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Abstract— Cancer complexity is consequence of enormous genomic instability leading to
aneuploidy, a hallmark of most cancers. We hypothesize that dosage compensation of critical
genes  could  arise  from  systems-level  properties  of  complex  networks  of  microRNAs
(miRNA) and transcription factors (TF) as a way for cancer cells to withstand the negative
effects of aneuploidy. We studied gene dosage compensation at the transcriptional level on
data of the NCI-60 cancer cell line panel with the aid of computational models to identify
candidate genes with low tolerance to variation in gene expression despite high variation in
copy numbers. We identified a network of TF and miRNAs validated interactions with those
genes  to  construct  a  mathematical  model  where  the  property  of  dosage  compensation
emerged for MYC and STAT3. Compensation was mediated by feedback and feed-forward
motifs with 4 miRNAs and was dependent on the kinetic parameters of these TF-miRNA
interactions,  indicating  that  network  analysis  was  not  enough  to  identify  this  emergent
property. The inhibition of miRNAs compensating MYC suggest a therapeutic potential of
targeting gene dosage compensation against aneuploid cancer.
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Introduction

Cancer is a heterogeneous group of diseases characterized by out of control cell growth and
division  sharing  several  hallmarks,  including  8  functional  capabilities  and  2  enabling
characteristics. Among those enabling characteristics, genome instability is one of the drivers
of cancer development (Hanahan & Weinberg, 2011). Indeed, cancer robustness is enabled at
the tumor cell population level by heterogeneity in therapy responses, which is driven by
genomic instability  (Kitano, 2004), specially by aneuploidy: gains and losses of whole or
partial chromosomes.

Genomic instability leads to aneuploidy in most cancers: 90% of solid tumors and 75% of
hematologic tumors present aneuploidy, which was considered by early reports as the driving
force of cancer genomic evolution (Sheltzer & Amon, 2011). Indeed, a report indicated that
aneuploidy is the major source of autocatalytic genomic instability, where the cells with the
highest  aneuploidy have also the highest instability  of their  genomes  (Duesberg,  Rausch,
Rasnick, & Hehlmann, 1998). Aneuploidy seems to have a role in oncogenesis because: i) it
appears  before  malignant  transformation,  ii)  there  are  clonal  genetic  alterations  that
compromise the fidelity of chromosomal segregation and iii) there are inherited mutations in
checkpoints leading to aneuploidy and predisposing to cancer (Sheltzer & Amon, 2011) .

Nevertheless,  aneuploidy is  lethal  for normal  cells  and entire  organisms, representing the
most frequent cause of abortions and mental retardation in humans. All monosomies (loss of
one chromosome) and 20 out of 23 possible trisomies (gain of one additional chromosome)
are  lethal  and  out  of  the  other  three,  only  trisomy  21  can  survive  adulthood  (Down
Syndrome).  This  means  that  aneuploidy  is  a  barrier  to  a  successful  development  of  the
embryo  and  leads  to  many  defects  at  the  cellular  level.  Aneuploidy  decreases  cell
proliferation  and  viability,  increases  proteotoxic  stress,  metabolic  requirements,  lactate
production  and induces  recombination  defects  leading  to  genomic  instability  (Sheltzer  &
Amon, 2011).  The most likely explanation for all  those negative effects  of aneuploidy is
given  by  the  alteration  of  the  gene  dosage:  gains  or  losses  of  entire  chromosomes
immediately alter the doses of hundreds of genes in the cell, leading to unbalanced load of
critical proteins, altering energetic requirements and protein homeostasis (Sheltzer & Amon,
2011).

Although lethal  to normal  cells,  aneuploidy is  a hallmark of most advanced cancer  cells.
Therefore those cells must have developed mechanisms to minimize the negative effects of
aneuploidy. First, aneuploidy autocatalizes genomic instability of transforming cancer cells
leading to  many unstable  karyotypes  and cell  death  due to  an error  catastrophe  (Solé &
Deisboeck, 2004). However, in rare occasions, a specific combination of various alterations is
met that overcomes those error thresholds in cancer evolution, leading to malignant cells that
are able to survive aneuploidy and genomic instability. This bottleneck in cancer evolution
represents a gate to evolve malignant karyotypes leading to drug-resistance and metastasis (L.
Li et al., 2009). However, this evolution is not unrestricted. Within the chaos of chromosomal
instability, some conserved patterns in the karyotypic configurations suggest the presence of
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a stable mechanism, which function has to be maintained to ensure survival:  i)  there are
specific  aneusomies  at  different  stages  of  cell  transformation  (Fabarius,  Li,  Yerganian,
Hehlmann,  &  Duesberg,  2008),  ii)  there  are  clonal  karyotypes  evolving  during  the  cell
passages (Fabarius, Willer, Yerganian, Hehlmann, & Duesberg, 2002), iii) the cancer causing
karyotypes  have  a  chromosomal  equilibria  between  destabilizing  aneuploidy  and  the
stabilizing selection for oncogenic function  (L. Li et al., 2009), and iv) a large scale study
revealed  2 distinct  pathways to  aneuploidy where the cells  gain or lose chromosomes to
restore  the  balance  of  their  altered  proteins  and maintain  viability  (Ozery-Flato,  Linhart,
Trakhtenbrot, Izraeli, & Shamir, 2011). Therefore, despite the genomic instability of cancer,
these  observations  suggest  the  existence  of  a  hidden  karyotypic  pattern  responsible  for
maintaining a stable mechanism to cope with the negative effects  of aneuploidy.  Finding
these karyotypic configurations from genomic observations represents a huge challenge of
pattern recognition.

It is therefore unknown how cancer cells deal with so much aneuploidy whereas normal cells
are  very  sensitive.  A  possible  explanation  is  given  by  the  hypothesis  of  gene  dosage
compensation,  a  mechanism  that  has  been  described  very  early  for  other  organisms  to
compensate the negative effects of aneuploidy (Devlin, Holm, & Grigliatti, 1982). Indeed, the
concept of gene dosage compensation, or gene dosage balance, is a widespread phenomenon
that was discovered in the early days of genetics and there is accumulating evidence that it
has  an  effect  on  gene  expression,  quantitative  traits,  aneuploid  syndromes,  population
dynamics of copy number variants and differential evolutionary fate of genes after partial or
whole-genome duplications (for review see (Birchler & Veitia, 2012) ). The effects of gene
dosage  compensation  are  hypothesized  to  result  from  stoichiometric  differences  among
members of macromolecular complexes, the interactome, and signaling pathways (Birchler &
Veitia,  2012; Veitia, Bottani,  & Birchler, 2008) .  Gene dosage compensation represents a
compensatory mechanism that may ameliorate the imbalanced gene expression and restore
protein homeostasis in aneuploid cells. The multiple consequences of aneuploidy are mainly
regulated at the protein level due to a side-effect of protein folding defects and increased
protein  degradation  by  proteosome  and  autophagy  (Donnelly  &  Storchová,  2014).  An
approach  to  identify  genes  with  dosage  compensation  by increasing  the  copy number  of
individual genes using the genetic tug-of-war technique showed that approximately 10% of
the genome shows gene dosage compensation,  and consists  predominantly  of subunits  of
multi-protein  complexes,  which  are  regulated  in  a  stoichiometry-dependent  manner
(Ishikawa, Makanae, Iwasaki, Ingolia, & Moriya, 2017), although this approach was designed
to identify compensated genes at the protein level only.

In  aneuploid  cancer  it  has  been  shown  that  messenger  RNA  (mRNA)  levels  generally
correlate well with an increased DNA copy number (gene dosage) but these changes are not
reflected at the protein level for several genes  (Stingele et al., 2012) . Indeed, gene dosage
compensation in cancer cells has been recently  (Brennan et al., 2019) demonstrated at the
protein level, whereby protein aggregation mediates the stoichiometry of protein complexes
in  aneuploid  cells.  In  that  study  they  show  that  excess  subunits  are  either  degraded  or
aggregated  and  that  protein  aggregation  is  nearly  as  effective  as  protein  degradation  at
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lowering the level of functional proteins (Brennan et al., 2019) .

The regulation of gene transcription might be another effective mechanism to compensate the
gene dosage changes in aneuploid cells, as it maintains the stoichiometry and preserves the
energy required for transcription, translation, and eventual degradation of the extra proteins.
However, most of the transcriptional analyses of model aneuploid cells in budding and fission
yeasts, plants, mice and human cells have indicated that mRNA levels scale with gene copy
number, excepta few Drosophila genes that appear to be the vestige of a sex-determining
silencing  mechanism  (Donnelly  &  Storchová,  2014).  Actually,  the  inactivation  of  the  X
chromosome in female mammals  represents an early reported mechanism of gene dosage
compensation mediated by the Xist non-coding RNA (Park & Kuroda, 2001). Nevertheless, a
previous report of the insertion of an additional chromosome 5 revealed that most proteins
coded on the extra chromosomes are more abundant than proteins from diploid chromosomes
indicating that there is no general efficient mechanism for ‘gene dosage compensation’ in this
system. However,  some specific  proteins are  maintained at  diploid levels,  specially  those
corresponding to kinases and ribosomal subunits. Most of these genes are compensated at the
protein level but a few others are also compensated at the mRNA level (Stingele et al., 2012).
In addition, a report on aneuploid wild yeast isolates showed gene-dosage compensation in
10-30% of amplified genes compared to isogenic or closely related euploid strains and that
aneuploidy did not lead to growth defects.  In fact,  the authors  propose that  gene dosage
compensation is most likely due to feedback control and enables a rapid karyotypic evolution
in yeast. They also predicted that dosage compensation occurs at genes that are most toxic
when  overexpressed  and  that  their  expression  may  also  be  under  greater  evolutionary
constraint (Hose et al., 2015).  

