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Abstract

Two-state ratiometric biosensors change conformation and spectral properties in response to 
specific biochemical inputs. Much effort over the past two decades has been devoted to en-
gineering biosensors specific for ions, nucleotides, amino acids, and biochemical potentials. 
The utility of these biosensors is diminished by empirical errors in fluorescence-ratio signal 
measurement, which reduce the range of input values biosensors can measure accurately. 
Here, we present a formal framework and a web-based tool, the SensorOverlord, that predicts 
the input range of two-state ratiometric biosensors given the experimental error in measuring 
their signal. We demonstrate the utility of this tool by predicting the range of values that can 
be measured accurately by biosensors that detect pH, NAD+, NADH, NADPH, histidine, and 
glutathione redox potential. The SensorOverlord enables users to compare the predicted ac-
curacy of biochemical measurements made with different biosensors, and subsequently select 
biosensors that are best suited for their experimental needs.

Introduction

Genetically encoded two-state ratiometric biosensors have revolutionized our ability to monitor 
a wide variety of biochemical species1-8. The development of these biosensors has enabled the 
visualization in real-time of the biochemical properties of live animals using fluorescence-ratio 
microscopy. However, the potential of these biosensors has not been fully realized because 
the empirical imprecision of their fluorescence-ratio signal measurements reduces the range 
of biochemical input values those biosensors can measure accurately.

The capacity to make accurate measurements with sensors is important because it 
enables observers to make confident predictions about the state of a system. Using a ther-
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mometer that makes inaccurate temperature measurements can lead to incorrect predictions 
about the state of a physical system; for example, in predicting whether water will be a solid, a 
liquid, or a gas. Similarly, using a genetically encoded biosensor that makes inaccurate mea-
surements can lead to incorrect predictions about the state of a biological system.

In our previous work in the nematode C. elegans, we deployed a mathematical frame-
work that enabled us to map the fluorescence-ratio signal of the roGFP1-R12 biosensor into 
glutathione redox potential (EGSH) values using prior information about our microscope’s prop-
erties and the biosensor’s spectral and biochemical properties9,10. Here, we extend that frame-
work to determine how the precision of our fluorescence-ratio signal measurements with the 
roGFP1-R12 biosensor constrains the range of EGSH values that can be measured accurate-
ly. We then generalize this extended framework for all two-state ratiometric biosensors with 
known spectral and biochemical properties. We demonstrate the utility of this new framework 
by: (i) determining the range of EGSH values that we can measure accurately in live C. elegans 
with the roGFP1-R12 biosensor; (ii) quantifying how much that range of EGSH values is ex-
panded by increasing the precision of our imaging and image-analysis methods; (iii) identifying 
which biosensors are best suited for measuring accurately different ranges of EGSH, pH, and 
the concentrations of nucleotides and amino acids; (iv) identifying underused biosensors; and 
(v) identifying where new biosensors are needed.

To help the community identify biosensors that are well-suited for their experimental 
needs, we developed a web-based tool, the SensorOverlord (https://www.sensoroverlord.org), 
that implements all of these analyses with a user-friendly interface.

