Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing

View ORCID ProfileChristian Siadjeu, View ORCID ProfileBoas Pucker, Prisca Viehöver, View ORCID ProfileDirk Albach, View ORCID ProfileBernd Weisshaar
doi: https://doi.org/10.1101/2020.01.31.928630
Christian Siadjeu
Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University Oldenburg;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christian Siadjeu
  • For correspondence: christian.siadjeu@uni-oldenburg.de
Boas Pucker
Ruhr-University Bochum;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Boas Pucker
  • For correspondence: bpucker@cebitec.uni-bielefeld.de
Prisca Viehöver
Universitat Bielefeld
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: viehoeve@cebitec.uni-bielefeld.de
Dirk Albach
Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University Oldenburg;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dirk Albach
  • For correspondence: dirk.albach@uol.de
Bernd Weisshaar
Universitat Bielefeld
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bernd Weisshaar
  • For correspondence: bernd.weisshaar@uni-bielefeld.de
  • Abstract
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

The yam species Dioscorea dumetorum is one example of an orphan crop, not traded internationally. Post-harvest hardening starts within 24 hours after harvesting and renders the tubers inedible. Genomic resources are required for trifoliate yam to improve breeding for non-hardening varieties and for other traits. Here, we describe the sequencing of the D. dumetorum genome and the generation of a de novo assembly together with a corresponding annotation. The two haplophases of this highly heterozygous genome are separated to a large extent. The assembly represents 485 Mbp of the genome with an N50 of over 3.2 Mbp. A total of 35,269 protein-encoding gene structures as well as 9,941 non-coding RNA genes were predicted and functional annotations were assigned.

Footnotes

  • https://github.com/bpucker/yam

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 02, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing
Christian Siadjeu, Boas Pucker, Prisca Viehöver, Dirk Albach, Bernd Weisshaar
bioRxiv 2020.01.31.928630; doi: https://doi.org/10.1101/2020.01.31.928630
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing
Christian Siadjeu, Boas Pucker, Prisca Viehöver, Dirk Albach, Bernd Weisshaar
bioRxiv 2020.01.31.928630; doi: https://doi.org/10.1101/2020.01.31.928630

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (1641)
  • Biochemistry (2722)
  • Bioengineering (1902)
  • Bioinformatics (10203)
  • Biophysics (4174)
  • Cancer Biology (3202)
  • Cell Biology (4522)
  • Clinical Trials (135)
  • Developmental Biology (2831)
  • Ecology (4447)
  • Epidemiology (2041)
  • Evolutionary Biology (7213)
  • Genetics (5464)
  • Genomics (6795)
  • Immunology (2380)
  • Microbiology (7462)
  • Molecular Biology (2978)
  • Neuroscience (18529)
  • Paleontology (135)
  • Pathology (472)
  • Pharmacology and Toxicology (776)
  • Physiology (1147)
  • Plant Biology (2692)
  • Scientific Communication and Education (679)
  • Synthetic Biology (885)
  • Systems Biology (2840)
  • Zoology (465)