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Abstract  

 

Individuals of the same chronological age display different rates of biological ageing. A number of 

measures of biological age have been proposed which harness age-related changes in DNA 

methylation profiles. These include methylation-based predictors of chronological age (HorvathAge, 

HannumAge), all-cause mortality (DNAm PhenoAge, DNAm GrimAge) and telomere length (DNAm 

Telomere Length). In this study, we test the association between these epigenetic markers of ageing 

and the prevalence and incidence of the leading causes of disease burden and mortality in high-

income countries. Furthermore, we test the clocks’ relationships with phenotypic measures associated 

with these conditions, including spirometric and biochemical traits. We carry out these analyses in 

9,537 individuals from the Generation Scotland: Scottish Family Health Study. We find that DNAm 

GrimAge outperforms other epigenetic clocks in its associations with self-report disease prevalence 

and related clinical traits. DNAm GrimAge associates with chronic obstructive pulmonary disease 

(COPD) prevalence (Odds Ratio = 3.29, P = 3.0 x 10-4) and pulmonary spirometry tests (β = [-0.10 to -

0.15], P = [1.4 x 10-4 to 1.4 x 10-6]) at study baseline after adjusting for possibly confounding risk factors 

including alcohol, body mass index, deprivation, education and smoking. After adjusting for these 

confounding risk factors, DNAm GrimAge, DNAm PhenoAge and DNAm Telomere Length, measured 

at study baseline, predict incidence of ICD-10-coded disease states including COPD, type 2 diabetes 

and cardiovascular disease after thirteen years of follow-up (Hazard Ratios = [0.80 (telomere length) 

to 2.19 (GrimAge)], P = [9.9 x 10-4, 1.9 x 10-14]). Our data show that despite accounting for several 

possible confounding variables, epigenetic markers of ageing predict incidence of common disease. 

This may have significant implications for their potential utility in clinical settings to complement gold-

standard methods of clinical assessment and management.    
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Introduction 

 

The sustained increase in global life expectancy and population size has prompted a concomitant 

elevation in the prevalence of chronic disease states (1). The World Health Organisation specifies ten 

leading causes of mortality and ten leading causes of disease burden. In high-income countries, six 

diseases are present in both sets: ischemic heart disease, stroke, lung cancer, Alzheimer’s disease (AD) 

and other dementias, diabetes and chronic obstructive pulmonary disease (COPD). The remaining four 

leading causes of mortality are lower respiratory tract diseases, bowel cancer, kidney disease and 

breast cancer (2). The additional four causes of disease burden are back or neck pain, skin disease, 

sense organ disease and depression (3). All of these disease states encompass heterogeneous, 

complex aetiologies resulting in a paucity of effective treatment paradigms. Given the number of 

individuals affected by such disorders and the associated burden, there is an urgent need for effective 

molecular predictors in clinical settings that can discriminate individuals on trajectories towards 

disease.  

 

Ageing is a major risk factor for many common disease states. However, individuals of the same 

chronological age exhibit disparate rates of biological ageing and susceptibilities to common 

morbidities and mortality. Differential patterns of biological ageing among individuals may be 

exploited to identify novel predictors of disease (4). Recently, a number of strategies have been 

proposed to estimate biological age by leveraging inter-individual variation in DNA methylation 

(DNAm) profiles. These so-called ‘epigenetic clocks’ correlate strongly with chronological age (5). 

Moreover, for a given chronological age, an accelerated epigenetic age is associated with an increased 

risk of mortality and shows cross-sectional relationships with age-related morbidities (6-10).  