Results

Predicting the accuracy of a glutathione redox potential biosensor. The human and C. 
elegans proteomes contain ~210,000 cysteine residues11,12 and ~15% of these cysteines are 
reversibly oxidized13. These protein networks can be understood as markets where cysteines 
in proteins buy (reduction) and sell (oxidation) pairs of electrons only via a central broker, the 
abundant glutathione tripeptide9, resulting in a single price for trading electrons that deter-
mines the oxidation of all cysteines in the network (Figure 1a). In chemical terms, this price 
is the glutathione redox potential (EGSH): the Nernst potential that quantifies the balance be-
tween reduced and oxidized glutathione species. Measuring EGSH is critical because cysteine 
oxidation modulates the function of hundreds of cytosolic proteins14-20 which regulate a wide 
variety of cellular processes20,21. The mechanisms that regulate EGSH in vivo remained largely 
unexplored until the development of the EGSH-specific roGFP-family of genetically-encoded 
biosensors10,22,23. These GFP-derived biosensors include two cysteines that form a (reversible) 
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intramolecular disulfide bond upon oxidation, resulting in spectral changes that can be quan-
tified via fluorescence-ratio microscopy (Figure 1b)8. We previously used the roGFP1-R12 
biosensor to measure EGSH in live C. elegans9. To map fluorescence-ratio (R) measurements 
into EGSH values, we determined three conversion factors that quantify the properties of our 
imaging microscope and the spectral differences between the reduced and oxidized states 
of the biosensor (Supplementary Note 1). Measuring EGSH instead of R enabled us to make 
predictions about how the oxidation state of the network of cysteines trading electrons with 
glutathione is influenced by genetic determinants and environmental factors9. However, those 
predictions require that EGSH be measured accurately. Therefore, we set out to determine how 
the precision of our fluorescence-ratio microscopy influenced the range of EGSH values we 
could measure accurately.

We first modeled how errors in fluorescence-ratio measurement influenced EGSH errors. 
The conversion map from R to EGSH is highly nonlinear (Figure 1c). As a result, the size of an 
EGSH error depends not only on the size of the error in R but also on the value of R (Figure 
1d): as R approaches its lower and upper bounds EGSH errors increase rapidly (Supplementary 
Note 2). Thus, even a small difference between observed and true R values (RObs and RTrue, 
respectively) can lead to a large difference between observed and true EGSH values (EObs and 
ETrue, respectively) (Figure 1d).

We then determined the size of our fluorescence-ratio measurement errors. We quan-
tified the precision of our fluorescence-ratio measurements in live C. elegans expressing the 
roGFP1-R12 biosensor in the cytosol of the muscles of the pharynx, the feeding organ. This 
retrospective analysis of 10,572 images showed that our errors in R were proportional to R—
that is, RObs = RTrue * (1 + error) (Supplementary Note 3). Within a given experiment, the size 
of the relative error in R was invariant over the range of all possible R values (Supplementary 
Note 3). The size of the relative error in R, however, varied up to three-fold between experi-
ments (Supplementary Note 3). Differences in the proportion of animals moving during imag-
ing accounted for most of the variation in the relative error in R across experiments (S.B.J., 
J.A.S., and J.A., manuscript in preparation). Our analysis indicated that, in a typical experi-
ment, the median relative error in R was zero and 95% of the relative errors in R were in the 
interval (-2.8%, +2.8%) (Figure 1f). These 95% confidence bounds quantified the precision of 
our fluorescence-ratio measurements.

Last, we determined how the empirical precision of our fluorescence-ratio measure-
ments influenced the accuracy of individual EGSH observations. Knowing the precision of our R 
measurements enabled us to determine the 95% confidence bounds of EObs as a function of 
RTrue (Figure 1d). Converting RTrue into ETrue produced a map of how the 95% confidence bounds 
of EObs varied as a function of ETrue (Figure 1e). The maximum absolute difference between ETrue 
and either the upper or lower 95% confidence bound of EObs represents the inaccuracy of our 
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EGSH measurements (Figure 1g). Our mathematical modeling indicated that the precision of R 
measurements, the biochemical and biophysical properties of the biosensor, and the choice 
of excitation wavelengths used in our experiments all influenced the EGSH values that we could 
measure most accurately (Supplementary Note 4). EGSH inaccuracy rapidly increased as ETrue 
moved farther away from that value.

This analysis enabled us to extract the range of EGSH values that our biosensor was 
well-suited to measure at a given level of EGSH inaccuracy (Figure 1g). For example, the range 
of EObs values we could measure with an inaccuracy of 2 mV was between -284 and -234 mV. 
This range encompassed all EGSH values we observed in wild-type nematodes under normal 
conditions (-278 to -262 mV) and under oxidative stress (-278 to -250 mV)9, indicating that our 
experimental set up was well-suited to measure the EGSH values that C. elegans feeding mus-
cles exhibited in vivo: 95% of the individual EGSH observations deviated from their true value 
by less than 2 mV.