Feedback control that buffers the mRNA levels of amplified or deleted chromosomal regions
has been already suggested in naturally occurring yeast strains (Kvitek, Will, & Gasch, 2008)
as well as in lager brewing yeast (Bond, Neal, Donnelly, & James, 2004). Moreover, it has
been shown that a mechanism based on an incoherent feedforward motif enables adaptive
gene expression in mammalian cells. Using synthetic transcriptional and post-transcriptional
incoherent loops, the authors found that the gene product adapts to changes in DNA template
abundance,  supporting  a  previously  hypothesized  endogenous  role  in  gene  dosage
compensation for such motifs  (Bleris  et  al.,  2011; Shimoga, White,  Li,  Sontag,  & Bleris,
2014). In endogenous transcription networks, the interactions of miRNAs and transcription
factors  have  been reported  to  assemble  those kind  of  complex motifs  including negative
feedback  loops,  positive  feedback  loops,  coherent  feed-forward  loops,  incoherent  feed-
forward  loops,  miRNA  clusters  and  target  hubs  leading  to  non-linear,  systems-level
properties such as bistability,  ultrasensitivity and oscillations  (Lai et al.,  2013; Vera, Lai,
Schmitz, & Wolkenhauer, 2013) .

miRNAs  are  small  endogenous  RNA  molecules  that  bind  mRNAs  and  repress  gene
expression  (Fabian,  Sonenberg,  &  Filipowicz,  2010).  miRNAs  are  one  of  the  most
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predominantly represented non-coding RNA (ncRNA) groups in clinical research. A typical
miRNA  is  processed  from  a  long  primary  RNA  sequence  to  a  short  mature  functional
transcript around 22 nucleotides in length. A common characteristic of a miRNA is its ability
to pleiotropically target potentially hundreds or even thousands of genes (Hanna, Hossain, &
Kocerha, 2019) and their target genes can also be regulated by several miRNAs  (Ritchie,
Rasko, & Flamant, 2013). Indeed, current estimates point to the human genome containing
1917  annotated  hairpin  precursors,  and  2654  mature  sequences  of  miRNAs  (Kozomara,
Birgaoanu, & Griffiths-Jones, 2019), estimated to directly regulate >60% of human mRNAs
(Kim et  al.,  2016).  In  consequence,  there  is  a  good possibility  that  miRNA-transcription
factor  interactions  may  regulate  the  expression  of  genes  amplified  or  deleted  in  cancer.
Therefore, we hypothesize that gene dosage compensation in cancer can be mediated, at least
in  part,  by  the  emerging  properties  of  complex  miRNA-TF  networks,  controlling  the
expression of genes that have altered copy number.

In the present work we set out to investigate whether we could identify such a mechanism by
analyzing  genomic  and  transcriptomic  data  of  the  NCI60  cell  panel.  We  have  indeed
identified a cluster of genes with low tolerance to variation in expression level despite having
a high variation in copy numbers across the cell  lines.  These genes are distributed along
several  chromosomal  locations  and indeed,  their  copy numbers have positive  or  negative
correlation  coefficients  with  the  expression  levels  of  several  miRNAs  and  transcription
factors. Most of these correlations do not correspond to direct target interactions suggesting
that  dosage  compensation  could  be  mediated  by  a  complex  network  of  miRNAs  and
transcription  factor  interactions.  Due  to  the  complexity  of  the  underlying  biochemical
network, identification of such mechanisms and their molecular components is not trivial. We
developed a computational platform for that purpose, including bioinformatics and dynamical
modeling  tools.  This  platform  starts  with  various  genomic  data  and,  using  existing
knowledge, builds a network of miRNA and TF interactions, embodied as a mathematical
model of ordinary differential equations (ODE) using mass action kinetics. The parameters of
this model are estimated by fitting to the NCI60 data, and we were able to reproduce dosage
compensation for MYC and STAT3, and identify several candidate miRNAs and TF that
likely  mediate  this  phenomenon.  Using the  ODE model  for  steady state  simulations  and
perturbation  experiments,  we  were  able  to  reduce  the  model  complexity  and  identify  a
minimal model of gene dosage compensation for MYC and STAT3 involving 4 miRNAs
with  redundancy  in  their  function  of  dosage  compensation.We  validated  this  model  by
inhibition  of  those  miRNAs  in  an  experimental  model  of  colon  cancer,  which  led  to
increasing levels of cytotoxicity as MYC copy number increases. Thus, the disruption of the
mechanism of  gene  dosage  compensation  leads  to  cell  death.  This  dosage  compensation
mechanism for MYC and STAT3 may represent a sentinel core for the dosage compensation
of other genes with copy number alterations happening simultaneously with those of MYC
and STAT3. The kinetic parameters of these TF-miRNA interactions determine the capability
of these network motifs to achieve gene dosage compensation. Searching for similar motifs
among the putative interactions reported for other candidate target genes, we could suggest a
putative mechanism for the dosage compensation of STAT5B and FOXC1 as well.
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We propose the existence of a regulatory network mediated by miRNAs that compensates for
gene dosage changes in aneuploid cancer cells. We suggest that the manipulation of specific
nodes  of  this  miRNA-based  regulatory  network  could  block  gene  dosage  compensation,
representing a specific target against aneuploid cancer.

Results

Candidate genes under transcriptional  gene dosage compensation are present across the
cancer genomes of the NCI-60 panel

To identify genes under possible dosage compensation,  we compared copy number,  gene
expression and proteomic data of all genes in the NCI60 panel. We considered input data
including high resolution copy Number Variation data (DNA) of the NCI-60 Cancer Cell
lines from 4 different platforms (Bussey et al., 2006) , the Gene Transcript (RNA) Average
Intensities  of 5 Platforms  (Gmeiner,  Reinhold,  & Pommier,  2010),  and the protein levels
(Protein) of a global proteome analysis of the NCI-60 cell line panel (Gholami et al., 2013).
Figure  1A-left  shows  the  variation  of  the  absolute  values  of  DNA  copy  number,  RNA
expression  and  Protein  expression.  Next,  we  calculated  the  average  RNA  or  protein
expression of the diploid cell lines (copy number between -0.25 and 0.25) for each gene to
obtain  the  average  diploid  expression  for  every  gene.  Afterwards,  we  normalized  all
expression data against  this diploid average expression for each gene and calculated log2
transformed values. Using this approach, we could directly and simultaneously compare the
variation in DNA Copy Number variation, RNA and Protein expression across the NCI60
panel to look for genes with high variations in DNA copy numbers but a low tolerance to
variation  in  RNA  or  protein  expression  as  they  could  represent  candidate  targets  under
dosage compensation (Figure 1A). Indeed, we plotted the Standard Deviation (SD) of the
DNA,  RNA  and  Protein  values  across  the  59  cell  lines  and  observed  that  several  dots
separated from the main gene population as they present high SD of DNA levels (Figure 1B).

To obtain  a  good separation  of  candidate  compensated  genes  from the  main  cluster,  we
implemented  a  Gaussian  mixture  model  (GMM)  with  these  data  (Figure  1C).  After
classification,  we  could  observe  one  group  of  genes  with  high  SD of  DNA copies  and
relatively low SD of RNA and/or protein expression values (Figure 1D). This cluster showed
the expected behavior with high amplitudes in DNA values but very low variation in RNA or
protein expression (Figure 1E). For example, MYC presents high frequency of amplifications
in the NCI60 panel without the corresponding increase in RNA levels (Figure 1F right). A
similar behavior is observed for RAB5C for both RNA and protein levels despite its copy
number variations (Figure 1F middle), compared to a gene such as SAV1 where copy number
and RNA expression are well correlated (Figure 1F right). Next, we discarded those genes
with orthologues in X/Y chromosomes since they cannot be differentiated using microarray
techniques, and obtained a list of 56 gene candidates with putative dosage compensation at
the transcript level. In some cases there was also protein data confirming this behavior but
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there was no candidate with putative compensation at the protein level only.

We  next  aimed  to  correlate  the  behavior  of  the  copy  number  variations  among  these
candidate genes to their corresponding chromosomal locations across the NCI60 panel. The
clustergram in  Figure  1G shows different  clusters  suggesting  a  similar  behavior  of  copy
number  variations.  As  expected,  many  of  these  genes  are  correlated  by  their  genomic
locations, especially gene clusters belonging to the chromosomal bands 3q26, 6p25, 8q24,
9p21-22, 10q22-23, 11q22-24, 17q11 and 17q21-23. These data suggests the existence of
genes with low tolerance to variation in their  RNA expression despite high copy number
variation across the NCI60 panel, partially related by common chromosomal locations.

We hypothesized,  at  this  point,  that  the  inhibition  of  a  dosage compensation  mechanism
would release the brake imposed on the expression of all these additional copies leading to
significant over-expression of these genes. If the dosage compensation of these genes was
favored during cancer evolution, its over-expression could potentially lead to death of the cell
lines  with  these  specific  amplifications.  Therefore,  we  focused  our  next  steps  on  the
description of possible mechanisms involved in dosage compensation of amplified genes. For
example, MYC presents 27 compensated amplifications with very similar expression levels
even with 8 genetic copies. Therefore, we reduced our list of candidates by discarding genes
with high DNA variation due mostly to deletion (more than 6 cell lines with compensated
deletions) and kept only genes with at least 6 cell lines with compensated amplifications. This
approach reduced our list to 21 candidate genes with dosage amplifications (Expanded View
Figure 1) potentially compensated at the transcript level across the NCI60 panel.