 

In this paper, we focus on five epigenetic predictors of ageing. In 2013, Horvath developed a pan-

tissue epigenetic clock, termed ‘HorvathAge’, derived from the linear combination of 353 CpG sites in 

multiple tissues (11). Hannum created a DNAm-based clock termed ‘HannumAge’ based on 71 CpGs 

in blood tissue (12). Levine et al. proposed a predictor of lifespan and health by developing a 

methylation-based predictor of an individual’s ‘phenotypic age’ (‘DNAm PhenoAge’). Phenotypic age 

is informed by chronological age as well as haematological and biochemical measures, including 

creatinine levels and lymphocyte percent (13). Lu et al. proposed DNAm GrimAge as a predictor of 

mortality and demonstrated that it outperforms existing clocks in predicting death and age-related 

conditions, including cardiovascular disease (14). Furthermore, telomere length is associated with 

cardiovascular disease, cancer risk and all-cause mortality (15-17). Lu et al. proposed a DNAm-based 
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estimator of telomere length termed ‘DNAm Telomere Length’ (DNAm TL) which exhibits stronger 

associations with lifespan, smoking history and body mass index when compared to phenotypic 

telomere length as measured by quantitative polymerase chain reaction or Southern blotting (18).  

 

The difference between an individual’s methylation-based age and their chronological age provides a 

measure of accelerated or decelerated ageing. Higher values of age-adjusted HorvathAge, 

HannumAge, DNAm PhenoAge and DNAm GrimAge are hypothesised to associate with poorer health 

outcomes as these clocks were trained to predict lifespan mortality. Lower values of age-adjusted 

DNAm TL are hypothesised to correlate with poorer health as this reflects shorter telomere length. To 

date, a number of studies have demonstrated associations between epigenetic clocks and risk of 

mortality and disease states (19-22), or have provided comparisons of clocks (e.g. HorvathAge vs. 

HannumAge) (23-27). However, no study has compared all major epigenetic clocks with respect to 

their association with a broad range of common health conditions.  

 

In this study, we test the association between all five epigenetic clocks and the prevalence, and 

incidence, of the ten leading causes of mortality and disease burden (as indexed by disability-adjusted 

life years; DALYs) (2, 3). In addition, we examine their association with continuous traits underlying 

these conditions, such as lung function tests for Chronic Obstructive Pulmonary Disease (COPD). We 

utilise DNA methylation array data and electronic health record data from a Scottish cohort: 

Generation Scotland: Scottish Family Health Study (GS:SFHS or GS). GS is a family-based cohort 

consisting of over 20,000 individuals with rich health and lifestyle information. Genome-wide 

methylation data were generated on approximately 10,000 participants making it one of the largest 

DNAm resources in the world. We examine associations between epigenetic clocks and prevalent 

disease as well as an assessment of their ability to predict time-to-disease onset. These findings may 

expedite the future use and refinement of large-scale molecular data-based approaches for predicting 

clinically-defined outcomes and subsequent individual disease risk prediction.   
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Results  

Demographics and Epigenetic Clocks  

 

In the discovery cohort, 56.3% of the participants were female with a mean age of 51.4 years (SD: 

13.2) (n = 4,450). The mean values for epigenetic measures were as follows: HorvathAge (60.1 years, 

SD: 9.8), HannumAge (47.4 years, SD: 9.6), DNAm PhenoAge (43.7 years, SD: 11.5), DNAm GrimAge 

(48.8 years, SD: 10.9) and DNAm Telomere Length (7.4 kilobase pairs, SD: 0.3). Summary data for all 

variables in this study are presented in Supplementary File 1.   

 

In the replication cohort, 61.4% were female with a mean age of 50.0 years (SD: 12.5) (n = 2,578). 

Values for all phenotypes were comparable between discovery and replication cohorts with the 

exception of DNAm GrimAge (discovery: 48.8 years, SD: 10.9, replication: 60.5 years, SD: 10.6), and 

the incidence of self-reported depression (discovery: 8.34%, replication: 16.36%), and SCID 

(Structured Clinical Interview for DSM)-identified Depression (discovery: 18.54%, replication: 38.17%). 

This reflects ascertainment bias in the replication cohort in which there was enrichment for depression 

and may have contributed to the higher DNAm GrimAge when compared to the discovery cohort.  

