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Abstract 52 
 53 
Background: Lyme disease is the most common vector-borne disease in temperate zones and 54 
a growing public health threat in the US. Tick life cycles and disease transmission are highly 55 
sensitive to climatic conditions but determining the impact of climate change on Lyme disease 56 
burden has been challenging due to the complex ecology of the disease and the presence of 57 
multiple, interacting drivers of transmission.  58 
 59 
Objectives: We estimated the impact of prior temperature and precipitation conditions on US 60 
Lyme disease incidence and predicted the effect of future climate change on disease.  61 
 62 
Methods: We incorporated 17 years of annual, county-level Lyme disease case data in a panel 63 
data statistical modeling approach to investigate prior effects of climate change on disease 64 
while controlling for other putative drivers. We then used these climate-disease relationships to 65 
forecast Lyme disease cases using CMIP5 global climate models and two potential climate 66 
scenarios (RCP 4.5 and RCP 8.5).  67 
 68 
Results: We find that climate is a key driver of Lyme disease incidence across the US, but the 69 
relevant climate variables and their effect sizes vary strongly between regions, with larger 70 
effects apparent in the Northeast and Midwest where Lyme disease incidence has recently 71 
increased most substantially. In both of these regions, key climate predictors included winter 72 
temperatures, spring precipitation, dry summer weather, and temperature variability. Further, we 73 
predict that total US Lyme disease incidence will increase significantly by 2100 under a 74 
moderate emissions scenario, with nearly all of the additional cases occurring in the Northeast 75 
and Midwest.  76 
 77 
Conclusions: Our results demonstrate a regionally-variable and nuanced relationship between 78 
climate change and Lyme disease and highlight the need for improved preparedness and public 79 
health interventions in endemic regions to minimize the impact of further climate change-80 
induced increases in Lyme disease burden.  81 
 82 
 83 
Introduction 84 
 85 

Arthropod-transmitted pathogens and the diseases they cause pose a severe and 86 
growing threat to global public health (World Health Organization 2014). Because vector life 87 
cycles and disease transmission are highly sensitive to abiotic conditions (Mattingly 1969; 88 
Sonenshine and Roe 2013), climate change is expected to alter the magnitude and geographic 89 
distribution of vector-borne diseases (Kilpatrick and Randolph 2012; World Health Organization 90 
2014). Climatic changes, in particular warming temperatures, have already facilitated expansion 91 
of several vector species (e.g., Purse et al. 2005; González et al. 2010; Roiz et al. 2011; Clow et 92 
al. 2017a), and have been associated with increased vector-borne disease incidence (e.g., 93 
Loevinsohn 1994; Subak 2003; Hii et al. 2009). Identifying areas of high risk for current and 94 
future vector-borne disease transmission under climate change is critical for mitigating disease 95 
burden. However, the presence of interacting drivers of disease transmission such as land use 96 
change and globalization, and the complex ecology of vector-borne disease make this effort 97 
challenging (Lafferty and Mordecai 2016; Mills et al. 2010; Ostfeld and Brunner 2015; Rogers 98 
and Randolph 2006; Tabachnick 2010). 99 
 This challenge is particularly apparent in the case of Lyme disease, the most common 100 
vector-borne disease in temperate zones (Kurtenbach et al. 2006; Rizzoli et al. 2011; 101 
Rosenberg et al. 2018), because transmission depends on a complex sequence of biotic 102 
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interactions between vector and numerous host species that may respond differently to 103 
environmental change (Ostfeld 1997). In the US, Lyme disease is caused by the bacteria 104 
Borrelia burgdorferi, and is vectored by two tick species: Ixodes scapularis in the eastern and 105 
midwestern US and Ixodes pacificus in the western US. After hatching from eggs, both tick 106 
species have three developmental stages—larvae, nymph, and adult—during which they take a 107 
single blood meal from a wide range of vertebrate hosts before transitioning to the next 108 
developmental stage or reproducing (Sonenshine and Roe 2013). This life cycle takes 2-3 years 109 
to complete, 95% of which is spent at or below the ground surface in diapause, seeking a host, 110 
digesting a blood meal, or molting (Ostfeld and Brunner 2015; Sonenshine and Roe 2013).  111 
 Given their long life spans, inability to regulate their body temperature, and high degree 112 
of interaction with the physical environment, ticks are highly sensitive to changes in climatic and 113 
weather conditions (Sonenshine and Roe 2013). Prior research has demonstrated that 114 
temperature and moisture conditions at the ground surface strongly influence tick mortality, 115 
development, and host-seeking abilities (Ostfeld and Brunner 2015). In particular, high 116 
temperatures and low humidity decrease I. scapularis and I. pacificus survival (Bertrand and 117 
Wilson 1996; Nieto et al. 2010; Stafford 1994) and host-seeking activity (Lane et al. 1995; 118 
MacDonald et al. 2019b; Schulze et al. 2001; Vail and Smith 1998), while cold temperature 119 
extremes cause significant mortality (Lindsay et al. 1995; Vandyk et al. 1996). Accordingly, 120 
temperature and precipitation are important predictors of these tick species’ latitudinal and 121 
altitudinal range limits (Berger et al. 2014a; Brownstein et al. 2003; Estrada-Peña 2002; 122 
Leighton et al. 2012; McEnroe 1977; Ogden et al. 2005), and changes in climatic conditions 123 
have been associated with northward range shifts of I. scapularis (Clow et al. 2017b, 2017a; 124 
Ogden et al. 2014a). 125 