A mathematical  model  of  gene  dosage compensation  mediated  by  a  network  of  miRNA-
transcription factor interactions

We asked whether  dosage compensation  mechanism could  be mediated  by systems-level
properties  arising  from a  complex  regulatory  network of  gene  expression.  Since  there  is
expression data available of miRNAs  (Blower et al.,  2007) and transcription factors (TF)
(Gmeiner et al., 2010) for the NCI60 panel, we performed a correlation analysis of the copy
numbers of target genes with the expression levels of miRNAs and transcription factors in
order  to  identify  possible  regulators  responding  to  the  dosage  of  our  candidate  genes
(Expanded  View  Figure  2).  There  are  both  miRNAs  and  TF  with  positive  or  negative
correlation to the candidate copy numbers (Expanded View Figure 2A), although most of
those  correlations  do  not  correspond  to  the  direct  reported  interactions  (Expanded  View
Figure  2B).  Using  all  those  interactions  (see  Expanded  View Section)  we constructed  a
network  of  putative  and  validated  regulatory  interactions  connecting  all  candidate  genes
(Expanded View Figure 2C). However, from the construction of this network topology is
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easy to infer that this network could sense changes in copy number of target genes only if
they also have a TF-function (red colored interactions, Expanded View figure 2C). Only a
gene candidate with TF function will trigger a signal that can be propagated throughout the
network and back if  this  gene  has  a  regulatory  loop.  This  loop would  compensate  gene
expression in response to changes in gene dosage.

The  regulatory  motifs  with  potential  systems-level  properties  to  mediate  dosage
compensation  are widely present  within this  putative  network (  Expanded View section).
Nevertheless, a gene-dosage response mediated by one or several of these regulatory loops
will depend on the strength of the interactions (i.e. their kinetic parameter values). Due to the
high complexity of this miRNA/TF regulatory network, we envisaged the construction of a
large scale mathematical model in order to gain insight into a possible mechanism of gene
dosage  compensation  mediated  by  any  of  the  many  regulatory  loops  identified  in  this
network. A quantitative systems-level approach for the calculation of the goodness of fit of a
mathematical  model  describing  the  interactions  enabled  us  to  assess  the  feasibility  of  a
proposed network topology for gene dosage compensation.

First, we reduced the network complexity to include only the target genes with TF-function
as they are the only genes for which a copy number variation can be sensed. This resulted in a
network  of  517  nodes  and  44016  arcs  of  putative  and  validated  interactions.  Since  we
collected about 65.000 experimentally validated interactions out of HTRI, Pazar, Transmir
and Mirtarbase, we decided to include only experimentally validated interactions to further
reduce model complexity. This led to a network of 78 nodes and 578 arcs of experimentally
validated interactions. After this simplification, several target genes became dead ends, since
no validated interactions are reported influencing other nodes of the network. Therefore, we
removed them, further reducing the model to include only 4 target genes with TF-function
and validated interactions influencing other nodes of the network: MYC, STAT3, STAT5A
and STAT5B. This led to a network of 65 nodes and 506 arcs. The nodes include 45 TFs and
20 miRNAs. The arcs formed 16 feedback loops, 28 coherent feed-forward loops and 45
incoherent feed-forward loops (Figure 2A).

Second, we built an automated platform to generate ODE mathematical models for COPASI
based on our candidate network topology. To do so, we introduced ODE expressions for the
schematic  representations  of  the  modeled  interactions  for  the  target  gene,  miRNAs  and
associated TFs (Figure 2B) and translated them into differential equations. The biochemical
model includes 65 species, 130 reactions and 305 parameters. The mathematical description
of these reactions was represented using mass action kinetics under the assumption that each
cell line of the NCI-60 panel represents a different steady state of this model depending only
on the copy numbers of the genes in the network. The model parameters were estimated to fit
the model to the data using the Parameter Estimation function of COPASI with the Hooke-
Jeeves algorithm of optimization  (Hooke & Jeeves, 1961). We increased the weight of the
objective function of the expression of the 4 target genes in order to favor the search of model
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parameter  values  leading  to  dosage  compensation.  Model  refinement  was  performed  by
interrupting the fitting process after several days without any significant progress. At these
periods of time, we calculated the goodness-of-fit for each species and performed a metabolic
control  analysis.  We  calculated  the  p-values  (t-Student  to  compare  simulated  with
experimental data) for the goodness-of-fit for the first resulting model, which presents a good
fitting  for  most  species  except  for  miR106a  (p  =  0.012).  After  removing  miR106a,  the
resulting model achieved a lower objective function value (better fit) but miR145 had the
worse goodness-of-fit (p=0.075) without significant control on the target genes. We decided
to remove also miR145 from the model and continued the parameter estimation to obtain an
optimized model with a lower objective function (figure 2C). For this last fit, there was no
statistical difference of the values of the simulated species compared to the experimental data
(p>0.1, figure 2D), obtaining thereby a mathematical model describing the experimental data
of our target candidate and their associated miRNAs and TFs.

Furthermore, we asked whether the resulting model is able to compensate the gene dosage of
our candidate  target  genes in  response to  an increase in gene copy numbers.  In order  to
ascertain this, we performed a parameter scan using COPASI for the copy number of the 4
target genes individually. As shown in figure 2E, increasing the copy number of MYC from 1
to 5 leads only to an increase of 1.95 fold in MYC expression. For STAT3, an increase from
1 to 5 in copy number leads to an increase of 3.19 fold in STAT3 expression. This was not
the case for STAT5A and STAT5B, which copy number increases were not compensated in
the  model.  We  next  performed  a  metabolic  control  analysis  using  COPASI  to  identify
candidate miRNAs or TFs with high positive or negative regulatory control on the expression
level of the 4 target genes. We plotted the 6 miRNAs with the highest negative control and
the 6 TFs with the highest positive control (figure 2F). The results showed that MYC levels
are mainly controlled by an interplay between miR-17, miR20a, miR19a and BRCA1 and
NF-KB1. STAT3 levels are mainly controlled by miR-17, miR-20a, miR19a and BRCA1,
NF-KB1, ETS1 and ATF1. Although STAT5A and STAT5B were not compensated upon
changes in their copy numbers, they also present control in their expression levels by some of
the  same  miRNAs  and  TFs,  suggesting  that  the  mechanism  of  MYC  and  STAT3
compensation could also impact the levels of STAT5A and STAT5B. These observations
demonstrate  that  our  mathematical  model  is  able  to  describe  a  theoretical  network  of
validated  interactions  between miRNAs and TFs with  systems-level  properties  mediating
direct dosage compensation of MYC and STAT3, with a possible impact on STAT5A and
STAT5B. If this model is correct, the inhibition of some miRNAs negatively controlling the
expression levels of the target genes could potentially block gene dosage compensation.
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A minimal model of MYC and STAT3 dosage compensation leads to the identification of
putative targets against aneuploid cancer

We next  asked  which  are  the  minimal  components  of  the  network  to  identify  the  exact
regulatory loops mediating gene dosage compensation and to design strategies to interfere
with this mechanism in silico. First, we sought to identify the essential species involved in the
feedback  or  feed-forward  loops  controlling  gene  dosage  compensation.  We  performed
parameter scans changing the copy number of the compensated genes (MYC and STAT3)
and observed the behavior of the concentrations of the miRNAs and TFs of the model. For
MYC copy number scan, the MYC expression showed a compensated increase, observed also
for several TFs and miRNAs (figure 3A left), including those identified by metabolic control
analysis  (miR-19a,  miR-20a,  miR-17, figure 3E) but  others,  such as  STAT3 and miR21,
decreased with increasing MYC copy numbers (Figure 3A left). For STAT3, increasing gene
copy numbers led to a compensated increase of STAT3, several miRNAs including miR21,
miR17, miR221, miR19a and miR20a and other TFs but also a decrease in STAT5A, ETS1
and PPARG (Figure 3A right).

To assess the role in dosage compensation of these miRNAs and TFs responding the changes
in  MYC  and  STAT3  copy  numbers,  we  performed  single  in  silico  inhibitions  of  the
corresponding nodes by setting their interaction (inhibition/activation) parameters to 0. The
inhibitions of single species altered the steady state levels of expression of MYC and STAT3
for  the  basal  conditions  (copy  number  of  1)  but  this  effect  is  not  shown  due  to  the
normalization of the expression, to better appreciate the effect on gene dosage compensation
(figure  3B).  The parameter  scans  under  these  conditions  showed that  MYC and STAT3
compensations are completely abolished when their respective interaction parameters are set
to 0, confirming that their TF function is essential for the network to sense the changes in
copy number (MYC(-) and STAT3(-) conditions, figure 3B). Also, MYC compensation is
slightly  altered  when  STAT3  is  inhibited  (STAT3(-))  and  STAT3  compensation  is
completely  abolished  when  MYC  is  inhibited  (MYC(-),  suggesting  an  interplay  in  the
mechanisms  of  gene  dosage  compensation  of  these  two  genes.  In  contrast,  the  single
inhibition for all remaining TFs and miRNAs had little or no effect on MYC and STAT3
dosage compensation,  suggesting  that  this  mechanism could  be  redundantly  mediated  by
more than one miRNA or TF.