Balancing the need for accurate measurements with the constraints of microscopy. Our 
analytical framework provides a criterion for determining if it is possible to measure EGSH ac-
curately. Scientific needs demand accurate observations, but experimental approaches con-
strain the extent to which observations can be made accurately. The trade-off between these 
scientific and experimental constraints can be visualized in a phase diagram (Figure 2). The 
precision of R measurements determines the range of EGSH values that is possible to mea-
sure at a specific inaccuracy level (Figure 2). For values outside that range, it is impossible to 
guarantee that an observation will be accurate. Scientific needs impose a maximum tolerable 
inaccuracy beyond which observations are too inaccurate and, therefore, not useful. Together, 
these constraints determine whether it is possible to measure EGSH accurately (Figure 2).

Retrospectively increasing measurement accuracy with improved image analysis. To 
increase the range of EGSH values that we could measure accurately, we set out to improve 
our image-analysis methods. Movement of live C. elegans during image acquisition lowers 
the precision of fluorescence-ratio measurements in individual pharyngeal muscles. In a typ-
ical experiment 21% of animals moved during imaging. We developed a new image-feature 
registration algorithm that corrects for displacement and deformation of the muscles along the 
anterior-posterior axis of the pharynx (S.B.J. and J.A., manuscript in preparation). This new 
image-analysis algorithm reduced the relative error in R along most positions in the pharynx, 
especially in the boundaries between adjacent muscles and in the muscles of the anterior and 
posterior bulbs. For example, in the pm7 muscles of the posterior bulb, the new algorithm re-
duced the interval with 95% of the relative errors in R from ±4.3% to ±2.6% in moving animals 
and from ±2.0% to ±1.9% in stationary animals. As a result, the new algorithm increased the 
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accuracy with which we could measure EGSH and thereby expanded the range of EGSH values 
that we could measure accurately in past experiments (Figure 3a).

Comparing glutathione redox potential biosensors. We determined the ranges of EGSH 
values that we could have measured accurately had we used different biosensors. Theoretical 
modeling indicated that the accuracy of a biosensor is influenced by the choice of wavelengths 
used for biosensor excitation, and by the biosensor’s dynamic range and midpoint-potential 
(E0’, the price point where a biosensor is 50% likely to sell its electrons) (Supplementary Note 
4). These biosensor physical and chemical properties vary among all existing roGFP-based 
biosensors (Supplementary Note 5). We estimated the conversion factors that map fluores-
cence-ratio measurements into EGSH values for the eleven roGFP-based biosensors with 
known midpoint potentials and fluorescence spectra (Supplementary Note 5). This enabled 
us to determine the EGSH inaccuracy we would expect to observe had we measured EGSH in 
the feeding muscles of live C. elegans with each of those biosensors instead of roGFP-R12 
(Figure 3b and Supplementary Note 5). This analysis enabled us to identify which biosensors 
would measure EGSH most accurately under our experimental conditions: roGFP5 for EGSH val-
ues below -297 mV, roGFP2 for EGSH values from -296 mV to -258 mV, roGFP1-R12 for EGSH 
values from -257 to mV to -240 mV, and roGFP1-iE for EGSH values above -239 mV. We note 
that often many biosensors were predicted to have comparable accuracies (Figure 3b).

This analysis helped us identify underused biosensors. Neither roGFP3 nor roGFP5 
has ever been used in vivo, yet we predict that these biosensors would be the most accurate 
biosensors for low EGSH values such as those expected for the mitochondrial matrix. We cur-
rently disfavor roGFP5, even though this biosensor was predicted to be more accurate than 
roGFP3, because roGFP5 can potentially form more than one type of internal disulfide bridge 
due to its two additional cysteines; a better understanding of roGFP5’s biochemistry is war-
ranted given its potential utility.

