increasingly used to treat a variety cancers. While
checkpoint inhibitor (CI) therapy can be remarkable effective not all
patients respond (Larkin et al., 2015). Determining the biological factors
that facilitate or impede response to CIs remains an important and
unresolved problem

In order to demonstrate how NIFA can be used to gain biological
insight we performed several in-depth analyses of the Sade-Feldman et al.
immunotherapy dataset. This dataset consists of 16,291 individual immune
cells from 48 tumor samples of melanoma patients treated with checkpoint
inhibitors. The dataset contains both pre-treatment and post-treatment
samples and the patients are classified into responders and non-responders.

We applied our NIFA model to the entire single-cell dataset using
K=25 which corresponds to the k with maximal correlation with known
cell-type annotations (see Fig. 5). The distributions of the inferred factors
and the corresponding inferred Gaussian mixture fits are plotted in Fig. 8.
Each NIFA factor that has the best correspondence to human annotations
is given the same name. NIFA finds both uni- and multi-modal factors and
as expected the multi-modal factors are more likely to correspond to cell
types.

In order to investigate which variables are associated with
immunotherapy response the resulting factors were mean aggregated to
a single value for each unique patient sample. We also summarized the
human annotated cell-type indicators as their mean values, corresponding
to fraction of cells in sample. The resulting summary statistics were tested
for association with response using Wilcoxon ranksum and Benjamini-
Hochberg FDR adjusted (separately for NIFA factors or human annotations
). Pre and post-treatment samples were analyzed separately and the
resulting variables that were significant in either the pre-treatment or post-
treatment comparison at FDR<0.2 are plotted in Fig. 9A. Top loading genes
corresponding to each significant NIFA factor are show in Table 3.4.

Each NIFA factor that has the best correspondence to human
annotations is given the same name and the results are grouped
with grey ovals in Fig. 9. We find that for these matched variables
there is an overall good correspondence between the results of NIFA
factors and human cell-type annotations. Specifically, both methods
discover B-cells as the variable most positively predictive of response
and a CD8 T-cell/exhaustion/cell-cycle signature (termed "Lymphocytes
exhausted/cell-cycle" in the original study) as the most negatively
predictive.

For some subtle pattern the results of NIFA and human annotations can
diverge. Human annotations such as "Lymphocytes" and "Cytotoxicity"
were not well reproduced by NIFA (correlation of 0.46 and 0.46
respectively) and the corresponding NIFA variables are not significant.
On the other hand, NIFA found three different T-cell signatures (8, 19 and
20) which were all associated with the "memory T-cell" human annotation
and all were significantly predictive of response. One of these signatures
has TCF7 as a top loading gene and thus NIFA was able to independently
discover one of the key findings of the original study – that the fraction of
TCF7 positive T-cells is highly associated with response.
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Fig. 5. Evaluation of one-to-one correspondence between factors and cell-types. Given a set of factors and a set of cell-type labels we evaluate the maximum correlation between each
cell-type and a factor. For clarity, we plot the mean correlation value across all cell-types. In order, to account for the possibility that different models may need different number of factors
(K) we report the results at varyingK. We compare NIFA with ICA, NMF (KL-loss), and SVD as a baseline. We find that on average our NIFA model performs better than NMF and ICA
and importantly while there can be large differences between NMF and ICA the performance of NIFA (which combines features of both) always tracks with the best method.
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Average fold enrichment for mSigDB canonical pathways

Fig. 6. Pathway enrichment of "canonical pathways" from mSigDB (Liberzon et al., 2011). Enrichment is quantified as average fold enrichment among all factor-pathways pairs where
the pathway is significantly over-represented in the top 500 loading genes (hypergeometric test, FDR<0.05). The first two rows are biological datasets. The last row (Zhengmix4eq,
Zhengmix4uneq and Zhenmix8eq) are simulated datasets. All SimKumar datasets are excluded from this evaluation as they were not supplied with real gene names.