Therefore, we perform another in silico experiment changing the copy number of MYC and
STAT3 while all miRNAs or TFs were inhibited, except by MYC and STAT3 themselves
(Figure 4C). The results showed that the inhibition of all the other TFs (TF (-)) had no effect
on the dosage compensation of MYC and STAT3. However, the inhibition of all miRNAs
(MiR(-)) completely abolished the dosage compensation for both genes and led to a huge
increase in their expression. We then proceeded to restore some miRNAs individually back
into the MiR inhibited model, for example (MiR(-) + miR17) to simulate the effect of the
active  miR17  alone.  Surprisingly,  more  than  one  miRNA  was  able  to  restore  dosage
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compensation  for  both  MYC  and  STAT3,  confirming  thereby  that  this  mechanism  is
redundant. Indeed, miR-17, miR-19a and miR20a were individually able to compensate MYC
dosage  and  miR17,  miR20a  and  miR21  were  able  restore  STAT3  dosage  compensation
(Figure 3C). Additionally, to confirm the role of these redundant miRNAs on gene dosage
compensation in silico, we performed their triple inhibition in the complete model. Indeed,
the  triple  inhibition  (miR17,  miR19a  and  miR20a  (-))  was  able  to  block  MYC  dosage
compensation  (figure  3C  left),  whereas  (miR17,  miR20a,  miR21  (-))  abolished  STAT3
dosage  compensation  (Figure  3C  right),  confirming  that  MYC  and  STAT3  dosage
compensation is mediated by a redundant mechanism.

Based  on  these  results  of  redundant  compensation  and  the  interplay  between  MYC and
STAT3, we proposed a minimal network topology of gene dosage compensation for MYC
and STAT3 (Figure 3D). After reconstructing the interactions from the original network, the
minimal network states that MYC is compensated by 3 redundant negative feedback loops
formed with miR17, miR19a and miR20a. The compensation of STAT3 is mediated by 1
feedback loop with miR21 and 2 feed-forward loops:  (STAT3-MYC-miR17-STAT3) and
(STAT3-MYC-miR20a-STAT3).  From  this  minimal  network  topology,  we  constructed  a
minimal  mathematical  model  of  gene  dosage  compensation  for  MYC and STAT3.  After
fitting  this  minimal  model  to  the  experimental  data  and  repeating  the  parameter  scan
experiments for gene copy numbers of MYC and STAT3, we reconstituted the same dosage
compensation mechanism observed in the original large model of interactions (Figure 3E).
These  results  indicate  that  we  identified  in  silico a  minimal  model  of  gene  dosage
compensation  for MYC and STAT3 mediated  by their  interactions  with miR17,  miR19a,
miR20a and miR21.

The kinetic parameters of the TF-miRNA interactions determine the capability of a putative
network motif for gene dosage compensation

Since we were able to identify a minimal model of gene-dosage compensation for MYC and
STAT3 with their interactions with 4 miRNAs, we next asked whether we could identify
common motifs of gene dosage-compensation for other TFs from our list of candidates. Due
to  the  high  complexity  of  the  previous  models,  we  could  employ  only  experimentally-
validated interactions to construct the networks, which probably precluded the identification
of some motifs of gene dosage compensation for other less studied candidate genes. Indeed,
the MYC-STAT3 model is data-driven but its identification was dependent on the available
information of miRNA-TF-gene interactions: 3 negative feedback loops compensate MYC,
whereas  1  negative  feedback  loop  and  2  feed-forward  loops  compensate  STAT3.  These
results suggest that the identification of those types of basic network motifs could lead to the
identification of gene dosage compensation.

To  continue  with  this  rationale,  we  constructed  the  networks  of  all  direct  interactions
(putative and validated) of 4 single genes with other TFs and miRNAs: FOXC1, FOXF2,
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STAT5A and STAT5B. Next, we filtered those arcs to include only negative feedback loops
with miRNAs and feed-forward loops of 2 types: Gene-TF-miRNA-Gene and Gene-miRNA-
TF-Gene.  The  resulting  network  topologies  include  148  arcs  for  FOXC1,  114  arcs  for
FOXF2, 20 arcs for STAT5A and 97 arcs for STAT5B (figure 4A). These networks were
subsequently converted into ODE models and the corresponding NCI60 data was extracted to
proceed  with  the  parameter  estimation  task  in  COPASI  first  using  EP  (Evolutionary
Programming) and then the Hooke-Jeeves optimization algorithms to refine the fitting. The
models were fitted until no parameter boundary alert was present and the objective functions
were low for each of them (Figure 4B, OF/N objective function divided by the number of
fitted values). From the resulting fitted models, the model of STAT5B and FOXC1 showed
dosage compensation (Figure 4B). After performing similar experiments to those presented in
figure  4,  we  determined  that  the  main  regulators  of  STAT5B dosage  compensation  are
miR19A and miR19B1 (Figure 4D). For FOXC1, three miRNAs formed negative feed-back
loops to redundantly compensate its gene dosage (Figure 4E). Indeed, after constructing and
fitting these minimal models of STAT5B and FOXC1 dosage compensation, we were able to
reconstitute the behavior of dosage compensation for both genes (Figure 4C).

We next asked what is particular about those few feedback loops accounting for dosage-
compensation,  while  many  others  do  not.  We perform a  triple  parameter  scan  using  the
minimal  model  of MYC-STAT3.  Since the compensation in that  model  is  redundant,  we
inhibited miR19A and miR20a so that we can evaluate only the behavior of the negative
feedback loop between MYC and miR17. Next, we monitored the concentration of MYC for
two conditions: a MYC copy number of 1 and a MYC copy number of 3. Under these two
conditions we scanned the effect of different values of ks (synthesis rate of the miRNA), ka
(activation  parameter  of  the  TF)  and  kr  (repression  parameter  of  the  miRNA).  After
calculating the ratio of those 2 conditions, we obtained a three dimensional landscape of gene
dosage compensation with a color-coded heatmap of the fold increase in MYC expression
upon a 3 fold increase in copy number (Figure 4F). The blue color corresponds to a region of
dosage-compensation whereas the red region represents the linear increase of expression as a
function of copy number. Indeed, when we located the positional values of the parameters
corresponding  to  the  compensating  motifs,  they  all  appeared  in  the  blue  region  of
compensation  (Figure  4F)  except  by the  interactions  between STAT3 and miR21.  These
results confirmed that the simple identification of network motifs such as feedback or feed-
forward  loops  is  not  enough  to  identify  systems-level  properties  such  as  gene-dosage
compensation. This behavior is indeed dependent on the data-driven identification of the right
parameter  values  accounting  for  the  emergence  of  this  property  of  gene  dosage
compensation.
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The therapeutic potential of targeting gene dosage compensation against aneuploid cancer

Finally, we aimed to assess the therapeutic potential of the manipulation of the phenomenon
of gene-dosage concentration to target aneuploid cancer. First, we look for the copy number
values and the corresponding expression of the 3 genes identified hereby as compensated but
in  a  larger  collection  of  cancer  cell  lines.  Therefore,  we  employed  the  data  of  CCLE
comprising 937 cell lines (Ghandi et al., 2019) . These cell lines include 586 cell lines with
MYC amplification (63%), 409 cell lines with STAT3 amplification (44%), 407 cell lines
with  STAT5B amplification  (43%) and  371  cell  lines  with  FOXC1 amplification  (40%)
(Figure 5A). The trendlines suggest a behavior of gene dosage compensation for almost all
the cell lines with copy number amplification, suggesting that most aneuploid cancer cells
could be targeted by blocking gene dosage compensation.

A second issue about the therapeutic potential of blocking gene dosage compensation is the
specificity. Here, we focused on the dosage compensation of MYC. To block the redundant
compensation of MYC, 3 miRNAs have to be blocked: miR17, miR19a and miR20a. How
could this  potentially  impact  diploid cells?  In order to assess that,  we performed a triple
parameter scan on the ks (miRNA synthesis parameters) of the 3 miRNAs and plotted the
MYC concentration values in function of the concentrations of those 3 miRNAs. The scan
was repeated under 3 conditions of varying MYC copy numbers (2, 6 and 10) and the effect
on  the  MYC  concentration  was  observed  (Figure  5B).  Although  there  are  some  slight
alterations under almost a complete depletion of the 3 miRNAs for the diploid condition (CN
= 2), the increase in MYC copy number is much higher with increasing copy numbers of
MYC, and less miRNA depletion is required. This result indicates that the perturbation of the
mechanism of dosage compensation has a promising therapeutic range that increases with the
extent of dosage amplification.

