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Abstract. Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), couples 
the measurement of surface marker proteins with simultaneous sequencing of mRNA at single cell 
level, which brings accurate cell surface phenotyping to single cell transcriptomics. Unfortunately, 
multiplets in CITE-seq datasets create artificial cell types and complicates the automation of cell 
surface phenotyping. We propose CITE-sort, an artificial-cell-type aware surface marker clustering 
method for CITE-seq. CITE-sort is aware of and is robust to multiplet-induced artificial cell types. 
We benchmarked CITE-sort with real and simulated CITE-seq datasets and compared CITE-sort 
against canonical clustering methods. We show that CITE-sort produces the best clustering perfor-
mance across the board. CITE-sort not only accurately identifies real biological cell types but also 
consistently and reliably separates multiplet-induced artificial-cell-type droplet clusters from real 
biological-cell-type droplet clusters. In addition, CITE-sort organizes its clustering process with a 
binary tree, which facilitates easy interpretation and verification of its clustering result and simpli-
fies cell type annotation with domain knowledge in CITE-seq. 

Keywords: Single cell × CITE-seq × Cell type identification × Multiplet × Clustering × Inter-cluster 
imbalance  

 
 
 

1 Introduction  
Accurate cell type identification is critical to single cell analysis (Aever-
mann, et al., 2018; Klein and Treutlein, 2019). Surface markers are the 
most reliable biomarkers for cell type classification (Cui, et al., 2019; 
Spitzer and Nolan, 2016). Numerous studies in recent decades have used 
cell surface markers to isolate and characterize cellular populations with 
distinct biological functions and have discovered many novel cell types in 
the process (Ahmed, et al., 2019; Barcenilla, et al., 2019). Recent advance-
ment in single cell RNA sequencing (scRNA-seq) technologies enabled 
direct cell identity assessment through dissecting single cell gene expres-
sion profiles. However, due to technical limitations, such as low efficiency 
in reverse transcription (Kharchenko, et al., 2014; Schwaber, et al., 2019), 
dropout events (sequencing fails to capture any transcript of active genes) 
(Li and Li, 2018; Macosko, et al., 2015) and low sampling rate (Macosko, 

et al., 2015; Stegle, et al., 2015), the RNA-derived cell identities may sig-
nificantly deviate from the surface marker phenotyping result. 

The recent introduction of cellular indexing of transcriptomes and 
epitopes by sequencing (CITE-seq) (Stoeckius, et al., 2017), which con-
currently measures the abundance of both surface marker and messenger 
RNA (mRNA) in individual cells, enables simultaneous cell type identifi-
cation based on surface marker and RNA profiles.  In a CITE-seq dataset, 
surface markers are specifically labeled by antibody-derived tags (ADTs), 
which are individually barcoded. ADTs act as pseudo-transcripts and 
could be sequenced together with mRNA. CITE-seq has gained popularity 
in a wide range of biological and clinical studies, such as resolving tumor 
heterogeneity (Ortega, et al., 2017; Wagner, et al., 2019) and dissecting 
cell populations in complex tissues or organs (Cuevas-Diaz Duran, et al., 
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2017; Cui, et al., 2019; Klein and Treutlein, 2019; Landhuis, 2018; Schil-
ler, et al., 2019). 

Figure 1A and 1B shows an example of cell type classification results 
of a peripheral blood mononuclear cells (PBMCs) CITE-seq dataset, using 
its RNA and surface marker (ADT) profiles separately. For RNA (Figure 
1A), cells are clustered into separate groups using scanpy (Wolf, et al., 
2018), based on the similarities in RNA profiles between cells; whereas 
for surface markers (Figure 1B), cells are clustered using Gaussian 
Mixture Model (GMM). We use manually annotated cell types, which are 
hand-curated with domain knowledge (Maecker, et al., 2012), as truth. In 
both plots, cells are embedded in 2-D planes, according to the tSNE trans-
formation (Van Der Maaten, 2014) of their RNA or ADT profiles, 
respectively. Different cell types are highlighted with distinct colors. By 
comparing the classification results of both modalities, we observe that 
classification based on RNA profiles struggles to separate biologically 
similar but functionally unique cell types, such as cytotoxic T cells and 
helper T cells, or CD14− monocytes and CD14+ monocytes, even though 
such cell types are distinctly separable in the surface marker space. A more 
detailed analysis between gene expressions and surface markers, such as 
the correlation analysis between them and RNA dropout analysis are pro-
vided in the Supplementary Figure 1. While GMM achieves a greater fi-
delity in the surface marker (ADT) space, it is still imperfect. In Figure 
1B, GMM misclassifies a portion of the CD4+ T cells as some other cell 
types and fails to separate [iNK, mNK] and [C-mono, NC-mono] cell 
types into distinct clusters. 

Figure 1. Clustering results of an example PBMC CITE-seq dataset. A) Droplets are 
clustered and arranged according to their RNA expression profiles. B) Droplets are 
clustered and arranged based on their surface marker (ADT) profiles. Ground truths in both 
plots are obtained through manual gating over the surface marker (ADT) space. 