 

Epigenetic Clocks and Disease Prevalence  

 

In a basic model adjusting for age and sex, 37 phenotypes were significant at Bonferroni-corrected 

levels of significance in both the discovery and replication cohorts (Supplementary Note 1; 

Supplementary Tables 1-4). Supplementary Figures 1, 2 and 3 highlight significant associations for 

categorical traits, continuous traits and all-cause mortality, respectively. A clock-by-clock comparison 

of associations with categorical and continuous phenotypes from fully-adjusted models in the 

replication cohort, stratified by disease type, is shown in Supplementary File 2. For all models, beta 

coefficients for continuous traits were correlated 0.95 between discovery and replication sets. For 

categorical phenotypes, the correlation coefficient for log odds was 0.83 between sets 

(Supplementary Figure 5).  

 

Twelve relationships remained significant in both discovery and replication sets in a fully-adjusted 

model accounting for age, sex and five common risk factors (Supplementary Tables 5 and 6, 

respectively). Those relationships which were significant in both cohorts at P < 8.20 x 10-4 are reported 

herein and presented in Table 1 and Figure 1. 
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Associations with disease  

In relation to self-report disease data, only the association between an accelerated DNAm GrimAge 

and COPD remained significant in both cohorts in the fully-adjusted model (replication cohort: OR per 

SD = 3.29, 95% Confidence Interval (CI) = [1.73, 6.30], P = 3.4 x 10-4; Figure 1).  

 

Associations with All-Cause Mortality   

An accelerated DNAm GrimAge alone was associated with all-cause mortality following adjustment 

for the lifestyle risk factors (replication cohort: HR per SD = 2.10, 95% CI = [1.36, 3.25], P = 7.6 x 10-4; 

Figure 1).  

 

Associations with Continuous Clinically-Associated Traits  

An accelerated DNAm GrimAge was associated with greater deprivation (SIMD; β replication = -0.19, 95% 

CI = [-0.25, -0.13], P = 4.6 x 10-9), an increased average heart rate (βreplication = 0.20, 95% CI = [0.13, 0.27], 

P = 1.6 x 10-8), a reduced forced expiratory flow (β replication = -0.15, 95% CI = [-0.21, -0.09], P = 1.4 x 10-

6), a reduced forced expiratory volume (β replication = -0.10, 95% CI = [-0.15, -0.05], P = 1.4 x 10-4) and 

increased creatinine levels (β replication = 0.13, 95% CI = [0.06, 0.20], P = 2.0 x 10-4).   

 

An accelerated DNAm PhenoAge was positively associated with smoking pack years (replication 

cohort: β replication = 0.16, 95% CI = [0.11, 0.21], P = 9.5 x 10-10), an increased body mass index (β replication 

= 0.12, 95% CI = [0.07, 0.17], P = 7.4 x 10-6) and an increased average heart rate (β replication = 0.12, 95% 

CI = [0.07, 0.17], P = 7.7 x 10-6).  

 

Age adjusted DNAm Telomere Length was negatively associated with smoking pack years (β replication = 

-0.18, 95% CI = [-0.23, -0.13], P = 2.7 x 10-11). An accelerated DNAm HannumAge (EEAA) was associated 

with increased creatinine (β replication = 0.13, 95% CI = [0.08, 0.18], P = 4.2 x 10-7).  

 

Covariate-specific attenuation 

To examine the contribution of the five risk factors to attenuating the 37 significant associations tested 

above, we repeated each model including only one of these five covariates at a time. On average, the 

five factors displayed similar degrees of mean attenuation of tested traits (discovery: range = [9.2%, 

12.6%], replication: range = [5.7%, 16.4%]; Supplementary Tables 7 and 8, respectively). Smoking pack 
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years exhibited the highest mean attenuation of trait-epigenetic clock relationships in both cohorts 

(discovery: 12.6%, replication: 16.4%). 

 

Epigenetic Clocks and Disease Incidence 

 

For incident disease outcomes, there were 13 Bonferroni-corrected significant associations 

(Supplementary Note 2, Supplementary Figure 4, full output in Supplementary Table 9). Of these, 5 

remained significant in a fully-adjusted model at a Bonferroni-corrected significance threshold of 1 x 

10-3 (Supplementary Table 10). These relationships are presented herein and in Figure 2.  