In order to confirm this hypothesis experimentally, we chose 3 colon cancer cell lines of the
NCI60 panel with varying copy numbers of MYC, the HCT15 (2), the HT29 (4) and the
SW60 (7). We chose a concentration of 3 anti-miRs combined to treat the cells and compared
that with a scrambled RNA as control and monitored cell death over time until 70 hours. We
observed no difference in the cell death induction by the antimiRs and the control RNA for
the HCT15 cell line, whereas the difference between those two conditions increased with the
copy  number  of  MYC  (figure  5C).  These  results  indicates  that  cells  with  higher  copy
numbers of MYC are more sensitive to the blockade of gene dosage compensation by the
perturbation of miR17, miR19a and miR20a. Altogether, our data-driven results report the
transcriptional gene dosage compensation of MYC, STAT3 and STAT5B mediated by an
emergent property of feedback and feed-forward loops. The interactions forming this network
motifs have a specific set of kinetic parameters enabling compensation. This mechanism can
be blocked by depleting key miRNAs, affecting in a larger extent those cells with higher copy
numbers of those compensated genes, highlighting the potential of these kind of interventions
to target aneuploid cancer.
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Discussion

Currently, the topic of miRNA regulation is gaining much attention in the field of molecular
and cell biology. Indeed, the identification of a miRNA controlling cancer robustness has a
huge therapeutic potential since miRNAs are becoming more attractive targets for therapy, as
shown for  the first  time by miRNA-122 against  hepatitis  C infection  and hepatic  cancer
(Lindow & Kauppinen, 2012). Nowadays, at least 7 miRNA mimics or inhibitors are tested in
clinical trials thanks to the development of chemical modifications to increase their stability,
to improve targeting to disease sites or the transport by several options of delivery systems
(Rupaimoole  & Slack,  2017).  However,  it  is  very  hard  to  identify  single  miRNA-target
interactions  with  relevant  biological  function.  Classical  approaches  start  with  the
identification  of  dysregulated  miRNAs  related  to  disease  and  extensive  molecular  and
cellular  biology work is  required to  validate  the gene targets  related  to the phenotype of
interest, which is inefficient because each miRNA can alter the expression of hundreds of
genes by only 1.5 to 4 fold  (Vera et al., 2013) and it is the cooperative effect of miRNA
networks  that  makes  them robust  regulators  (Herranz  & Cohen,  2010;  Matsuo,  Eno,  Im,
Rosenshein, & Sood, 2010) . Therefore, the identification of critical miRNAs likely to affect
the  response  of  those  networks  requires  the  analysis  of  a  mathematical  model  of  those
interactions by means of sensitivity analysis combined with predictive simulations to suggest
key biochemical processes to become potential therapeutic targets  (Lai et al., 2013; Vera et
al., 2013) .

We developed a computational platform to construct large scale models of miRNAs and TF
interactions with a reverse approach, starting with a list of target genes of interest.  These
genes  could  be  determined  by  differential  expression  analysis  or  customized  by  the
researchers. Afterwards, a network topology is constructed with all the reported interactions
of those target genes with miRNAs and TFs. However, the network topology is not enough to
identify the most robust targets to control the phenotype of interest. Therefore, our approach
goes beyond identifying a network and establishes a full dynamical system based on ODEs,
which is calibrated with existing experimental data. Finally, the sensitivity analysis and the in
silico  experiments  enabled  us  to  identify  the  most  robust  target  nodes  to  regulate  the
phenotype  of  interest,  to  determine  the  mechanism  behind  that  phenotype  and  the
interventions on those target nodes.

In the present work we studied the mechanism of gene dosage compensation in aneuploid
tumoral cells with the aid of models constructed by the biocomputational platform. First, we
identified a list of candidate genes under transcriptional gene dosage compensation across the
cancer genomes of the NCI-60 panel. Using these input genes we determined a miRNA/TF
interaction network that connects all candidate genes but its structural analysis revealed that
only those with transcription factor function can be subjected to gene dosage compensation.
After  model  simplification,  the  targets  with  TF  function  were  used  to  construct  a
mathematical model of “sensor loops” with all their reported and experimentally validated
interactions with TFs and miRNAs. Within this model, an emergent property of gene dosage
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compensation was identified for MYC and STAT3 and a minimal model of MYC and STAT3
was extracted,  determining  that  dosage  compensation  is  mediated  by feedback and feed-
forward  loops  with  4  miRNAs.  The  kinetic  parameters  of  these  TF-miRNA interactions
determine  the  capability  of  these  network  motifs  to  achieve  gene  dosage  compensation.
Searching for  similar  motifs  among the putative  interactions  reported  for  other  candidate
target  genes,  we  could  suggest  a  putative  mechanism  for  the  dosage  compensation  of
STAT5B and FOXC1 as well. Our results indicate that the miRNAs responsible for dosage
compensation, particularly MYC, are putative targets against aneuploid cancer since this gene
(and other candidates) are compensated in the larger CCLE data set. Finally, the in silico and
in vitro inhibition of those 3 miRNAs indicates a higher sensitivity to perturbation in cells
with MYC amplification pointing towards the therapeutic potential of targeting gene dosage
compensation against aneuploid cancer.

Indeed, aneuploidy is lethal for normal cells and entire organisms with many negative effects
given by the alteration of the gene dosage leading to unbalanced load of many proteins, some
of them critical altering energetic requirements and protein homeostasis. However, not all of
those dosage-altered genes are critical nor require compensation to maintain cell viability.
Our data  on the NCI60 panel  shows that  only a  handful  of genes  have low tolerance  to
variation in their expression despite a high variation in their copy numbers (Figure 1). Indeed,
others also reported that the messenger RNA (mRNA) levels generally correlate well with an
increased DNA copy number (gene dosage) in aneuploid cancers (Stingele et al., 2012) . We
observed that behavior both at the protein and transcript level for our candidates pointing to a
putative dosage compensation at the transcriptional level.  However, the employed protein
data  set  of  the  NCI60  is  limited,  probably  precluding  the  identification  of  candidates
compensated  at  the  protein  level  only.  In  fact,  gene  dosage  compensation  was  mostly
reported at the protein level and not at the transcriptional level, whereby the stoichiometry of
protein complexes in aneuploid cells determines that excess subunits are either degraded or
aggregated to achieve dosage compensation (Brennan et al., 2019) . Another work, using the
genetic  tug-of-war technique showed that  approximately  10% of the genome shows gene
dosage compensation at the protein level (Ishikawa et al., 2017), although this approach was
not designed to distinguished compensation at the transcriptional level. To our knowledge,
the only previous evidence of gene dosage compensation at the transcriptional level in cancer
cells  was  provided  for  some  few  genes  by  a  report  of  the  insertion  of  an  additional
chromosome  5  (Stingele  et  al.,  2012).  The  only  report  of  dosage-compensation  at  the
transcriptional level was done in wild yeast isolates compared to isogenic euploid strains,
since laboratory strains are very sensitive to karyotypic changes (Hose et al., 2015) .

The dosage compensation by the regulation of gene transcription might be an upstream and
more  effective  mechanism,  as  it  maintains  the  stoichiometry  and  preserves  the  energy
required for transcription,  translation,  and eventual  degradation of the extra proteins.  Our
approach was therefore intended to identify compensated candidates  at  the transcriptional
level. To our knowledge, most reports try to identify potential therapeutic targets based on
differential expression data between tumoral and normal tissues. Those differences arise as a

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.31.928507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.928507


consequence of genetic instability and as such, could be highly heterogeneous among cancer
types.  In contrast,  our work is the first  to explore stability  of gene expression in cancer,
represented by a handful of critical genes which could mediate cell survival despite cancer
genomic instability. Indeed, aneuploidy is a hallmark of most advanced cancer cells that must
have  developed  mechanisms  to  minimize  its  negative  effects.  As  mentioned  in  the
introduction, some conserved patterns in the karyotypic configurations suggest the presence
of a stable mechanism, explained by the existence of a group of critical genes which function
has  to  be  maintained  constant  to  ensure  survival.  We suggest  that  these  essential  genes
establish a central  core of stability  that  is  selected or maintained within the evolutionary
process of the unstable cancer genome. We also propose that this central core of stability is
provided by a mechanism of gene dosage compensation of those critical  genes, known to
have very small tolerance to variation. While the expression of dosage-compensated genes is
controlled in proportion to gene copy, many genes escape dosage compensation in response
to aneuploidy and can contribute significantly to phenotypic variation in cancer.

The behavior  of those candidate  genes under compensation is  therefore  identified by our
criteria of low tolerance in variation of their expression regardless of a high variation in their
copy  numbers.  A  similar  criteria  of  a  CNV-buffering  score  was  already  proposed  for
aneuploid yeast strains as the dosage-compensated genes had higher variation in copy number
but a constraint gene expression  (Hose et al., 2015). Indeed, our list of candidates includes
many cancer-important  genes,  specially  7  transcription  factors  highly  connected  to  many
other genes (Table 1). Some of our candidate genes are clustered in common chromosomal
locations,  which  is  expected  since  copy  number  variants  occur  in  large  fragments  of
chromatin.  However,  the  fact  that  they  seemed  to  be  all  compensated  suggests  that  the
compensation of 1 gene within one of those clusters could be sufficient to co-regulate the
expression of other connected genes, but this needs further work and larger data sets to be
confirmed.