Automated cell type classification with surface markers in CITE-seq is 
further complicated by hard-to-remove multiplets.  Multiplets, where 
more than one cell is found per droplet, are technical artifacts induced dur-
ing library preparation (Macosko, et al., 2015; Stoeckius, et al., 2018). In 
single cell sequencing, ideally, a droplet is designed to capture just a single 
cell, which forms a singlet. In practice, it is impossible to avoid having 
two or more cells being encapsulated into a single droplet, which forms 
multiplets (see Figure 2A). Handling multiplets becomes an even more 
pressing problem when investigators super-load the library prep equip-
ment, in order to cut reagent cost, eliminate inter-sample batch effect, or 
simply scale up samples in a single experiment. Multiplets confound cell 
type identification (McGinnis, et al., 2019; Wolock, et al., 2019). Figures 
2B shows an example of multiplets creating artificial cell types in a PBMC 

CITE-seq dataset. When a multiplet contains cells of different types, it 
generates droplets with biologically impossible surface marker profiles. 
For instance, in the above example (Figure 2B), there exists a sizable 
CD3+CD19+ droplet cluster which is rarely observed in PBMCs. Prior 
work has shown that such droplets are all multiplets and recommends sub-
sequent removal of such droplets from downstream analysis (Xin, et al., 
2019). In this work, we call cell types that truly exist as biological cell 
types (BCT) and cell types created by CITE-seq multiplets as artificial cell 
types (ACT).  

Figure 2. Demonstration of multiplets in CITE-seq and its impact on clustering methods. 
A) An example CITE-seq assay, which contains both singlets and multiplets. B) The 
example PBMC population displayed in the CD3:CD19 surface marker space. An ACT 
cluster in the pane is highlighted in the black box. C) and D), GMM and k-means++ clus-
tering results with 4 clusters. E) Manual gating result, with the size of each cluster labeled 
in corners. The ACT cluster is much smaller in size than the three BCT clusters. 

Since it is impossible to avoid the occurrence of ‘multiplets’ due to exper-
imental limitations, we proceed to assess the impact of the multiplets on 
conventional clustering algorithms. Figures 2C and 2D show the results 
of two popular clustering algorithms, Gaussian Mixture Model (GMM) 
and k-means++, for two surface markers, CD3 and CD19. With domain 
knowledge, the surface marker space should be divided into 4 quadrants 
with each quadrant containing a different cell type cluster, where top left 
are CD19+ cells, bottom left are CD3−CD19− cells, bottom right are CD3+ 
cells and the top right are the joint CD3+-and-CD19+-cell ACT multiplets 
(Figure 2E). For this example, neither GMM nor k-means++ could isolate 
the top-right ACT cluster from the BCT clusters. This is due to the imbal-
ance in cluster sizes between ACT and BCT clusters, where ACT clusters 
are significantly smaller than BCT clusters. The phenomenon where con-
ventional clustering methods could fail when applied to datasets with 
mixing coefficient imbalances has been extensively studied and docu-
mented (Krawczyk, 2016; Lu, et al., 2019; Naim and Gildea, 2012; Xuan, 
et al., 2013). 

Interpreting the clustering result is equally important (Kiselev, et al., 
2019). Biologists have already established a mature pipeline to identify 
cell populations using a recursive selection process called gating, which is 
widely used in flow and mass cytometry analysis (Maecker, et al., 2012; 
Verschoor, et al., 2015). The gating process recursively selects a sequence 
of surface markers to stratify cells, until a homogeneous population 
emerges. The ordering of surface markers in gating is determined by do-
main knowledge. Figures 3 illustrates an example gating strategy for 
PBMCs. For instance, to select the cytotoxic-T cells, which are marked by 
high expressions in both CD3 and CD8 and low expressions in both CD4 
and CD19, a biologist would first select the CD3+CD19− cell cluster in the 
CD3:CD19 scatter plot and then select the CD8+CD4− cell cluster in the 
CD4:CD8 scatter plot (Figure 3B). Similar to how a gating strategy guides 
cell type annotation in manual gating, a good clustering framework should 
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provide a comprehensive interpretation for its internal mechanics and fa-
cilitate biologists to annotate resulting cell clusters according to domain 
knowledge. Ideally, the interpretation should match the format of a gating 
strategy, such as the one demonstrated in Figure 3A. 

Figure 3. A) An example gating strategy for PBMCs. B) The gating process for the example 
PBMC dataset. Abbreviations: NK cells: natural killer cells; DCs: dendritic cells. 

To address these challenges, we propose an interpretable, unsupervised 
single cell clustering algorithm, named CITE-sort, to systematically iden-
tify both BCTs and ACTs based on a recursive Gaussian Mixture Model 
framework. In each iteration, CITE-sort selects a low-dimensional surface 
marker subspace, generally defined by 1 or 2 surface markers, and per-
forms clustering with GMM. In this manner, CITE-sort collapses numer-
ous highly-imbalanced clusters in the original high-dimensional surface 
marker space into fewer yet more balanced hybrid clusters in lower-di-
mensional subspaces, which improves clustering performance. CITE-sort 
partitions the whole dataset into subpopulations through recursive bi-par-
titioning and constructs a binary sort tree for visualization, verification and 
guided cell type annotation. CITE-sort terminates when a subpopulation 
cannot be further divided, which creates a leaf node that is either an ACT 
or a BCT. The sort tree resembles a manual gating strategy and thus is 
comprehendible to biologists. The sort tree facilitates easy cell type anno-
tations and accurate ACT cluster identifications. We applied CITE-sort to 
both real and simulated CITE-seq datasets and found that CITE-sort is 
able to achieve superior clustering performance compared to other popular 
clustering methods. Especially, CITE-sort is the only method that con-
stantly and robustly segregate ACT clusters from BCT clusters. In addi-
tion, the sort tree generated by CITE-sort is consistent with existing gating 
strategies and provide rich biological insights. 

2 Methods 

2.1   Overlapping, imbalanced clusters in CITE-seq  
CITE-seq uses a matrix to store the ADT counts of each surface marker in 
every droplet. While the ADT count of a surface marker does not quantify 
the absolute number of the marker proteins on a cell surface, it retains a 
strong correlation (Stoeckius, et al., 2017). Droplets that exhibit relatively 
large ADT counts of a specific surface marker, suggest that the cell(s) in 
these droplets have relatively high expression(s) of that surface marker. 
When multiple cells collide into a single droplet, forming a multiplet in 
the process, the final ADT counts of the droplet can be perceived as the 
sum of ADT counts over its member cells. 