 

A one standard deviation increase in DNAm GrimAge at baseline was associated with incidence of 

COPD (HR = 2.19, 95% CI = [1.79, 2.67], P = 1.9 x 10-14), type 2 diabetes (HR = 1.52, 95% CI = [1.22, 

1.90], P = 8.9 x 10-12) and heart disease (HR = 1.39, 95% CI = [1.17, 1.65], P = 1.4 x 10-4). An accelerated 

DNAm PhenoAge (per SD) associated with a higher incidence of type 2 diabetes (HR = 1.39, 95% CI = 

[1.14, 1.67], P = 9.9 x 10-4). Age-adjusted DNAm Telomere Length (per SD) associated with a lower 

incidence of heart disease (HR = 0.80, 95% CI = [0.69, 0.92], P = 2.5 x 10-4).  

 

Sex-specific analysis of epigenetic clocks and phenotypes in Generation Scotland  

As the occurrence of common diseases differs between the sexes, we ran a sensitivity analysis using 

prevalence data to determine the correlation between effect sizes of trait-clock comparisons for males 

versus females. In the discovery cohort, continuous phenotypes possessed a correlation coefficient of 

0.92 between sexes whereas categorical disease phenotypes exhibited a correlation coefficient of 0.81 

(Supplementary Figure 5). In the replication cohort, there was a correlation of 0.84 and 0.65 between 

effect sizes for continuous and categorical phenotypes, respectively (Supplementary Figure 7). 

Excluding diseases ≤ 10 cases (lung and bowel cancer), the largest difference between males and 

females was for the IEAA-stroke relationship (males: no. of events = 35, OR = 1.15; females: no. of 

events = 24, OR = 0.79). On average, the largest difference between males and females across clocks 

was observed for COPD with males having a higher odds ratio for each clock (mean difference in effect 

sizes across clocks = 0.18, range = [0.12, 0.37]) (discovery cohort; Supplementary Table 11). 
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Discussion  

In this study, we examined the associations between five major epigenetic clocks and the prevalence 

and incidence of the leading causes of mortality and disease burden in high-income countries. DNAm 

GrimAge, a predictor of mortality, associated with the prevalence of COPD and incidence of various 

disease states, including COPD, type 2 diabetes and cardiovascular disease. It was associated with 

death due to all-cause mortality and outperformed competitor clocks in capturing variability in 

clinically-associated continuous traits. A higher-than-expected DNAm PhenoAge predicted incidence 

of type 2 diabetes in the present study. Age-adjusted measures of DNAm Telomere Length associated 

with incidence of ischemic heart disease. Our results replicate previous cross-sectional findings 

between DNAm PhenoAge and BMI, diabetes (19) and socioeconomic position (in a basic model) (26). 

We also replicated associations between DNAm GrimAge and heart disease (11). Lastly, we replicated 

the relationship of HannumAge with creatinine (28) and of DNAmTLadjAge with smoking pack years 

(29).   

 

DNAm GrimAge served as a powerful correlate of various phenotypes in our study, and has been 

previously shown to associate with incident heart disease, time-to-cancer and neurological health (14, 

20). DNAm GrimAge is derived from chronological age, sex and methylation-based surrogates of 

smoking pack years and seven plasma proteins (including DNAm-based estimators of plasminogen 

activator inhibitor 1, growth differentiation factor 15 and cystatin C). Here, we show that this blood-

based epigenetic predictor of mortality risk is associated with poorer performance in lung function 

tests and predicted incidence of COPD. Compromised lung function previously has been linked to 

mortality (30, 31). While it is possible that the associations are mainly driven by the inclusion of 

smoking pack years, DNAm GrimAge remained associated with COPD and spirometry tests when 

controlling for self-reported smoking pack years. DNAm PhenoAge predicted incidence of type 2 

diabetes; however, this may reflect the inclusion of HbA1c in the phenotypic age measure which is 

used to diagnose diabetes. In our study, an epigenetic predictor of telomere length predicted time-to-

onset of ischemic heart disease. A shorter leukocyte telomere length has been shown to associate 

with heart disease in diverse populations, suggesting that the DNAm Telomere Length predictor may 

capture key facets of this clinical association (32-34). Our rich resource of genome-wide DNA 

methylation and longitudinal health data is the first to show the association of epigenetic clocks with 

a wide range of common disease states, even after accounting for major confounding influences. 