We presumed that the behavior of the genes establishing that stability core would be very
homogeneous among cells and cancer types in terms of compensation. Although the NCI60
panel has few cell lines (59) to argue on that, we could confirm a stable behavior of dosage
compensation for most of the cases of amplified MYC, STAT3, stat5b and foxc1 for the
CCLE data set that includes next generation data of more than one thousand cancer cell lines
of many different cancer types (Ghandi et al., 2019) . The stability in this behavior suggested
a  tightly  regulation  at  the  gene  expression  level.  Indeed,  miRNA  networks  are  robust
regulators of gene expression upon environmental changes  (Herranz & Cohen, 2010) and
they  show  adaptation  to  gene  dosage  through  the  formation  of  regulatory  circuits  with
transcription factors (Bleris et al., 2011). Since the miRNA-TF networks are very complex,
the gene dosage compensation could arise as an emergent property of the system meaning
that a differential expression analysis of gene targets or miRNAs would be insufficient to
identify the underlying mechanism of gene dosage compensation.
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Therefore,  we seeked to identify gene dosage compensation mechanisms mediated by the
emerging  properties  of  complex  miRNA-TF  regulatory  networks.  With  the  aid  of  the
biocomputational  platform  we  studied  the  gene  dosage  compensation  mechanism  in  the
NCI60 panel of cancer cell lines. This includes a collection of 7 types of cancer which are
fully characterized at genomic and transcriptomic level and these data was an input for us to
develop a biocomputational  platform to model  large-scale  miRNA-TF networks.  We first
constructed a large-scale network of interactions including new sources for both putative and
experimentally-validated interactions. Using this network, we constructed and fitted an ODE
mathematical model, which was not able to reproduce any behavior of dosage compensation.
An  important  characteristic  in  biological  networks  like  the  miRNA-TF  networks  is  its
capability to adapt to fluctuating concentrations of its biomolecular components. Coherent
and incoherent feed forward loops (FFL) and feedback loops (FBL) help the network to adapt
from such fluctuations (Carignano, Mukherjee, Singh, & Seelig, 2019; Osella, Bosia, Corá, &
Caselle,  2011).  Indeed,  the feedback regulations  were previously proposed to explain the
gene dosage compensation in aneuploid yeast strains (Hose et al., 2015). Despite of the initial
step-backs, the turning point toward the modeling of the gene dosage compensation was the
insight  of the sensor loop:  the group of interactions  starting in a  transcription factor  and
returning after a defined number of interactions with other species including miRNAs and
other  TFs.  These  includes  feedback  and  feed-forward  loops  but  also  more  complex
interactions. The sensor loop itself also helps the network adapt to fluctuations of the genes
by repressing its expression. Once we added sensor loops in the models, we easily modeled
this mechanism and validated the hypothesis for the genes MYC and STAT3 (Figure 2).

The gene MYC (MYC proto-oncogene, bHLH transcription factor), aka c-MYC, is a well
known  and  studied  transcription  factor.  It  activates  genes  involved  in  proliferation,  cell
growth, cell  differentiation and apoptosis. It is estimated that MYC regulates 15% of the
genes. It is also an oncogene, usually overexpressed in many kinds of cancer  (Dang, 1999)
and it is active in 70% of human cancer but it is also related to apoptosis (Prendergast, 1999).
The desregulation of MYC may lead cancer but may also lead to a cell suicide  (Nilsson &
Cleveland, 2003) , and its reported to have a dual function from oncogene to tumor suppresor
in leukemia (Uribesalgo, Benitah, & Di Croce, 2012).

STAT3, signal transducer and activator of transcription 3, is a TF that relay external signals
to  the  nucleus  where  the  signal  regulates  genes  involved  in  differentiation,  proliferation,
apoptosis, angiogenesis, metastasis and immune system (Johnston & Grandis, 2011; Levy &
Lee, 2002) . In cancer cells this gene suppresses detection mechanism of the immune system,
promotes angiogenesis, invasion and metastasis, deregulates growth (Yue & Turkson, 2009) .
STAT3 is an oncogene but recent information indicates that it may also function as a tumor
suppressor (Avalle, Camporeale, Camperi, & Poli, 2017) .

A deeper analysis of the mathematical model for MYC and STAT3 enabled us to understand
the  underlying  mechanism  of  gene  dosage  compensation  by  the  reduction  of  model
complexity into a minimal model recapitulating the same behavior of dosage compensation
for both genes (Figure 3). First, a sensitivity analysis in COPASI enabled us to identify the
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main TFs and miRNAs regulating the concentrations (but not the compensation) of MYC and
STAT3. Second, a parameter scan varying the copy number of MYC and STAT3 enabled us
to confirm which species increase or decrease together with increasing copy numbers for both
genes.  Afterwards,  the same experiment  was repeated along with the single inhibition of
those species but the compensation behavior was unaltered. This immediately indicated that
the  mechanism of  compensation  is  redundant,  prompting  us  to  inhibit  groups  of  species
instead. The inhibition of all miRNAs indeed abolished gene dosage compensation but it was
restored by the single reactivation of 3 miRNAs for each gene. Using the wild type model we
could confirm that the only way to abolish gene dosage compensation was to simultaneously
inhibit those 3 corresponding miRNAs for each gene. After reconstructing the interactions
from  the  original  network,  the  minimal  network  states  that  MYC is  compensated  by  3
redundant  negative  feedback  loops  formed  with  miR17,  miR19a  and  miR20a.  The
compensation of STAT3 is mediated by 1 feedback loop with miR21 and 2 feed-forward
loops:  (STAT3-MYC-miR17-STAT3)  and (STAT3-MYC-miR20a-STAT3)(Figure  3).  The
miR17, miR19a and miR20a are actually all co-regulated as the miRNA cluster miR-17-92.
This  is  considered  an  oncogenic  cluster  and  is  actually  called  OncomiR-1  since  it  is
overexpressed  in  several  types  of  cancer  (for  review  see  (Fuziwara  &  Kimura,  2015)).
Several reports showed that these miRNAs form important network motifs with MYC in B-
cell  lymphoma  (Mihailovich  et  al.,  2015),  with  E2F/MYC  (Y.  Li,  Li,  Zhang,  &  Chen,
2011) and with STAT3 in retinoblastoma  (Jo et al., 2014). This biology- inspired in silico
experiments enabled us to propose a minimal model of gene dosage compensation for MYC
and  STAT3 out  of  experimentally-validated  interactions.  Due to  the  redundancy  in  gene
dosage compensation, it would be unfeasible to identify such mechanism by single or even
double inhibitions using a functional genomics approach without the guidance of a systems
biology approach.

The biocomputational platform developed was an accelerator of discovery for this work. By
constructing models in minutes and automating several processes the platform shortened the
time  required  to  complete  the  construction  of  mathematical  models.  The  compilation  of
around 65,000 experimentally  validated  regulatory  interactions  had a  huge impact  on the
project.  The amount of interactions allowed the platform to build interesting models with
enough interactions.  And by not using putative interactions,  the models were cleaner  and
smaller.

Nevertheless,  our  model  has  been  simplified  in  several  ways.  We  included  only
experimentally  validated  interactions  in  the  model  presenting  gene  dosage  compensation.
From the 21 candidate genes, our current model offers an explanation for the gene dosage
compensation of MYC and STAT3 only. This is clearly a limitation due to the small amount
of cases of the NCI60 panel representing only 59 cases of aberrant genomes. Further work
with larger data sets such as the CCLE and TCGA could lead to the identification of further
candidate genes and the availability of more data to obtain more accurate models of gene
dosage compensation. In addition, we faced a limitation due to paramount complexity of the
mathematical models, which prevent us from using putative (not experimentally validated)
interactions  to  reduce  model  complexity.  Despite  of  these  limitations,  and  based  on  the
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experience with the minimal model for MYC and STAT3, we built single gene models for
other  four  compensated  candidates  including  both  putative  and  experimentally  validated
interactions.  Hereby,  we  filtered  for  only  those  arcs  establishing  FBL or  FFL obtaining
smaller models suitable for a faster parameter estimation. Among those, we could provide a
putative  explanation  (out  of  putative  interactions)  for  the  gene  dosage  compensation  of
STAT5B and FOXC1 and reconstruct a minimal model for their corresponding underlying
mechanisms of compensation (Figure 4). Interestingly, MYC, STAT3, STAT5B and FOXC1
present a behavior similar to dosage compensation on the CCLE data (Figure 5A). When
plotting the kinetic parameters describing the main interactions of the compensating network
motifs for all those genes within a three dimensional landscape of gene dosage compensation,
we observed that they are all located in the compensation region. Therefore, we critically
established that the network topology alone is not enough, as with different parameter values
the model would lose gene dosage compensation, strengthening the need for full dynamic
models.

The broad compensation of those target genes in CCLE and the further analysis of the current
model of gene dosage compensation of MYC and STAT3 or even other genes could reveal
novel specific targets against cancer. Thus, we suggest that cancer has a robust Achilles-Heel
due to an increased sensitivity  to  perturbations  in these circuits,  which is  not necessarily
reflected  as  differences  in  miRNA expression  levels  but  at  systems-level  properties.  The
identification of control points blocking the dosage compensation could lead to the over-
expression of these two genes and others under their influence in a context of fragility for the
cancer  cell.  These  strategy  is  promising  inasmuch  the  overexpression  of  these  important
transcription factors seem to be more sensitive to blockade of gene dosage compensation
when  their  copy  number  are  more  amplified  as  expected  in  silico  (Figure  5B)  but  also
suggested by the higher cytotoxicity of colon cancer cells with higher MYC copy numbers
upon inhibition of the three miRNAs proposed here to  mediate  its  dosage compensation.
Indeed, dysregulated MYC triggers rapid apoptosis (Nilsson & Cleveland, 2003) and STAT3
may function as a tumor suppressor  (Avalle et  al.,  2017). An important prediction of the
study of gene dosage compensation in aneuploid yeast was indeed that the phenomenon of
dosage compensation occurs at genes that are most toxic when overexpressed  (Hose et al.,
2015) .