Similar to other surface marker quantification technologies, a CITE-seq 
dataset is pre-processed with the centered-log-ratio (CLR) normalization 
(Stoeckius, et al., 2017), prior to clustering. The formula of the CLR 
normalization is shown below: 

𝑥",$ = log )*,+
,()+)

                                               (1) 

In Equation 1, 𝑐",$ is the molecule count of marker (ADT) 𝑗 in droplet 𝑖 
and 𝑔(𝑐$)  is the geometric mean of 𝑐$  across all droplets. All surface 
marker (ADT) scatter plots in this paper are CLR normalized. 

CITE-seq datasets contain many imbalanced and overlapping clusters. 
ACT clusters are often in close proximity to multiple BCT clusters, similar 
to the example in Figure 2B. Compared to BCT clusters, ACT clusters 
have much smaller population sizes. In a CITE-seq experiment, the mul-
tiplet rate is often controlled at a moderate level for quality assurance. Pre-
vious work has shown that the proportion of multiplets increases as the 
number of cells in library prep increases (Macosko, et al., 2015; Stoeckius, 
et al., 2018; Xin, et al., 2019). Therefore, ACT droplets typically have 
non-negligible but still much smaller presences than BCT droplets, creat-
ing imbalance in cluster sizes. 

In the CLR normalized surface marker space, an ACT cluster is always 
close to some BCT clusters. Each ACT droplet contains multiple cells of 
different types. Since the ADT counts of an ACT droplet equals to the sum 
of the ADT counts of its member cells, also because the logarithm damp-
ens small-scale changes in the ADT counts (such as log(2 ∙ 𝑐) = log(𝑐) +
log(2), with 𝑐 ≫ 2), when individual cells merge into an ACT droplet, in 
the surface marker space, after CLR, the ACT droplet is positioned as 
slightly exceeding the highest coordinate in each surface marker dimen-
sion, across all of its member cells (Xin, et al., 2019). Mathematically, 
assuming 𝑪8 is the set of cells included in an ACT droplet 𝐷, then the 
CLR-transformed surface marker count vector 𝒙8  of 𝐷  approximately 
equals 

𝒙8,∙ ≈ max
)∈𝑪𝑫

(𝑥),∙). 

The produced ACT droplets, therefore, share similar ADT (CLR 
normalized) values to its member cells in many, but not all, surface marker 
dimensions. This creates the phenomenon where an ACT cluster is always 
close to some BCT clusters. 

Aside from ACT clusters, BCT clusters may also share extensive simi-
larities and form groups of closely positioned clusters in the surface 
marker space. Biologically, many cell types in a tissue share extensive 
common sections in their lineages. As a result, many of them share similar 
distributions in many surface markers. For instance, cytotoxic T cells 
(CD4+ T) and helper T cells (CD8+ T) are both T cells. As such, they have 
very similar, if not identical, ADT value distributions in many surface 
markers. Likewise, both T cells and B cells are lymphoid cells and their 
surface marker expression profiles also share significant similarities, al-
beit to a lesser extent than the helper and cytotoxic T cells (as T and B 
cells are more distant in the cell lineage tree). 

Consequently, when observed in lower dimensions, especially when the 
most differentiating surface markers are excluded, BCT clusters often col-
lapse with each other and merge into fewer clusters. Figure 4 shows an 
example surface marker (ADT) distribution (CLR-transformed) of the pre-
viously-introduced PBMC dataset. In this dataset, when viewed in 1-D, 
many surface markers exhibit a mixture distribution of a few (mostly just 
two) Gaussian components. Also evident in Figure 4, these Gaussian 
components are seldomly well separated. In many surface marker dimen-
sions, components are close to each other and share small overlaps. 

Combined with the property that ACT clusters are close to BCT clus-
ters, in a CITE-seq dataset, there are many closely-positioned clusters in a 
very compact surface marker space. This increases the difficulty in sepa-
rating them through clustering. Additionally, ACT clusters encompass 
much fewer cells than BCT clusters; and there could be many more ACT 
clusters than BCT clusters. According to Xin, et al. (Xin, et al., 2019), 
with a total of 𝑘 BCT clusters, there could be as many as 2	C − 𝑘 − 1 ACT 
clusters. 
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Figure 4. Distributions of CLR normalized ADT values of the example PBMC dataset on 
individual surface markers. 

Altogether, a CITE-seq dataset is likely to share the following properties 
in the surface marker space: (1) it may contain a large number of clusters; 
(2) clusters vary dramatically in size; (3) clusters are not well separated 
and may contain similar distributions in individual dimensions. 

2.2   Convergence of the EM algorithm on CITE-seq datasets 

The expectation-maximization (EM) algorithm for GMM struggles to con-
verge to the global optima in CITE-seq datasets. Inherently, in GMM, the 
EM algorithm does not consistently converge when (1) the dataset has 
high dimensions; (2) the cluster number is large; (3) clusters overlap and 
(4) there exists significant imbalance in the mixing coefficients. Let 𝝁∗ 
denote the ground truth means of 𝐾 Gaussian components in a 𝑑-dimen-
sional Gaussian mixture dataset and let 

𝑅K"L = min
"O$

P𝝁"∗ − 𝝁$∗P	

, where 𝝁"∗ and 𝝁$∗ denote the ground truth means of component 𝑖 and 𝑗, 
denote the minimum distance between the means of any two components.  
Zhao, et al., 2018 provides a convergence guarantee of the EM algorithm 
to the global optima, as long as the following condition is true: 
                                         𝑅K"L ≥ 𝐶0min(𝑑, 𝐾)

1
S																																							 (2) 

In Equation 2, 𝐶0 is a universal constant. Equation 2 implies that it re-
quires a greater distance between the means of components in a Gaussian 
mixture to provide the same convergence guarantee as the cardinality of 
dimensions and the number of clusters increase. Increasing dimensions or 
adding more components without increasing the distance between clusters 
will eventually undermine the convergence of the EM algorithm. 