Aside from generally reproducing the main findings of the original
study NIFA was able to uncover additional patterns. For example, we
find that presence of Tregs is negatively associated with response in the
post-treatment samples. The corresponding human annotation is however
not significant despite the fact that the two variables are highly correlated
(Pearson correlation = 0.71). Human regulatory T-cells are difficult to
identify from a transcriptional profiles. There are no genes that are unique
to this cell-type. The canonical transcription factor (FOXP3) and surface
marker (CD25/IL2RA) can also be transiently expressed by non Treg CD4

cells (Chen and Oppenheim, 2011); on the other hand, because of noise
in scRNA-seq data the absence of these markers doesn’t exclude Treg
status. Upon closer inspection, we find that NIFA is more conservative in
designating Tregs than the human annotation counterpart. Using the NIFA
mixture components we can perform a hard cell-type assignment based
on the probability of being in the high-expression component being >0.5.
Using this cutoff, NIFA finds on 1,418 Tregs, in contrast to 1,740 of human
annotated ones. We find that these discrepancy is highly non-random and
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Fig. 8. Factor histograms and mixture model fits for the Sade-Feldman et al.
immunotherapy dataset. Factors that best correspond to cell-types identified in the original
study are labeled accordingly. NIFA finds both multi-modal and unimodal factors and as
expected the multimodal factors are more likely to represent cell-types

that the NIFA Tregs are more likely to express both FOXP3 and IL2RA
(Fig. 9C) indicating that the NIFA Treg signature is more specific.

Overall, within this dataset a large number of the human annotated
cell-types and NIFA factors are associated with response but some
general patterns emerge. Specifically, the presence of myeloid cell-types
is negatively associated with response while presence of lymphocytes,
exclusive of those with an exhaustion-like phenotype (for example B-
cells, CD4 memory cells), is positively associated with response (see
Fig. 9A). The general trend that a high myeloid to lymphocyte ratio is
associated with worse outcome is observed across a variety of cancers
(Thorsson et al., 2018). Our NIFA based analysis however finds a myeloid
signature (NIFA latent factor 24) that correspond to a subset of annotated
"Monocytes/Macrophages" cells is positively associated with response,
with an effect size that is similar to the lymphocyte populations (Fig. 9 A).

This myeloid subset is identified by high levels of metallothionein genes
(MT1X, MT1F, MT1E and MT2A) and some metabolic genes (see Fig.
9B). Metallothioneins are a family of small proteins that play important
roles in metal homeostasis and protection against heavy metal toxicity,
DNA damage and oxidative stress (Si and Lang, 2018). Their induction in
tumor-associated macrophages (TAMs) has been noted (Ge et al., 2012)
but to our knowledge this is the first report of an association with clinical
outcome.

4 Discussion and Conclusion
We propose a factor analysis model designed specifically for single-
cell data. The model combines features of PCA, ICA and NMF.
Specifically, our model optimizes the PCA-like matrix reconstruction
objective with mixture of Gaussians priors on the factors which encourages
decomposition along multi-modal directions. We also adopt truncated
Gaussian priors on the loadings thus imposing an NMF-like strict non-
negativity constraint. Using a variational Bayes framework allows us
to automatically fit hyper-parameters such as the number of Gaussian
mixtures. We evaluate our model using both known cell identity and
pathway information and demonstrate that NIFA generates biologically
coherent factors that align well this prior knowledge.

One additional feature of our model is that the fully Bayesian
framework is readily extensible. For example, it easily supports gene-
specific priors for the loadings. This makes it possible to use known
biological pathways as additional constraints. We plan on developing this
extension in our future work.