In conclusion, the present work led to the construction of a complex mathematical model to
study  gene  dosage  compensation  and  formulated  model-driven  hypothesis  for  the
identification  of  novel  targets  against  aneuploid  cancer.  In  addition,  the  computational
platform  built  with  this  project  has  other  potential  applications  to  understand  miRNA-
mediated  gene  regulation  and  perform  simulations  of  the  systems-level  effects  of
perturbations in miRNA networks related to disease. Furthermore, since current techniques
such as Next Generation Sequencing allows the rapid acquisition of genomic data for cancer
patients,  this platform can be easily adapted to generate personalized computer models to
identify the optimal targets according to each cancer configuration. Future work is required to
confirm the effect of gene dosage compensation on patient  survival  and to identify other
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compensation cores to direct personalized precision therapies against cancer.

Altogether, the current results could contribute to the identification of that stability core of
essential genes, which manipulation of specific nodes has the potential to become a novel
approach to specifically target aneuploid cancer cells. 

 

Materials and Methods

A.Data sources

Data was gathered from several sources. The primary sources were from experiments on the
NCI60 panel: gene copy number (Bussey et al., 2006) , RNA gene expression (Shankavaram
et  al.,  2007) and protein expression  (Gholami  et  al.,  2013).  MicroRNA related  data  was
downloaded  from  Mirtarbase  (Hsu  et  al.,  2014) and  MiRBase  (Kozomara  et  al.,  2019;
Kozomara & Griffiths-Jones, 2014). For background knowledge on gene regulation we relied
on several sources: Transmir (Wang, Lu, Qiu, & Cui, 2010), Pazar (Portales-Casamar et al.,
2009) , TRED (Transcriptional Regulatory Element Database) (Jiang, Xuan, Zhao, & Zhang,
2007) , CircuitsDB (Friard, Re, Taverna, De Bortoli, & Corá, 2010) .

B. Gene classification using Gaussian Mixture Models

In order to classify genes according to their behavior, we developed a computer algorithm
based on the  Gaussian  Mixture Model  functions  in  MATLAB. An increasing  number  of
components  (ki)  of  the  GMM  model  is  added  sequentially  and  the  GMM  training  is
performed  for  several  iterations  searching  for  the  best  fit  to  the  experimental  data.  The
resulting GMM is used to classify the cells  of the original data set.  A MANOVA test  is
applied  to  the  resulting  clusters  to  evaluate  the  statistical  significance  of  adding  another
component to the GMM. This is done until the new component adds no further significance. 

C. Construction of the Regulatory Network

We are interested  in  the regulatory network of  miRNAs and TFs in  the nearness of and
directly affecting the genes selected by the GMM. In order to build this network, we relied
heavily  on  the  interaction  database  gathered  previously.  A  regulatory  interaction  in  this
database is an arc which starting point is the regulator and the ending point is the regulatee.
For many interactions, the database tells whether the regulation is an activation or repression.
When the database does not provide this information, if the regulator of the interaction is a
TF we assume that the regulation is an activation, and if the regulator is a miRNA we assume
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that it is a repression.

We use a directed graph to represent this network. We first identify the nodes of this graph
which are composed by all the genes selected by the GMM as well as all the direct regulators
and regulated nodes of these genes. To identify the regulators, we search in the interaction
database for arcs ending in one of the selected genes. The direct regulators are all the starting
nodes of each of the arcs found. Similarly, we search for arcs starting in one of the selected
genes and the end node of the arc is a directly regulated gene. Hence, we have successfully
identified all the nodes of the graph. Each node is a selected gene, a miRNA or TF, all of
them biomolecular species relevant in the gene dosage compensation phenomenon. We then
build the list of arcs of the graph. From the list of nodes or species identified, for each pair of
species, if there is an arc in the interaction database linking these two species, we add this arc
in the list of arcs of the graph. The lists of species and arcs identified becomes the graph
representing the regulatory network affecting the selected genes of interest.

In order to examine the target/miRNA/TF network for the presence of regulatory motifs with
systems-level  properties,  we searched for  positive  and negative  feedback  loops (between
miRNAs and TFs), coherent feed-forward loops and incoherent feed-forward loops.

D. Ordinary differential equation modeling of miRNA-TF networks

We now construct a system of ODEs from the graph representation of the regulation network.
Since  the  gene  dosage  compensation  phenomenon  is  gene  expression  related,  we  are
interested in constructing a metabolic model from the graph. For each species of the graph,
we write an equation computing the concentration or mRNA expression of this specie. The
list of all these equations defines a system of ODEs modeling the metabolic behavior of the
regulation network. We have three different types of equations, one for each type of species:
candidate gene, TF and miRNA. The schematic representations of these equations are shown
in (Figure 2B).

For a candidate gene, the mRNA expression equation has a synthesis part and a degradation
part. The expression of each gene equals to the synthesis part subtracted by the degradation
part.

The synthesis equation of the candidate gene is the product of three factors: a) the gene copy
number, b) the synthesis rate of the gene, a parameter to be fitted by the Parameter Estimation
process, and c) the total regulatory effect exercised by TFs on the candidate gene which in the
graph is represented by all the incoming arcs of the candidate gene where the arc's regulator
is a TF. The total regulatory effect factor is usually >1 since most TFs are activators but it
could be <1 when the regulating TFs are mainly repressors.
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The degradation equation of a  candidate  gene is  also the product of three factors:  a)  the
mRNA concentration of the gene, b) the degradation rate of the gene, another parameter to be
estimated, and c) the total regulatory effect of miRNAs on the gene. Because the degradation
equation is a product and the total repression effect is one of the factors, the value of the
repression effect is usually >1 since miRNAs are repressors, thus exercising an accelerating
effect on the degradation.

For  modeling  the  total  regulatory  effect,  we define  the  following parameters,  also  to  be
estimated  later  against  experimental  data.  For  a  TF  we  define  an  activation  rate  that
represents  the  rate  at  which  the  TF  activates  o  intensifies  the  expression  of  the  TF's
regulatees.  Likewise  we  define  a  repression  rate  representing  the  rate  at  which  the  TF
suppresses or silences its regulatees when the TF has a repressing role. For a miRNA we also
define a repression rate since miRNA can only repress its regulatees. The single regulatory
effect of one TF or one miRNA over all of its regulatees is the product of the concentration of
the TF or miRNA multiply  by the corresponding rate.  For instance,  the concentration  of
MYC  multiplied  by  MYC's  activation  rate  or  the  concentration  of  mir19  by  mir19's
repression  rate.  Given  that  the  concentration  of  a  regulator,  the  activation  rate  and  the
repression rate  are  all  zero or  positive,  the  single effect  of  one  regulator  is  also zero  or
positive. Following this definition, we have only one repression rate for a miRNA, therefore a
given miRNA will exercise the same rate of repression over each of its regulatees.

We model the total repression effect of miRNAs in the degradation equation of a candidate
gene as the sum of 1 plus the single effect of each of the miRNAs repressing that gene. This
value is always greater or equal than 1. When there are no miRNA repressing the gene, this
factor would be 1. When there is at least one miRNA repressing the gene, this factor would
be greater than one as long as the concentration of the miRNA is positive.  These values
model the expected function of the total repression effect in the degradation equation for the
presence of repressing miRNAs would accelerate the degradation of the gene.

We define the total regulation effect of TFs in the synthesis equation of a candidate gene as a
ratio between the total activation effect of the TFs divided by the total repression effect of the
TFs. The total  activation effect is the sum of 1 plus the single effect of each of the TFs
activating the gene. Likewise, the total repression effect is the sum of 1 plus the single effect
of each TFs repressing the gene. When there are no TFs regulating the gene, this ratio is 1.
When there are TFs activating or repressing the gene, if the total activation effect is greater
than the total repression effect then the ratio is greater than 1, hence accelerating the synthesis
of the gene. If there are more repression effect than activation effect, the ratio is less than 1
slowing down the synthesis. If both effects are equal, the ratio is 1 exercising no effect on the
synthesis.  These  ratio's  values  model  the  expected  behavior  of  the  interplay  between the
activating and repressing TFs in the synthesis equation of a gene.
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The mRNA expression equations for a TF or miRNA are slightly different from the equation
of a candidate gene. These two equations also have a synthesis part and a degradation part but
instead of having the repressing effect exercising an accelerator effect in the degradation part,
they have the repressing effect  in  the synthesis  part  applying a decelerating effect  in the
synthesis part.

The degradation  equation  for  a  TF or miRNA is the product  of only two factors:  a)  the
mRNA concentration of the TF or miRNA, and b) the degradation rate of TF or miRNA. The
synthesis equation for a TF or miRNA is the product of three factors: a) the copy number of
the TF or miRNA, b) the synthesis rate of the TF or miRNA, and c) the total regulatory effect
exercised by others TFs and miRNAs on this TF or miRNA which in the graph is represented
by all the incoming arcs of this TF or miRNA where the arc's regulator is a TF or miRNA. 

While the total  activation effect depends only on activating TFs, now the total  repressing
effect involves not only repressing TFs but also repressing miRNAs. Whether there are more
total activating effect or more total repressing effect, the total regulatory effect would be >1
or <1, or exactly 1 if both effects are the same. Although this equation applies to TFs and
miRNAs, in practice the synthesis equation for miRNA do not involve repressing miRNA
effects since miRNAs do not repress other miRNAs.