Naim and Gildea (Naim and Gildea, 2012) and Ma et al. (Ma, et al., 
2000) have theoretically and empirically shown that having imbalanced 
mixing coefficients and overlaps between components also impedes the 
convergence of the EM algorithm.  Specifically, Naim and Gildea (Naim 
and Gildea, 2012) showed that in the presence of overlaps between clus-
ters, the condition number associated with EM increases (the convergence 
rate decreases) as the imbalance in mixing coefficients increases; hence a 
slower convergence of the EM algorithm. 

CITE-seq datasets, unfortunately, often contain all four traits that hin-
ders the convergence of the EM algorithm for GMM: there are many ACT 
clusters due to multiplets; ACT and BCT clusters often share overlaps; 
ACT clusters are much smaller in size than BCT clusters, which creates 
imbalance in mixing coefficients; and CITE-seq datasets usually have de-
cent numbers of dimensions (often at the scale of ten or more). As a result, 
the EM algorithm exhibits poor performance at fitting a GMM model on 
a CITE-seq dataset, as shown in Figure 2C and 2D. 

2.3   Overview of CITE-sort 
CITE-sort exploits a property of CITE-seq datasets where clusters of dis-
tinct cell types tend to collapsed into fewer Gaussian components in lower 
dimensions. Therefore, when inspected in a lower dimensional subspace, 
the distribution can be fitted with much fewer components. Working with 

fewer components in a low dimensional space improves the likelihood of 
the EM algorithm reaching to the global optima (recall Equation 2). For 
example, when viewed in 1-D, the four Gaussian components in Figure 
5C collapses into only two components, as Figure 5A shows. When 
directly applying the EM algorithm on all four components in the 2-D 
space, the EM algorithm fails to converge to the global optima and is 
unable to separate the four clusters, as with the example in Figure 2C. 
However, by applying one-dimensional GMM iteratively on CD3 (Figure 
5A) and then on CD19 (Figure 5B and 5C) in a two-step fashion, the EM 
algorithm is able to reliably crop out all four clusters, as displayed in 
Figure 5. When clustering on CD3, the two Gaussian components are 
more balanced in size; hence leading to a more consistent convergence for 
the EM algorithm. When processing the CD3+ component on CD19  
(Figure 5C), although there still exist non-trivial mixing coefficient 
imbalance between the CD3+CD19+ component (an ACT cluster) and the 
CD3+CD19− component (a BCT cluster), compared to the original two-
component, 4-cluster scenario in Figure 5A, which harbors mixing 
coefficient imbalance between the CD3+CD19− ACT cluster and all three 
other BCT clusters, the imbalance is now restricted between just a single 
pair of components. Combined with having fewer clusters in the mixture 
and operating in lower dimensions, the EM algorithm is able to converge 
accurately and separate the CD3+CD19+ and the CD3+CD19− cluster. 

Figure 5. Demonstration of CITE-sort fitting GMM models in lower dimensions. A) Fitting 
a GMM model in single dimensions. B) and C) Fit GMM models with CD19 on CD3− and 
CD3+ subpopulations from the previous step, respectively. 

Overall, CITE-sort clusters droplets by iteratively fitting GMM models in 
low dimensions. In each iteration, CITE-sort selects the lowest dimen-
sional subspace where droplets can still be distributed into separate hybrid 
clusters. If there exist multiple qualifying surface marker subspaces with 
equal cardinalities, CITE-sort prioritizes the surface marker subspace 
whose GMM model returns the largest likelihood in describing the data 
distribution. CITE-sort repeats the low-dimensional clustering process on 
each child cluster, until no cluster can be further subdivided. In this man-
ner, CITE-sort reduces the number of clusters, the cardinality of the 
dimension, and the degree of imbalance among clusters in each clustering 
step and maintains high quality clustering throughout the entire process. 

For simplicity, CITE-sort uses binary partition: in each iteration, CITE-
sort picks the largest hybrid cluster as one part and merges all other com-
ponents together as the other part. CITE-sort then repeats the low-dimen-
sional clustering process on each part, until it can no longer be further 
divided. We call the binary tree emerged from the iterative bi-partitioning 
process the sort tree (sort for cell sorting). 

2.4   Clustering in low-dimensions 
When clustering in low dimensions, clusters may not always perfectly 
stack on each other and form perfect Gaussian components as the example 
in Figure 6A. Sometimes, the density distribution of a surface marker can-
not be decomposed into two perfectly disjoint Gaussian components. Ra-
ther, it requires multiple components, some of which overlap with each 
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other. CITE-sort merges Gaussian components that share significant over-
laps, such as the example distribution shown in Figure 6A. CITE-sort 
computes the Bhattacharyya distance (Bouveyron, et al., 2019; Hennig, 
2010) to measure the degree of overlap between two components. Given 
a surface marker subspace 𝑆 and two Gaussian components 𝑎 and 𝑏 in 𝑆, 
Let 𝑚X, 𝑚Y denote the surface marker mean vectors of 𝑎 and 𝑏, and ΣX, 
ΣY  denote the corresponding covariance matrices of 𝑎  and 𝑏 . The 
Bhattacharyya distance (Bouveyron, et al., 2019; Hennig, 2010) between 
𝑎 and 𝑏 equals:  

      𝑑 = (K[\K])^_̀ab(K[\K])
c

+ d
e
𝑙𝑜𝑔 h |_̀|

j|_[||_]|
k, Σl = _[m_]

e
  (3) 

If he Bhattacharyya distance between a pair of components falls below 
a parametrized threshold 𝜀, then the two components are merged into a 
component complex. After merging, the same process is repeated on all 
pairs of component/component complexes, until no pairs of compo-
nent/component complex can be merged. Figure 6B demonstrates the hi-
erarchical merging process of combining Gaussian components of Figure 
6A. There are 5 Gaussian components. Component pairs, [1, 2] and [3, 4], 
are first merged into a component complex 𝛼 and 𝛽, respectively. Then 𝛼 
is merged with component 5, becoming 𝛾. 𝛽 and 𝛾 do not share sufficient 
overlap. Hence, they remain two separate component complexes. Figure 
6C shows the final component complexes, 𝛽 and 𝛾, in the density histo-
gram plot. CITE-sort sets 𝜀 to 0.1 by default. 