Comparison of the predicted accuracy of biosensors originally designed for similar pur-
poses enabled us to identify the variables that explain why one biosensor was predicted to be 
more accurate than another (Supplementary Note 6). For example, both roGFP1-iE and roG-
FP2-iL were designed to have higher midpoint potentials than previous roGFPs, making them 
more suitable for measuring the higher EGSH values common in the endoplasmic reticulum24,25. 
However, while roGFP1-iE has a higher midpoint potential than roGFP2-iL, it is predicted to be 
more inaccurate than roGFP2-iL even for measuring higher EGSH values. The higher dynamic 
range of roGFP2-iL makes it a more accurate EGSH biosensor than roGFP1-iE.

Identifying where new glutathione redox potential biosensors are needed. We predicted 
the EGSH inaccuracy that we would observe if we measured EGSH in the feeding muscles of live 
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C. elegans with the most accurate biosensor for each EGSH value. Using a phase diagram, 
we visualized the trade-off between our scientific need for accuracy and the experimental 
constraints imposed by the precision of our R measurements and the properties of existing 
biosensors (Figure 3c). This analysis indicated that we lack biosensors well-suited to measure 
EGSH values above -177 mV or below -337 mV with at least 10 mV accuracy.

A general framework to predict the accuracy of two-state ratiometric biosensors. To es-
tablish a general criterion for determining whether a two-state biosensor is well-suited to mea-
sure its input accurately, we generalized the analysis framework for glutathione redox potential 
biosensors to all ratiometric two-state single-ligand-binding biosensors (Supplementary Notes 
1, 5, 7). To demonstrate the utility of the generalized framework, we applied it to biosensors 
that measure pH and small molecules, including histidine, NAD+, NADH, and NADPH. For 
each biosensor with known affinity constant and fluorescence spectra, we derived the con-
version factors that map its fluorescence-ratio to pH or ligand concentration (Supplementary 
Notes 8, 9). We then determined the pH and ligand concentration ranges that each biosensor 
would be well-suited to measure accurately given the precision of our R measurements and 
selecting optimal excitation or emission filters for each biosensor (Figures 4a-b and Supple-
mentary Notes 8, 9). 

Comparison of the predicted accuracy of nine ratiometric pH biosensors identified op-
timal biosensors for pH measurement with dual-excitation red-fluorescent pH biosensors, du-
al-excitation green-fluorescent pH biosensors, and single-excitation dual-emission pH biosen-
sors (Figure 4a). The NADH-specific Frex biosensor6 had a higher predicted accuracy than 
the FrexH biosensor6, as a result of its higher dynamic range (Figure 4b). The NADPH-specific 
iNAP1 biosensor7 was predicted to more accurately measure NADPH concentration than the 
iNAP1-mCherry biosensor (Figure 4b). The iNAP1-mCherry biosensor sacrifices the iNAP1 
dynamic range in one excitation band with pH-sensitive fluorescence, enabling pH-resistant 
NADPH measurement but lowering this biosensor’s accuracy.

A web-based tool that predicts biosensor accuracy. To help the community find biosensors 
that are well-suited for their experimental needs, we developed the SensorOverlord toolkit. 
This open-source S4 class-based R package implements all the analyses described here. 
We also built a user-friendly web application, available at http://www.sensoroverlord.org (Fig-
ure 5). The SensorOverlord toolkit enables users to model how the precision of their fluores-
cence-ratio signal measurements and their microscopy configuration constrain the range of 
input values that their biosensor is well-suited to measure accurately.
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Discussion

The SensorOverlord toolkit enables users to predict the accuracy of concentrations and chem-
ical potentials derived from fluorescence ratio measurements with two-state biosensors. This 
tool enables users to select biosensors predicted to be most accurate for measuring specific 
ranges of biochemical values. The SensorOverlord also enables users to quantify the extent 
to which increasing the precision of their fluorescence-ratio measurements would increase the 
predicted accuracy of their biochemical measurements with an individual biosensor. There-
fore, this tool can be used to quantify the accuracy gains resulting from improving experimen-
tal practices, and from refining image acquisition, registration, and analysis methods.