5 Method Details

5.1 Preprocessing Pipeline

The data preprocessing pipeline is illustrated in Fig. 10. Some pre-
processing steps were only applied to certain methods. For example, we
employed SVD smoothing (that is reconstructing the input as a truncated
SVD with rank=50) because it makes the NIFA constant variance Gaussian
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Fig. 9. NIFA analysis of signatures associated with immunotherapy response. (A) NIFA-derived signatures of human-annotated cell-types are mean aggregated per patient sample and the
resulting summary statistics are tested for association with immunotherapy response. Variables that are significant at FDR<0.2 are shown with their respective normalized and centered
ranksum statistics (ranksum/(number-of-positives × number-of-negatives)-0.5, equivalent to binary classification AUC-0.5). Pre-treatment effects are on the x-axis and post-treatment effects
are on the y-axis. NIFA variables most closely matched to a human annotation are grouped with grey ellipses. (B) Differences in Treg (Regulatory T-cells) identification between NIFA
and human annotations. Heatmap of canonical Treg marker genes (FOXP3 and IL2RA) across all cells annotated as Tregs by either method and 1000 randomly sampled other T cells.
Overall, NIFA identifies fewer Treg cells and has a higher correlation with FOXP3 and IL2RA expression. While the NIFA Treg factor is significantly negatively associated with response in
post-treatment samples, the corresponding human annotation is not (panel A). (C) A new myeloid signature positively associated with response. Heatmap of top loading genes along with
the factor values for NIFA factor 24 across all cells identified as "Monocytes/Macrophages" and 1500 randomly sampled cells. NIFA identifies a subset of the Monocytes/Macrophages calls
with unique gene expression. While general myeloid signatures (that is Monocytes/Macrophages and Dendritic cells) were negatively associate with response, the NIFA-24 signature has
the opposite pattern (see panel A).

ID name genes
5 Myeloid signature FCN1, LYZ, TIMP1, S100A9, S100A8, SERPINA1, VCAN, IL1B, IFI30, PLAUR
7 Regulatory T-cells CTLA4, TNFRSF18, RGS1, TIGIT, CD4, BATF, PIM2, PRDM1, FOXP3, ARID5B
8 TCF7 T-cell signature DGKA, DDX17, SMG1P1, DENND2D, ARHGEF1, DOCK8, NPIPB5, NLRC5, TCF7, N4BP2L2
9 Dendritic cells GZMB, IGJ, PLAC8, NAPSB, ALOX5AP, GPR183, AC096579.7, IRF7, BCL11A, CLIC3

11 Lymphocytes exhausted/cell-cycle STMN1, RRM2, TUBA1B, TYMS, KIAA0101, TUBB, HIST1H4C, HMGB2, NUSAP1, CDK1
13 B-cells CD74, IGHM, MS4A1, CD79A, IGKC, IRF8, CD79B, CD37, BCL11A, CD52
14 HSPD1, FLNA, BIRC3, REL, HSPE1, COTL1, WARS, PSME2, HSPB1, SLC25A3
15 Monocytes/Macrophages CD74, FTL, CTSB, B2M, FTH1, PSAP, S100A11, IFI30, VIM, ALDOA
16 Interferon ISG15, IFI44L, MX1, IFI6, XAF1, STAT1, ISG20, IFITM1, TRIM22, IFI44
17 Exhausted CD8 T-cells GZMA, RAC2, CLIC1, NKG7, CORO1A, IL32, ARPC1B, CNN2, LCK, PSMB9
19 NFKB/AP1 T-cell signature VIM, NFKBIA, FOS, TNFAIP3, ANXA1, SLC2A3, CD52, B2M, JUNB, S100A4
20 Memory T-cells EEF1B2, GAS5, TOMM7, LDHB, SELL, IL7R, EIF3E, COX7C, EIF3L, FAIM3
24 Myeloid signature MT1X, MT1F, CD14, MT1E, FN1, FBP1, MT2A, S100A4, S100A9, AGTRAP
25 C1QBP, NME1, HSP90AB1, GTF3A, NHP2, PPA1, CCT7, CNBP, CCT2, SNHG1