Figure 6. An example of merging Gaussian mixture components. A) Illustration of the 5 
original Gaussian components in a 1-D GMM model. B) Merging components into com-
ponent complexes. C) The final component complexes after merging. The dashed lines rep-
resent the density curves of the two merged component complexes 𝛽 and 𝛾. 

2.5   Constructing the sort tree 
As CITE-sort iteratively subdivide droplets into smaller subpopulations, 
CITE-sort records the surface marker(s) involved in each division in the 
sort tree. Each node in the sort tree represent a subpopulation. The root 
node represents the whole dataset. The label of each node denotes the sur-
face markers employed in further subdividing the subpopulation. CITE-
sort stops subdividing a node if 1) the population size falls below a para-
metrized minimum cluster threshold 𝜃, or 2) the subpopulation cannot be 
subdivided into more than one component/component complex in all sub-
spaces.  

While CITE-sort prefers clustering in low dimensions, not all surface 
marker subspaces are qualified for subdivisions. Many surface subspaces 
have a single component complex left after merging. Without more than 
one independent component/component complex, the subdivision process 
comes to a halt. To avoid terminating the iterative clustering process prem-
aturely, CITE-sort skips surface marker subspaces with a single compo-
nent complex (or if there are no multiple components to begin with). When 
there exist multiple qualifying surface marker subspaces with equal cardi-
nalities, CITE-seq prioritizes the surface marker subspace whose GMM 
produces the highest score in goodness of fit measurement. CITE-sort 
computes the likelihood of the fitted GMM in describing the distribution 
of the data and selects the surface marker subspace with the largest likeli-
hood for further division. 

The sort tree facilitates accurate annotations of cell types, justifiable 
verification of the clustering result, and accessible interpretation of the 
model. The sort tree displays three items at each node: the surface 
marker(s) chosen for clustering and bi-partition; the distribution of the cur-
rent droplet subpopulation in the chosen surface marker subspace; and all 
component complexes derived from the subpopulation. The two subpop-
ulations after bi-partition are highlighted separately with matching-color 
edges in the sort tree to emphasize their sorting trajectory. An example 
sort tree is provided in Figure 9A in the Result section. 

The sort tree lets end users to inspect the distribution in the surface 
marker subspace at each stage and assess the fidelity of the clustering de-
cisions made by CITE-sort. The sort tree also enables users to follow the 
sorting trajectory of any terminal cell population and register surface 
markers where the population have high or low levels of expressions. End 
users can then compare the sorting trajectory of each terminal cell popu-
lation with existing gating strategies and annotate cell types according to 
domain knowledge. 

2.6   Pseudo code  
Let 𝑫 = {𝒙1, ⋯ , 𝒙u} denote a CLR-transformed ADT dataset. Let N de-
note the number of droplets and ℱ = {𝑓d,⋯ , 𝑓y} denote the M-dimen-
sional surface marker space of the dataset. CITE-sort takes 𝑫 as input and 
returns the root node of the binary sort tree 𝒯. Each node in 𝒯 stores the 
surface marker subspace selected for clustering, the current subpopulation 
of the node and pointers to children nodes (leaf nodes point to NULL). 
The pseudo code of CITE-sort is provided in Algorithm 1.  

 Algorithm 1. The pseudo code of CITE-sort. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ALGORITHM 1: CITE_SORT( 𝑫, 𝜀, 𝑡, 𝜃) 
INPUT: Dataset 𝑫. Merging threshold 𝜀, defaults to 0.1.  
 Upper bound of subspace cardinality 𝑡, defaults to 2. 
 Minimum cluster size 𝜃, defaults to 10. 
OUTPUT: A binary tree 𝒯. 
 
 
 𝒯 ← new BTreeNode 
 𝒯. subpupulation ← 𝑫 
 𝒯. left_child, 𝒯. right_child ← 𝐍𝐔𝐋𝐋 

 /*** STEP 0 Stop criteria I ***/ 
 IF |𝑫| < 	𝜃 
 RETURN   𝒯 

 /*** STEP 1 Generate subspace candidates ***/ 
 ℱ� ← [	] 
 FOREACH  𝜏  IN  1: 𝑡 
   FOREACH  𝑓 ⊆ ℱ, |𝑓| = 𝜏 
    𝐺𝑀𝑀� ←	Merge components in subspace 𝑓 with threshold 𝜀. 
    IF 𝐺𝑀𝑀�. 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑥	 > 1 
     ℱ�. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑓) 
   ENDFOR 

   IF  𝑙𝑒𝑛𝑔𝑡ℎ(ℱ�) > 0 
    BREAK 
  ENDFOR 

 /*** STEP 2 Stop criteria II ***/ 
 IF  𝑙𝑒𝑛𝑔𝑡ℎ(ℱ�) == 0 
  RETURN   𝒯 

 /*** STEP 3 Score subspaces ***/ 
 ℓ(baseline) ← log𝒩(𝑫|𝝁, Σ) 
 𝑆 ← [	] 
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3 Datasets 