A wide variety of factors can influence the precision of fluorescence-ratio measurement. 
In our experience, the degree of immobilization of live specimens during image acquisition 
can influence the precision of fluorescence-ratio measurements by a factor of three, leading to 
large differences in the predicted accuracy of biochemical measurements. The SensorOver-
lord enables researchers to disclose the predicted accuracy of the concentrations and chem-
ical potentials that they measure, simply by reporting the precision of their fluorescence-ratio 
measurements—similar to how manufacturers use tolerance ratings to disclose how often the 
quality of their products is expected to deviate from a standard. The broader scientific com-
munity may, in turn, adopt appropriate maximum tolerable inaccuracy standards for specific 
biochemical measurements.

We hope that the SensorOverlord motivates the development of new biosensors, mi-
croscopy techniques, and image-analysis methods, by enabling biosensor developers and us-
ers to quantify the accuracy gains that would result from modifying the biochemical and spec-
tral properties of their biosensors and from increasing the precision of their fluorescence-ratio 
measurements.

Materials and Methods

Code availability. Mathematical modeling was performed in the R language and environment 
for statistical computing (v3.6.0)26. The web application and associated visualizations were 
developed with the R packages ggplot2 (v3.1.1)27 and Shiny (v1.3.2)28, respectively. Source 
code for the SensorOverlord is available at https://github.com/julianstanley/SensorOverlord.

Statistical analysis. All statistical analyses were performed in JMP (SAS). We tested for dif-
ferences in the average R among groups using ANOVA. We used the Tukey HSD post-hoc test 
to determine which pairs of groups in the sample differ, in cases where more than two groups 
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were compared. We used least-squares regression to quantify the dependency on R of the 
absolute error in R and the absolute relative error in R.
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Figure 1. Determining the range of glutathione redox potential EGSH values we can mea-
sure accurately with the roGFP1-R12 biosensor.

a. Glutathione redox potential (EGSH) directs the oxidation of cysteines in hundreds of proteins 
in the same direction, resulting in their concerted regulation.

b. The reduced and oxidized states of the roGFP1-R12 biosensor have different fluorescence 
spectra8, enabling EGSH measurement via fluorescence-ratio (R) microscopy.

c. The conversion map from R to EGSH is highly nonlinear. Rreduced state and Roxidized state refer to the 
ratiometric emission of ensembles of reduced and oxidized biosensors, respectively. E0’ is the 
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standard midpoint potential of the biosensor.

d. The top panel shows how measurement errors in R cause observed EGSH values (EObs) to 
differ from the true EGSH values (ETrue) that would be observed if R was measured with no error 
(RTrue). The bottom panel shows how the size of an EGSH error (EObs – ETrue) depends not only on 
the size of the error in R but also on the value of R. Each dotted curve corresponds to a differ-
ent fold-change error in R. The shaded region corresponds the interval encompassing 95% of 
the predicted EObs values for each RTrue value, given our empirical error in R.

e. Transforming the map from RTrue to ETrue in the top and bottom panels shown in d produces 
plots showing how errors in R influence the map from ETrue to EObs (top panel) and how the size 
of an EGSH error depends not only on the size of the error in R but also on the value of ETrue (bot-
tom panel). Each dotted curve corresponds to a different fold-change error in R. The shaded 
region shows the interval encompassing 95% of the predicted EObs values for each ETrue value, 
given our empirical error in R.