These findings have implications for the potential utility of epigenetic clocks in clinical settings. 
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The majority of our prevalent disease data relied on self-report. Self-report prevalence data has been 

shown to have a high degree of sensitivity and specificity (35). Our incident data was obtained using 

ICD-10 codes from health record linkage. Strikingly, epigenetic clocks showed strong associations with 

the incidence of common diseases following thirteen years of follow-up from study baseline. These 

clocks performed better at predicting incident rather than prevalent data. However, this may reflect 

the inclusion of health record-linked versus self-report data, and the larger sample size in incidence 

analyses.  

 

An important limitation is the lack of adjustments for medication use, which may confound 

associations between clocks and chronic conditions. Furthermore, studies examining causality 

between the relationships shown are merited. It is also unclear whether the risk factors examined in 

this study play a casual role in driving associations between epigenetic clocks and phenotypes, or 

whether these pleiotropically affect both altered DNA methylation and adverse health outcomes. 

Genetic influences may contribute to differences in DNA methylation and the subsequent estimation 

of epigenetic age; therefore, it is possible that our findings may not be generalisable to individuals of 

non-European ancestry (36, 37).   

 

In summary, using a large cohort with rich health and epigenetic data, we provide the first across-five-

epigenetic-clocks comparison of epigenetic predictors with respect to leading causes of mortality and 

disease burden. DNAm GrimAge outperformed the other clocks in its associations with disease data 

and associated clinical traits. This may suggest that predicting mortality, rather than age or 

homeostatic characteristics, may be more informative for common disease prediction. Thus, 

proteomic-based methods (as utilised by DNAm GrimAge) using large, physiologically diverse protein 

sets for predicting ageing and health may be of particular interest in future studies. Our results may 

help to refine the future use and development of ageing biomarkers, particularly in studies which aim 

to comprehensively examine their ability to predict stringent clinically-defined outcomes. Our 

analyses suggest that epigenetic clocks can predict incidence of common disease states, even after 

accounting for major confounding risk factors. This may have significant implications for their potential 

utility in clinical settings to complement gold-standard methods of clinical disease assessment and 

management. 
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Materials and Methods  

Generation Scotland 

Details of the Generation Scotland (GS) study have been described previously (38, 39). Briefly, the 

cohort includes 23,960 individuals, most (94.16%) with at least one other first-degree family member 

participating in the study. This encompasses 5,573 families with a median family size of 3 (interquartile 

range: 2 – 5 members; excluding 1,400 singletons without any relatives in the study). For prevalence 

analyses, the discovery cohort comprised unrelated GS participants with genome-wide methylation 

data (ndiscovery = 4,450). The replication cohort was also derived from GS participants, unrelated to 

those in the discovery cohort, who had genome-wide DNA methylation measured in a separate batch 

(nreplication = 2,578). Within the replication cohort, participants were also unrelated to one another. For 

incidence analyses, all individuals with available methylation and phenotypic data in GS were 

considered (n = 9,537).  

 

DNA Methylation and Estimation of Clocks  

DNA methylation levels were measured using the Illumina HumanMethylationEPIC BeadChip Array on 

blood samples from GS participants. Further details on the processing of methylation data and the 

calculation of the five clocks are outlined in Supplementary Methods; all five clocks were calculated 

using Horvath’s online age calculator (https://dnamage.genetics.ucla.edu/). Normalised GS 

methylation data were uploaded as input for the algorithm. Data underwent a further round of 

normalisation by the age calculator. Briefly, HorvathAge provides an estimate of biological ageing 

termed “intrinsic epigenetic age acceleration (IEAA)” as it is independent of age-related changes in 

blood composition. IEAA is derived from regressing HorvathAge onto chronological age. In contrast, 