3.1   Real Datasets 
We tested CITE-sort with three in-house PBMC CITE-seq dataset as well 
as 5 public CITE-seq datasets. For the three in house datasets, cells were 
drawn from two healthy donor described in a previous study (Sun, et al., 
2019). The cell assays were prepared using the 10x Genomics platform 
with Gel Bead Kit V2, and was subsequently sequenced on an Illumina 
HiSeq with a depth of 50K reads per cell. We measured ten surface mark-
ers on every cell. They were: CD3, CD4, CD8, CD11c, CD14, CD16, 
CD19, CD56, CD127 and CD154. We performed downstream analysis 
with CellRanger-3.0. Public datasets include three PBMC datasets, one 
marginal zone B-cell tumor (MALT: mucosa-associated lymphoid tissue) 
dataset and one cord blood mononuclear cells (CBMC) dataset (Stoeckius, 
et al., 2017). Detailed information of all real datasets is summarized in 
Table 1. 

We focus our evaluation of CITE-sort with the PBMC_16k dataset. For 
the PBMC_16k dataset, in addition to CITE-seq, we also performed cell 
hashing (Stoeckius, et al., 2018) with four hashtags. Cell hashing enables 
technicians to increase the population of cells in a single scRNA-seq run, 
and it facilitates analytical identification of a significant fraction of multi-
plets. Previous work has demonstrated analytical classification of putative 
homogeneous droplet populations into ATCs and BTCs with cell hashing 
(Xin, et al., 2019). In a cell hashed scRNA-seq dataset, droplets are cate-
gorized into either multi-sample multiplets (MSM) or single-sample drop-
lets (SSDs). Prior work (Xin, et al., 2019) has established that ACT clus-
ters have MSM percentages approaching and exceeding 1 − 1/𝐻, where 
𝐻 is the number of hashtags used in cell hashing (assuming even cell dis-
tributions among samples in cell hashing). For the PBMC_16k dataset, we 
used 𝐻 = 4  hashtags. If a putative homogeneous droplet cluster in 
PBMC_16k has a MSM ratio approaching or exceeding 75%, then it is 
highly likely to be an ACT cluster. We used GMM-Demux (Xin, et al., 
2019) to classify droplets into MSMs and SSDs. 

It is important to establish the evaluation of CITE-sort with cell hashed 
CITE-seq datasets. The MSM ratio of a cluster serves as an important sig-
nature of whether the cluster is an ACT or BCT. The ratios of MSMs in  
suspicious ACT clusters can be used to validate the efficacy of CITE-sort 
in separating ACT clusters from BCT clusters: high MSM content in sus-
picious ACT clusters and low MSM content in BCT clusters suggest that 
CITE-sort achieves high precision in isolating ACT clusters from BCT 
clusters; while the opposite indicates that the suspect ACT clusters have 

absorbed excessive BCT droplets because of poor clustering performance.  
Given that PBMC_16k is the only available cell-hashed  CITE-seq dataset, 
we focus the evaluation of CITE-sort over the PBMC_16k dataset. 

Table 1. Overview of CITE-seq datasets 

Dataset # Droplets # ADTs Source 

PBMC_1k 713 17 10X Genomics 
PBMC_1k_b 1388 10 In house 
PBMC_2k 1966 10 In house 
PBMC_5k 5247 32 10X Genomics 
PBMC_8k 7865 17 10X Genomics 
MALT_8k 8412 17 10X Genomics 
CBMC_8k 8617 13 GSE100866 
PBMC_16k (with cell hashing) 15839 10 In house 

10X Genomics datasets are available at https://support.10xgenomics.com/single-
cell-gene-expression/datasets.  

3.2   Simulation Datasets 
We generated a number of CITE-seq simulation datasets according to the 
droplet formation model described in Xin, et al. (Xin, et al., 2019). Spe-
cifically, we assumed that cells were randomly distributed into a finite 
number of droplets. We prepared synthetic cells by sampling droplets 
from the in-house PBMC dataset. All synthetic cells are hand-curated into 
one of the 5 biological cell types through manual gating, which is summa-
rized in Supplementary Table 1. Synthetic cells are randomly distributed 
to droplets. If a droplet is assigned with a single cell, then the raw ADT 
(yet to be CLR normalized) profile of the droplet equals to the raw ADT 
counts of its member cell. Otherwise, if a droplet is assigned with multiple 
cells, the raw ADT profile of the droplet equals to the sum of raw ADT 
counts over all member cells. Empty droplets are removed after simula-
tion. 

Droplets are labeled according to their member cell(s). ACT droplets 
that have different cell type compositions are assigned different labels. 
With 𝑀 biological cell types in a simulation, there could be as many as 
2y − 1 distinct droplet labels, including M BCT labels and up to 2y −
M − 1 ACT labels. The droplet labels from simulation are used as the 
ground truth. 

We performed two sets of simulations. In the first set, we controlled the 
percentage of ACT droplets at 5% and gradually increased the number of 
biological cell types in each simulation, from 2 to 5. In the second set, we 
fixed the number of biological cell types at 4 but gradually increased the 
ACT droplet percentage, from 5% to 25% with a 5% increase per step. 

4 Results 

4.1   Accuracy evaluation on simulated datasets 
We compared CITE-sort against 6 other clustering methods: k-means++, 
k-means++ with PCA, k-means++ with tSNE, GMM, GMM with PCA, 
and GMM with tSNE. For both PCA and tSNE based clustering, we re-
duced the dimensions of each dataset to three. For k-means++, we used 
the elbow method with inertia (Bholowalia and Kumar, 2014) to select the 
number of clusters 𝐾; for GMM, we used the Dirichlet Process to infer 𝐾 
from the data (Blei and Jordan, 2006; Görür and Rasmussen, 2010). 