f. Cumulative distribution of the empirical fold error in R in live C. elegans expressing the roG-
FP1-R12 biosensor in the cytosol of the anterior (pm3) muscles of the pharynx, the feeding 
organ. This error distribution was obtained by aggregating with equal weight the empirical fold 
error in R of five separate experiments (see Supplementary Note 3). 95% of the errors in R fall 
within the interval (-2.8%, +2.8%), shown shaded in gray. This interval quantifies the precision 
of our fluorescence-ratio measurements.

g. EGSH measurement inaccuracy (the maximum absolute difference between ETrue and EObs) 
decreases with increased precision of R measurement. Each dotted curve corresponds to a 
different precision of R measurement. The shaded region shows the interval encompassing 
95% of the predicted EGSH measurement inaccuracies for each ETrue value, given our empirical 
error in R.
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Figure 2. Balancing the need for accurate measurements with the constraints of mi-
croscopy.

The empirical precision of our R measurements determines the range of EGSH values that is 
possible to measure at a specific inaccuracy level. Values outside that range are impossible to 
measure accurately (red and light red regions). Scientific needs impose a maximum tolerable 
inaccuracy beyond which observations are too inaccurate and, therefore, not useful (light red 
and orange regions). Together, these constraints determine whether it is possible to accurately 
measure EGSH (green region). 
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Figure 3. Predicted accuracy of glutathione redox potential biosensors.

a. Predicted accuracy gains from improved image analysis in the pm7 (posterior) feeding mus-
cles of live C. elegans expressing the roGFP1-R12 biosensor. Animals that moved during im-
age acquisition showed a higher R measurement error than stationary animals. A feature-reg-
istration algorithm increased the precision of R measurements, retrospectively expanding the 
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range of EGSH values that we could measure accurately. The colored bars denote the range of 
EGSH values where we have 95% confidence that an individual EGSH observation would deviate 
from its true value by less than the error denoted by the color of the bar.

b. Predictions of the ranges of EGSH values that we expect to measure accurately in pm3 pha-
ryngeal muscles with eleven roGFP-based biosensors given the empirical precision of our R 
measurements. Coloring of bars as in panel a.

c. The empirical precision of our R measurements determines the range of EGSH values that 
would be possible to measure at a specific inaccuracy level if we measured EGSH in the pha-
ryngeal muscles of live C. elegans with the most accurate roGFP biosensor for each EGSH 
value. Values outside that range are impossible to measure accurately (red and light red re-
gions). Scientific needs impose a maximum tolerable inaccuracy beyond which observations 
are too inaccurate and, therefore, not useful (light red and orange regions). Together, these 
constraints determine whether it is possible to accurately measure EGSH with the eleven roGFP 
biosensors (green region). The dotted curves correspond to the predicted EGSH inaccuracies of 
each of the eleven roGFP biosensors shown in b, given the precision of our R measurements.
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Figure 4. Predicted accuracy of pH and ligand-binding biosensors.

Predictions of the ranges of pH (panel a), and histidine, NAD+, NADH, and NADPH values 
(panel b) that we expect to measure accurately in pm3 pharyngeal muscles with existing bio-
sensors given the empirical precision of our R measurements and selecting optimal excitation 
or emission filters for each biosensor. The E2GFP biosensor can be used in two different mo-
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dalities, dual-excitation green-fluorescence and single-excitation dual-emission. Differences 
in the predicted pH inaccuracy of this biosensor under each imaging modality arise from the 
differences between the values in each imaging modality of this biosensor’s overall dynamic 
range and dynamic range in the second wavelength (Supplementary Note 8). The colored 
bars denote the range of values of the biosensor’s biochemical input where we have 95% 
confidence that an individual observation would deviate from its true value by less than the 
error denoted by the color of the bar. p[Ligand] is the negative base 10 logarithm of the Molar 
concentration of the biosensor’s ligand.
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Figure 5. SensorOverlord web application.

The SensorOverlord toolkit enables users to model how the range of input values that their 
biosensor is well-suited to measure accurately is constrained by the user’s fluorescence-ratio 
signal measurement precision and microscopy configuration.
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