HannumAge provides a measure of ageing referred to as “extrinsic epigenetic age acceleration (EEAA)” 

as it encompasses age-related changes in blood cell composition. EEAA is derived from regressing a 

weighted average of HannumAge and three blood cell types (naive and exhausted cytotoxic T-cells, 

and plasmablasts) onto chronological age. DNAm PhenoAge reflects an individual’s ‘Phenotypic Age’ 

and, when regressed onto chronological age, provides an index of age acceleration termed 

‘AgeAccelPheno’. Similarly, when age-adjusted, DNAm GrimAge is termed ‘AgeAccelGrim’. Lastly, age-

adjusted ‘DNAm Telomere Length’ is referred to as ‘DNAmTLadjAge’. These fives measures of 

biological age acceleration were input as independent variables in statistical models. Correlations 

between these predictors are shown in Supplementary Figure 8. DNAmTLadjAge was negatively 

correlated with the other four indices of age acceleration (mean coefficient = -0.36, range = -0.12 to -

0.47). This negative correlation is present as shorter telomere lengths typically correspond to an 

advanced age. The mean correlation coefficient between the remaining four predictors was 0.34 

(range = 0.11 to 0.50). 
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Phenotype Preparation 

For continuous phenotypes, outliers were defined as those values which were beyond 3.5 standard 

deviations from the mean for a given trait. These outliers were removed prior to analyses. Body mass 

index was log transformed. To reduce skewness in the distribution of alcohol consumption and 

smoking pack years, a log(units + 1)  or log(pack years + 1) transformation was performed. The interval 

from the start of the Q wave to the end of the T wave on electrocardiogram tests (QT interval) was 

corrected for heart rate. A general fluid (‘gf’) cognitive ability score was derived from principal 

components analysis of three tests examining different cognitive domains. These domains were 

processing speed (Wechsler Digit Symbol Substitution Test), verbal declarative memory (Wechsler 

Logical Memory Test) and verbal fluency (the phonemic Verbal Fluency Test). To derive a general (‘g’) 

cognitive ability score, principal component analysis was performed on the above three tests and a 

measure of crystallised intelligence: The Mill Hill Vocabulary test. The first unrotated principal 

components from these analyses were extracted and labelled as ‘gf’ and ‘g’, respectively.  

 

For categorical phenotypes, we aimed to examine the ten leading causes of mortality in high-income 

countries (40). We also aimed to examine the ten leading causes of disease burden, six of which 

overlap with the top causes of mortality. This represents fourteen diseases. We had self-report 

phenotypic information for the prevalence of nine of these diseases (Supplementary File 1); 

specifically, we lacked self-report information on lower respiratory diseases and kidney disease 

(mortality), skin and sense organ diseases (disease burden), and Alzheimer’s disease (AD). We were 

able to use proxy phenotypes for two of these conditions. We used self-reported maternal history and 

paternal history as proxies for AD. For kidney disease, we estimated glomerular filtration rate (eGFR) 

from serum creatinine levels using the Chronic Kidney Disease Epidemiology Collaboration CKD-EPI 

equation (41) from which we inferred the prevalence of chronic kidney disease (CKD). Individuals with 

an eGFR < 60 ml/min/1.73 m2 were considered to have CKD. In addition to self-report depression, we 

also had available information on SCID (Structured Clinical Interview for DSM)-identified depression 

(42). Lastly, we separated self-reported back and neck pain into distinct phenotypes for analyses. 

Together, this resulted in a total of fourteen disease phenotypes for prevalence analyses.  

 

In relation to disease incidence, health record linkage was available for up to thirteen years of follow-

up since study baseline (median time-of-onset from baseline = 5.75 years, range = [<1 month, 13 

years]). For each disease state, those individuals who self-reported disease at study baseline were 

excluded. For cancer, individuals present on the Scottish Cancer Registry (SMR06) were included as 
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cases for incidence analyses. Additionally, for incident cancer analyses, individuals who were recorded 

on the General Acute Inpatient and Day Case - Scottish Morbidity Record (SMR01) were removed from 

the control set. For a given condition, individuals who self-reported no disease at study baseline but 

had prior evidence of diagnosis through health record linkage were removed from analyses. Discovery 

and replication cohorts were combined to consider all participants for follow-up and to provide 

sufficient number of cases for analyses. For incident disease analyses, ICD-10-coded data were 

retrieved for the following ten conditions: AD, bowel cancer, breast cancer, COPD, depression, type 2 

diabetes, dorsalgia (neck and back pain combined), ischemic heart disease, lung cancer and stroke. 