Table 2. Top loading genes for each factor found to be associated with immunotherapy response. To facilitate biological interpretability ribosomal genes and genes
that we not provided with HGNC symbols were not considered. Factors that best match the known human annotations were named accordingly and are in bold.
Other factors could be clearly identified as coherent biological pathways based on the loadings. Factors 14 and 25 did not have a clear correspondence to any
pathways or cell-type signatures and are left unnamed.

error assumption more valid. However, we found that empirically this had
little effect on the results. For NMF we used KL divergence (or equivalently
a Poisson error model) which is most appropriate for unsmoothed data. For
NIFA we chose to z-score the input by row (gene). The z-scoring operation
theoretically makes it easier for to pick up on small variance but highly
deferentially expressed genes and it produced modest improvement in most
(though not all) benchmark datasets. Row z-scoring was not applied to
NMF as it produces negative numbers. It was also not applied to ICA as the

ICA objective function references only the shape of the factor distribution
and thus is invariant under row scaling.

5.2 NIFA initialization

NIFA updates are relatively expensive and thus a good initialization
can significantly affect running time. We initialize NIFA with a simple
matrix decomposition with non-negativity constraints on the loadings.
Specifically, we initialize with a solution to a simpler optimization
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problem.

minA,S ||X−AS||F +λ1||A||F +λ2||S||F subject toA ≥ 0 (6)

This problem can be solved quickly by alternating least squares.

Raw counts or normalized raw counts

log2 transform and normalize the total gene expression
of each cell to be the median value across all cells

Filter out genes with low-expression
levels (missing in > 5 % of cells)

Perform SVD smoothing
(except NMF, see text)

Perform row z-scoring (except
NMF and ICA, see text)

Run factor analysis,
NIFA, ICA, NFM, SVD

Fig. 10. Preprocessing workflow.

5.3 Simulation Details

The dimension of the simulated matrixX is set to be 2000-by-500 (gene-
by-sample). There are 6 latent factors, each of which contains 2 Gaussian
mixtures. The dimension of loading matrix A is 2000-by-6 with each
column corresponding to a single loading and the matrixS is 6-by-500 with
each row corresponding to a single latent factor. We draw the first loading
vector from Gamma distribution Γ(5, 1). Then the subsequent loadings are
simulated by adding noise following Gaussian distributionN(0, 2) to the
first simulated loading. We take the absolute values of noise to make sure
loadings are kept positive. In this way, we can control the collinearity to
simulate correlated loadings. Each latent factor is generated hierarchically.
First we draw mean and variance parameters for the first Gaussian mixture
associated with each latent factor from Gaussian distribution N(2, 10)

and Gamma distribution Γ(10, 1) correspondingly. Regarding each latent
factor the rest of mixtures are generated by adding noise drawn from a
uniform distribution U(2, 4) to the mean of the first mixture. Then each
entry in the latent factor is assigned to any of the mixtures with probability
and the exact value is drawn based on the distribution of assigned mixture.
Finally X is generated as the sum of AS and noise drawn from Gaussian
distribution N(0, 0.1). In order to generate non-negative NMF input we
offset the matrix by a minimum constant c = min(C) which makes the
result X + c non-negative.

5.4 Evaluation

We compare NIFA with NMF (Gaujoux, 2018) and ICA (fastICA
implementation, Marchini et al. (2019)). For NMF we used KL loss which
we found dramatically outperformed the square loss alternative.

Cell-Type Correspondence We compute the absolute Pearson
correlations between each cell type and decomposed factors and

we annotate the factor with maximum absolute correlation with the
corresponding cell type.

Pathway Enrichment We perform a hypergeometric test on each of the
loading with the top 500 genes as foreground and the rest as background.
For SVD and ICA, we use the absolute values of loadings to perform
the test. The p values are adjusted with Benjamini-Hochberg procedure
and we denote pathways with adjusted p-val < 0.05 as significant
enriched pathways. The pathway enrichment is summarized as average
fold enrichment across the significant loading-pathway associations.
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