From the three types of equations defined, we detect three different types of elements: copy
numbers, rates and concentrations. There is a copy number parameter for each species of the
graph. There are four different types of rates o parameters to be fitted against experimental
data:  synthesis, degradation,  activation and repression rates.  A candidate  gene has only a
synthesis and degradation rate. A TF has all four types of rates. And a miRNA has all but an
activation rate since miRNAs only repress. Finally, there is also one concentration for each
species of the graph.

The concentrations of the regulators that are part of the total regulation effect factor of the
equation play an important role in the modeling of the regulatory effects. For an activator TF,
as its concentration increases, so increases the activation effect and the concentration of the
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TF's  regulated  gene.  In  the  same  way,  as  the  concentration  of  a  miRNA  increases,  so
increases  the  repression  effect  causing  a  decline  in  the  concentration  of  the  miRNA's
regulated gene, either by slowing down its synthesis or by accelerating its degradation. The
concentrations also play an important role in the modeling of common network motifs like
loops like feedback loops, feedforward loops or other types of loops. In a loop like A->B->C-
>A, the concentration of A is part of the regulatory factor of B's equation, the concentration
of B is part of C's equation, and C's concentration is part of A's equation. The interplay of
these three equations models the dynamics of the loop in the graph.

Having defined the equations of the species and identified the different elements of these
equations, translating the graph of the regulatory network into an SMBL model (Hucka et al.,
2003) is straightforward. An SBML model follows the XML standard (W3C/XML, 2008)
and have several  sections  for  the  different  elements  of  the  SBML model.  The two most
relevant  sections  are  the  parameters  section  and  the  equation  sections.  In  the  parameter
section we add the copy number and the rates of all the species of the graph. In the reaction
section we add one reaction for each species of the graph. Since we have all the information
needed for the SBML model, constructing the model is just a matter of filling correctly the
different sections of the model.

E. Model parameter estimation

The  SBML  model  is  imported  into  COPASI,  an  application  for  analyzing  biochemical
networks  like  the  miRNA-TF  regulatory  network.  The  platform  also  add  59  sets  of
experimental  data  to  this  model,  one  set  for  each  cell  line  of  NCI60.  We  then  run  a
Parameter Estimation task in COPASI. The task adjusts the parameters of the model to fit the
RNA expression of each species of the model as close as possible to the corresponding RNA
expression of 59 experimental data-sets.

To assess that the RNA expression of the model is close enough to the RNA expression of the
experimental  data:  a)  we build a model  for each cell  line by using the fitted  model  and
changing  the  gene  copy  number  and  initial  concentration  values  to  the  values  of  the
corresponding cell line; b) we run a  Time Course task for each model and gather the RNA
expression for each species in each of the cell lines; c) we use a dependent t-test for paired
samples with α=0.05 to compare the model's RNA expression of the 60 cell lines of a species
with  the  corresponding  experimental  RNA  expression.  The  pairing  is  on  the  cell  lines.
Species with significant differences between their experimental and model's RNA expression
are discarded from the model and a new Parameter Estimation task is run for the modified
model until the difference between the experimental and the simulated data is not significant
(T-student,  p  > 0.05).  The presumption  is  that  the  experimental  data  do not  explain  the
discarded species and they therefore do not belong to the model.
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G. Assessment of gene dosage compensation behavior

To evaluate  if  a  gene  is  compensated  in  the  fitted  model,  we run  a  Parameter  Scan in
COPASI, varying the copy number of the gene from 1 to 5 and computing the respective
RNA expression. A non-compensated gene has a near linear fold increase in RNA expression
level as its corresponding copy number increases linearly. We consider a gene compensated if
the increase in RNA expression follows a sublinear increase as the copy number increases
linearly.

H. Trendline CCLE MYC, STAT3, STAT5B and FOXC1 genes calculation.

In order to calculate the absolute copy number for MYC, STAT3, STAT5B and FOXC1, we
use the calculated absolute  copy number  (Carter  et  al.,  2012) analysis  data  of the CCLE
(Ghandi et al., 2019) and the human Genome Reference Consortium build 38 (Schneider et
al.,  2017) as inputs of a program written in python that takes the gene location from the
genome reference to search its copy number value in the copy number analysis data. After
that, for each gene we use the copy number and the CCLE expression data together with the
least squares method to calculate the trendline, finally we plotted the expression against the
copy number and the calculated trendline.
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FIGURE LEGENDS

Figure 1. Identification of candidate genes under dosage compensation. A. Input data of gene
copy number (DNA), gene expression (RNA) and protein levels (protein) of the NCI60 panel.
The absolute values are shown on the left panel and the right panel corresponds to the log2
values normalized to the averaged RNA and protein of the diploid cell lines for the respective
gene (Normalized to diploid). B. Standard deviations (SD) of the DNA, RNA and Protein
levels for each gene across the 59 cell lines of the NCI60 panel. C. Gaussian Mixture Model
to identify a cluster of subpopulation of genes with high SD DNA and low SD RNA and/or
low SD Protein (white arrow). D. Gene Clustering according to the model in C (left). The
cyan cluster contains candidate genes under dosage compensation, characterized by high SD
DNA, low SD Protein (middle) and low SD RNA (right). E. Absolute and Normalized values
of  selected  candidate  genes under  dosage compensation.  F.  Examples  of candidate  genes
under dosage compensation (MYC and RAB5C) compared to a non-candidate gene (SAV1).
G. Clusters of candidate genes according to their copy number variations across the 59 cell
lines of the NCI60 panel.

Expanded View Figure 1. DNA, RNA and protein levels for all candidate genes.

Expanded View Figure 2. Putative miRNA-transcription factor interaction network linking all
candidate target genes. A. Correlation coefficients of copy number variations of the candidate
genes  and miRNA/transcription  factor  expression across the NCI60 panel.  B. Correlation
coefficients  of  copy  number  variations  of  the  candidate  genes  and  miRNA/transcription
factor expression across the NCI60 panel, only for those putative interactions present on the
network  in  C.  C.  Network  of  putative  interactions  among  target  genes,  miRNAs  and
transcription factors (red indicates repression and blue activation) including different types of
regulatory loops formed by target genes, miRNAs and TFs.

Figure 2. A mathematical model driven by NCI-60 data leads to a phenotype of  gene dosage
compensation  for  MYC and  STAT3.  A.  Network  of  miRNA-TF  interactions  for  MYC,
STAT3, STAT5A and STAT5B. B. Schematic representations of the modeled interactions for
the target gene, miRNAs and associated TFs. C. The results of the parameter estimation task
to fit the ODE mathematical model to the experimental data upon different modifications led
to a reduction in the objective function (difference between modeled and experimental data).
D.  The  graphical  comparison  of  modeled  and  experimental  data  shows  no  significant
differences. E. Results of parameter scan on the values of copy number for the candidate
target genes showing gene dosage compensation for MYC and STAT3. F. The sensitivity
analysis  points  to  some candidate  regulatory  molecules  controlling  the  concentrations  of
MYC and STAT3.
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Figure 3. Biology-inspired experiments with the mathematical model led to the identification
of a minimal model of gene dosage compensation for MYC and STAT3. A. A parameter scan
on MYC and STAT3 copy numbers identifies which molecules increase or decrease together
with varying copy numbers of those two genes. B. The single inhibition of those varying
molecules  has no effect  on the gene dosage compensation  of  MYC and STAT3.  C.  The
inhibition of groups of molecules and the restoration of single miRNAs indicate a redundant
mechanism for the gene dosage compensation of MYC and STAT3. D. A minimal model of
gene dosage compensation for MYC and STAT3 is hypothesized based on the results of these
experiments.  E.  The  fitting  and  parameter  scan  demonstrates  that  this  minimal  model
recapitulates the dosage compensation of MYC and STAT3.

Figure  4.  The  gene  dosage  compensation  depends  on  the  kinetic  parameters  of  the
interactions of basic regulatory network motifs. A. Networks of direct interactions (putative
and validated) of other candidate target genes with TFs and miRNAs. B. The fitted models
show dosage compensation for STAT5B and FOXC1. C. The minimal models of STAT5B
and FOXC1 recapitulate dosage compensation. D. The minimal model of STAT5B includes
two redundant feedback loops with miR19A and miR19B1. E. The minimal model of FOXC1
dosage compensation includes three redundant feedback loops with miR106B, miR93 and
miR495 F. A three dimensional landscape of gene dosage compensation dependent on the
values  of  ks  (synthesis  rate  of  the  miRNA),  ka  (activation  parameter  of  the  TF) and kr
(repression  parameter  of  the  miRNA)  demonstrates  that  the  gene  dosage  compensation
mediated by some basic regulatory network motifs depends on the values of these kinetic
parameters.

Figure 5. Therapeutic possibilities of targeting gene dosage compensation against aneuploid
cancer. A. CCLE data shows copy number amplification in confirms 40-60% of cases, which
confirms a behavior of gene dosage compensation for MYC, STAT3, STAT5B and FOXC1
(trendlines with sublinear slopes). B. The in silico simulations for the dependence of MYC
concentration  on the amounts  of  the  3 compensating  miRNAs suggest  that  MYC dosage
compensation in cancer with MYC amplification is more sensitive to the inhibition of those
miRNAs. C. The experimental inhibition of those 3 miRNAs in colon cancer cells with 3
different copy numbers of MYC suggest a higher sensitivity to the inhibition of gene dosage
compensation for more aneuploid cancers.
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Table 1. Candidate genes under dosage compensation.
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