These reflect the disease states examined in the prevalence analyses with the exception of kidney 

disease. Furthermore, the two proxies of AD, two measures of depression and separate measures of 

neck and back pain were replaced by single, clinically-defined counterparts in the incidence analyses.   

 

Statistical Analysis  

Age acceleration was defined as the residual term from regressing an epigenetic predictor onto 

chronological age. Linear regression models were used to examine the association between 

continuous traits and age acceleration. In cross-sectional analyses, logistic regression was used to test 

the association between categorical disease phenotypes and age acceleration. In longitudinal 

analyses, Cox proportional hazards regression models were used to examine whether measures of 

biological age were associated with incidence of disease. Cox models were also used to examine 

whether age-adjusted epigenetic clocks were associated with all-cause mortality in discovery and 

replication cohorts. The proportional hazards assumption was tested using the cox.zph() function in 

the survival package in R. There was no strong evidence (P > 0.05) of assumption violation for the 

reported significant associations. Phenotypes were scaled to mean zero and unit variance. Continuous 

or categorical phenotypes were input as dependent variables with biological clocks incorporated as 

independent variables.  

 

In a basic model, all analyses were adjusted for chronological age and sex. Additional adjustments for 

height and smoking status were carried out for measures of lung function. All significant tests from 

the basic model were then repeated adjusting for an additional five covariates, which represent 

important risk factors for common diseases. These covariates were: alcohol intake (units 

consumed/week), body mass index, educational attainment, deprivation (Scottish Index of Multiple 

Deprivation) and tobacco smoking pack years.  

 

Basic model: Phenotype ~ Biological Clock + age + sex  
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Fully-adjusted model: Phenotype ~ Biological Clock + age + sex + alcohol units consumed per 

week + body mass index + educational attainment + Scottish Index of Multiple Deprivation + 

smoking pack years 

 

In relation to cross-sectional prevalence data, the discovery analyses consisted of 33 phenotypes 

which were tested against every clock (all-cause mortality, fourteen disease and eighteen continuous 

phenotypes; Supplementary Table 1). This led to a total of 165 (33 x 5 clock) tests; however, the DNAm 

GrimAge versus smoking pack years comparison was excluded given the inclusion of a methylation-

based surrogate of pack years in the development of DNAm GrimAge. This led to a Bonferroni-

corrected significance threshold of P<0.05/164 tests = 3.05 x 10-4. Of these 164 tests, 61 were 

significant; thus, in the replication cohort, a Bonferroni-corrected significance threshold of P<0.05/61 

tests = 8.20 x 10-4 was set. In total, 37 associations were significant in both cohorts. The fully-adjusted 

model was then applied to these associations in both the discovery and replication cohorts, with the 

same Bonferroni-corrected threshold of P < 0.05/61 = 8.20 x 10-4.  

 

In relation to incidence data, all ten phenotypes were tested against each of the five clocks. In the 

initial basic model, this resulted in a Bonferroni-corrected significance threshold of P<0.05/50 tests = 

1.0 x 10-3. In total, thirteen associations were significant and brought forward to the fully-adjusted 

analysis stage. In the fully-adjusted model, the same Bonferroni-corrected significance threshold of 

P<0.05/50 tests = 1.0 x 10-3 was applied. 
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Table 1. Significant relationships between epigenetic clocks and prevalent disease data, with related continuous traits, present in both 

discovery and replication cohorts. Analyses were performed using a fully-adjusted model accounting for age, sex, alcohol consumption, body 

mass index, deprivation, education and smoking pack years.  