We benchmark CITE-sort against the other six clustering methods on 
both sets of simulation datasets. We compare the clustering outcome of 

 FOREACH 𝑓  IN  ℱ� 
  FOREACH  𝑐  IN  𝐺𝑀𝑀�. 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑥 
   Bipartition ℬ�,) ← {𝑫𝟎: {𝒙𝐢|𝒙𝐢 ∈ 𝑐}, 𝑫𝟏: {𝒙𝐢|𝒙𝐢 ∉ 𝑐}	} 
        ℓ¨ℬ�,)© ← ∑ 𝛼�,CC«¬,d ∙ log𝒩(𝑫𝒌|𝝁𝒌, ΣC), 𝛼�,C = |𝑫𝒌|/|𝑫| 
        𝑆�,) ← ℓ¨ℬ�,)© − 	ℓ(baseline) 
   𝑆. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆�,)) 
  ENDFOR 
 ENDFOR 

 /*** STEP 4 Bipartition and update mixing weights ***/ 
 ℬ�∗,)∗ ← argmax	(𝑆) 
 𝒯. 𝑘𝑒𝑦 ← 	𝑓∗ 
 𝑫𝟎,𝑫𝟏 ← ℬ�∗,)∗ 

 /*** STEP 5 Recursion ***/ 
 𝒯. left_child ← CITE_SORT(𝑫𝟎, 𝜀, 𝑡, 𝜃) 
    𝒯. right_child ← CITE_SORT(𝑫𝟏, 𝜀, 𝑡, 𝜃) 

 RETURN  𝒯 
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each clustering method based on both the Adjusted Rand Index (ARI) 
score and the Adjusted Mutual Information (AMI) score against the 
ground truth. As shown in Figure 7, CITE-sort has the best performance 
across the board in both experimental settings. Especially, when measured 
in AMI score, CITE-sort always leads other methods by at least 0.1 on 
average. Previous work (Romano, et al., 2016) has shown that AMI 
creates more accurate measurements than ARI, under scenarios where the 
cluster sizes are highly unequal in ground truth. Therefore, maintaining a 
commanding lead in AMI scores under low ACT droplet percentages 
proves that CITE-sort outperforms other clustering methods when clusters 
contain significant mixing coefficient imbalances. k-means++, GMM and 
their variants, on the other hand, have much inferior AMI scores under 
low ACT droplet percentages. 

Figure 7. Performances of CITE-sort compared against 6 other common clustering meth-
ods under A) variable number of cell types (fixing ACT droplet percentage at 5%) and B) 
variable ACT droplet percentages (fixing the number of biological cell types at 4). 

The clustering results of each simulation dataset is presented in Figure 8. 
Comparing to the other 6 clustering methods, CITE-sort produces 
clustering results that are most consistent with the ground truth. The 
reason that the clustering accuracy of GMM and K-means++ increases 
when more cell types are added to the simulation under a fixed ACT 
percentage threshold (5%) is that ACT droplets are distributed into a 
rapidly increasing number of ACT clusters (the number of ACT clusters 
grows exponentially as more cell types are added). With much more 
diluted ACT clusters, the influence of ACT clusters in disrupting the 
separation of BCT clusters decreases. Hence GMM and K-means++ 
register better performances. Eventually, as ACT clusters become 
increasingly sparse, we estimate that the performances of GMM and K-
means++ will climb to the same level as CITE-sort. Nevertheless, to 
reduce the ACT percentage, technicians will have to drastically limit the 
number of cells loaded in a cell assay, which significantly limits the 
applicability of GMM and K-means++ in real datasets. 

4.2   Constructing sort trees in real datasets 
Figure 9A demonstrates the sort tree of the PBMC_16k dataset. In this 
dataset, clustering is performed in either 1-D or 2-D surface marker sub-
spaces in each step. Depending on the dimension of the surface marker 
subspace, each inner node is visualized with either a histogram or a 2-D 
scatter plot. In each plot, we use red and blue to highlight the two parts 
after bi-partition and assigned colors to edges in the sort tree correspond-
ingly. Each leaf node is annotated according to a standard PBMC gating 
strategy (Maecker, et al., 2012). We labeled leaf nodes that cannot be ex-
plained by the standard gating strategy as suspect ACT clusters. Leaf  

Figure 8. Clustering results of CITE-sort, k-means++ and GMM with regard to 8 
simulation datasets. Different colors denote distinct clusters. 

nodes are supplemented with its population percentages and MSM per-
centages. As mentioned in Section 3.1, according to GMM-Demux, drop-
let clusters with MSM percentages approaching and exceeding 75% (𝐻 =
4 in this dataset) are ACT droplet clusters. We observe that most suspect 
ACT clusters have high MSM percentages. Overall, we find an estimated 
19.3% of all droplets that are ACT droplets.  

The sort tree of PBMC_16k is highly consistent with existing gating 
strategies (see Figure 3). Compared to manual gating (Figure 3), CITE-
sort achieves greater clustering resolutions. In particular, CITE-sort sub-
divides NK cells into majority NK cell and intermediate NK cell sub-
types; monocytes into classical-monocytes and nonclassical-monocytes; 
and DCs into CD4+ DCs, CD8+ DCs and myeloid DCs. CITE-sort also 
splits double negative (CD4−CD8−) T cells from other T cells. Such reso-
lution is hard to guarantee in manual gating. The resemblance between the 
sort tree and common gating strategies validates the clustering logic of 
CITE-sort. GMM and k-means++, on the other hand, lacks interpretability 
and thus renders their clustering results more difficult to verify.  