  Discovery Cohort Replication Cohort 

Categorical Phenotypes 

Clock Variable n event OR P n event OR P 
DNAm GrimAge COPD 48 2.00 7.2 x 10-4 32 3.29 3.4 x 10-4 

Continuous Phenotypes 
Clock Variable n β P n β P 

DNAm TL Pack Years 2419 -0.14 1.1 x 10-11 1340 -0.18 2.7 x 10-11 

DNAm PhenoAge Pack Years 2419 0.11 3.0 x 10-08 1340 0.16 9.5 x 10-10 

DNAm GrimAge SIMD 2419 -0.13 5.9 x 10-08 1340 -0.19 4.6 x 10-09 

DNAm GrimAge Average Heart Rate 2416 0.19 1.4 x 10-12 1339 0.2 1.6 x 10-08 

HannumAge Creatinine 2406 0.21 1.4 x 10-26 1334 0.13 4.2 x 10-07 

DNAm GrimAge FEF 2055 -0.12 1.2 x 10-06 1149 -0.15 1.4 x 10-06 

DNAm PhenoAge Body Mass Index 2419 0.12 2.5 x 10-10 1340 0.12 7.4 x 10-06 

DNAm PhenoAge Average Heart Rate 2416 0.11 2.1 x 10-07 1339 0.12 7.7 x 10-06 

DNAm GrimAge FEV 2074 -0.08 2.0 x 10-05 1151 -0.10 1.4 x 10-04 

DNAm GrimAge Creatinine 2406 0.19 3.0 x 10-15 1334 0.13 2.0 x 10-04 

Mortality Analysis 

Clock Variable n event HR P n events HR P 

DNAm GrimAge All-Cause Mortality 89 1.62 1.4 x 10-4 30 2.10 7.6 x 10-4 

COPD (chronic obstructive pulmonary disease), FEF (forced expiratory flow), FEV (forced expiratory volume), HR 
(hazard ratio), OR (odds ratio), SIMD (Scottish Index of Multiple Deprivation), TL (telomere length).  
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Figure 1. The association of epigenetic clocks with prevalence of common disease, associated continuous 

traits and all-cause mortality in Generation Scotland in a model adjusting for age, sex and common disease 

risk factors. Only associations present in discovery and replication sets are shown, and replication test 

statistics are presented. Continuous: Age-adjusted DNAm GrimAge was associated with greater deprivation 

(lower SIMD), reduced forced expiratory flow and forced expiratory volume. Age-adjusted DNAm GrimAge 

was positively associated with creatinine levels and average heart rate. Age-adjusted DNAm PhenoAge was 

positively associated with body mass index, average heart rate and smoking pack years. Age-adjusted DNAm 

Telomere Length was negatively associated with smoking pack years. Age-adjusted HannumAge was 

positively associated with creatinine levels. Disease: Age-adjusted DNAm GrimAge alone was associated with 

prevalence of COPD in both discovery and replication sub-cohorts after correction for multiple testing. All-

Cause Mortality: Age-adjusted DNAm GrimAge alone was associated with all-cause mortality in both test sets 

after multiple testing correction. Associations represent a one standard deviation increase in the respective 

age-adjusted epigenetic clock measures. Models were adjusted for age, sex, alcohol, body mass index, 

deprivation, education and smoking. Models involving lung function tests were also corrected for height. 

COPD (chronic obstructive pulmonary disease), SIMD (Scottish Index of Multiple Deprivation).  
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Figure 2. The association of epigenetic clocks with incidence of disease in Generation Scotland in a model 

adjusting for age, sex and common disease risk factors. Age-adjusted DNAm GrimAge was associated with 

incidence of COPD, type 2 diabetes and ischemic heart disease after thirteen years of follow-up. Age-adjusted 

DNAm PhenoAge associated with incidence of type 2 diabetes. Age-adjusted measures of DNAm Telomere 

Length associated with incidence of ischemic heart disease. Associations represent a one standard deviation 

increase in age-adjusted epigenetic clocks. Models were adjusted for age, sex, alcohol, body mass index, 

deprivation, education and smoking. COPD (chronic obstructive pulmonary disease).  
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