Figure 9B presents the CITE-sort clustering result of PBMC_16k in a 
2-D tSNE plot. Compared to GMM (Figure 9C), CITE-sort clustering is 
more consistent with human-supervised manual clustering (Figure 9D). 
Further comparison shows that major cell types in PBMC have highly 
consistent scopes in both CITE-sort (Figure 9B) and manual gating 
(Figure 9D) clustering results, showcasing the accuracy of CITE-sort in 
cell sorting. 
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Figure 10 illustrates the effectiveness of CITE-sort in segregating ACT 
clusters. In Figure 10B, we combine all hand-curated ACT clusters into a 
single ACT class. We use GMM-Demux to classify droplets into MSMs 
and SSDs (Figure 10A). Comparing Figure 10A and 10B, we observe 
that the combined ACT super cluster accurately outlines major MSM rich 
regions. As previously discussed, high MSM concentrations in suspect 
ACT clusters and low concentration of MSMs in BCT clusters proves the 
accuracy of CITE-sort in segregating ACT clusters from BCT clusters. 

Figure 10. tSNE visualization of A) Suspect ACT clusters identified by CITE-sort, B) 
MSMs identified through cell hashing, and C) doublets identified by scrublet. The x and y 
axis are the first and second dimensions respectively given by tSNE. Percentages of 
ACTs/doublets identified by CITE-sort/scrublet are presented in the top right corner. 

We also compared the ACT annotation over CITE-sort against an RNA-
based doublet identification method, scrublet (Wolock, et al., 2019). The 
classification result of scrublet is shown in Figure 9C. Scrublet identifies 
doublets by analyzing the RNA expression profile of a scRNA-seq 
experiment. It simulates artificial doublets from the dataset and checks if 
a droplet has an expression profile that matches the expression profile of 
any simulated doublet. Comparing to 9B, Figure 9C only highlights a 
fraction of the multiplets (19.3% vs 6.4%) and completely misses a few 
doublet clusters (highlighted in circles). Since it leaves a large number of 

ACTs unidentified, it denies the possibility of clustering droplets after 
removing all ACTs. Removing all MSMs is also insufficient. Not all 
droplets in ACT clusters are MSMs while not all droplets in BCT clusters 
are SSDs. Removing MSMs does not completely erase ACT clusters. 
Other doublet removal tools, such as GMM-Demux requires pre-
preparation of droplets into clusters and can only checks if an entire cluster 
is an ACT cluster. Overall, CITE-sort is the only ACT-aware CITE-seq 
clustering method. 
    In addition to PBMC_16k, we also tested CITE-sort on the other 7 
CITE-seq datasets. We benchmarked CITE-sort against GMM and its var-
iants. Detailed description of each method is provided in the Supplemen-
tary Method 1. Unfortunately, without cell hashing, we are unable to 
benchmark the accuracy of ACT classifications by CITE-sort. Instead, we 
measure the likelihood of the final model in describing the distributions of 
the datasets. The likelihood comparison result is presented in Figure 11A. 
As shown in the figure, CITE-sort achieves the highest likelihood in all 
datasets. Figure 11B illustrates the execution time comparison between 
CITE-sort and GMM methods. Overall, CITE-sort terminates in 
comparable time against other methods. 

5 Discussion 
CITE-sort is the first ACT-aware surface marker clustering method for 
CITE-seq datasets. CITE-sort specifically targets datasets where clusters 
in high-dimensional space collapse into fewer, more balanced clusters in 
low dimensional subspaces. CITE-sort is not a universal clustering 
method. While it is possible to construct datasets where CITE-sort 
produces inferior clustering results than GMM; or CITE-sort has to scan 
through a large number of low dimensional subspaces before finding a 
qualifying candidate, in real CITE-seq datasets, most cell types collapse 

Figure 9. A) The single cell sort tree of PBMC_16K. Each node represents a subpopulation. The title of each inner node represents the surface markers subspace for subdivision. Red and 
blue colors represent the two parts in bi-partition. Edges are colored accordingly. Leaf nodes are hand-curated and are annotated with domain knowledge. Cell types that should not exist are 
labeled as suspect ACT clusters. Suspect ACT clusters are characterized by their population percentages in the overall dataset (denoted by ‘prop’) and their MSM percentages (denoted by 
‘MSM’). Abbreviations: iNK: intermediate NK cells; mNK: vast majority of NK cells; C-mono: classical monocytes; NC-mono: non-classical monocytes; mDC: myeloid DC; DNT: double 
negative T cells. B) CITE-sort clustering result. C) Manual clustering result. D) GMM clustering result. All clustering results are projected over the tSNE-transformed 2-D surface marker 
pane. 
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Figure 11. Performance comparisons of CITE-sort against GMM and its two other variants. 
Benchmarks includes A) negative log-likelihood and B) execution time comparison  

into very few Gaussian components when viewed in any single or dual- 
surface-marker subspaces. In fact, popular manual gating tools, such as 
FlowJo (Tree Star, 2020) and Kaluza (Beckman Coulter, 2020) are built 
upon this observation where cells are always grouped into few Gaussian 
clusters when viewed in low dimensions (usually in 2-D). Given these 
characteristics of CITE-seq datasets, CITE-sort is able to scale to higher 
dimensional surface marker spaces, even as the number of surface markers 
grows up to 100 and beyond in future CITE-seq datasets. 

6 Conclusion 
In this paper, we introduced CITE-sort, an interpretable clustering frame-
work for CITE-seq datasets, which groups droplets into clusters in an un-
supervised manner. CITE-sort is robust to artificial cell types that stem 
from multiplets. CITE-sort is the first clustering method for CITE-seq that 
is aware of artificial cell types. CITE-sort generates biologically meaning-
ful interpretations to its clustering results. We applied CITE-seq on both 
real and simulated CITE-seq datasets and show that CITE-sort not only 
outperforms canonical clustering methods in accuracy, but also generates 
a single cell sort tree, which helps in annotating cell types, validating clus-
tering results and identifying artificial-type droplet clusters. 
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