While the movement of vector species to higher latitudes suggests an associated 126 
impending increase in Lyme disease with further climate warming, the direct impacts of climate 127 
on Lyme disease cases are difficult to measure given the influence of many non-climate related 128 
factors (Kilpatrick et al. 2017). As a result, the few studies that have attempted to determine the 129 
impact of climate conditions on Lyme disease incidence have yielded conflicting results. For 130 
example, studies have found positive associations between incidence and each of the following: 131 
average spring precipitation (McCabe and Bunnell 2004), June moisture index in the region two 132 
years prior (Subak 2003), fewer dry summer days (Burtis et al. 2016), warmer winter 133 
temperatures in the prior year (Subak 2003), and increasing average annual temperature 134 
(Dumic and Severnini 2018; Robinson et al. 2015). However, others failed to detect an effect of 135 
temperature on incidence (McCabe and Bunnell 2004; Schauber et al. 2005), found the timing 136 
of climatic changes to be inconsistent with the timing of variation in Lyme disease cases 137 
(Randolph 2010), were limited in geographic scope (Burtis et al. 2016; Dumic and Severnini 138 
2018; McCabe and Bunnell 2004; Robinson et al. 2015; Subak 2003) and/or used modeling 139 
techniques that did not account for confounding variables that might influence disease incidence 140 
(Subak 2003; McCabe and Bunnell 2004). Further, while the rise in Lyme disease cases in the 141 
US has occurred concurrently with climatic changes promoting tick suitability, demonstrating 142 
causal relationships is challenging (Ostfeld and Brunner 2015). This has led others to argue that 143 
climate change is merely the backdrop for rising tick-borne disease incidence (Randolph 2010), 144 
while other factors such as increasing physician awareness are the true drivers of increased 145 
disease burden (Morshed et al. 2006; Scott and Scott 2018). Nonetheless, a recent CDC study 146 
on vector-borne disease burden in the US showed a dramatic rise in Lyme disease (Rosenberg 147 
2018), and much of the extensive media coverage of this report asserted the role of climate 148 
change. Despite this media attention, as well as strong known relationships between climate 149 
conditions and key features of vector ecology, the evidence for climate change as a driver of 150 
increasing Lyme disease incidence in the US remains equivocal. 151 

In this study, we investigate the role of past climatic conditions on Lyme disease 152 
incidence across the US using a 17-year, county-level Lyme disease case reporting dataset and 153 
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explicitly controlling for other drivers of disease burden. Specifically, we ask: How has 154 
interannual variation in climate conditions contributed to changes in Lyme disease incidence? 155 
We include climate variables capturing changes in temperature and precipitation conditions and 156 
investigate how relationships between climate and Lyme disease outcomes vary across 157 
different regions of the US. To avoid drawing spurious conclusions about the effects of climate, 158 
we analyze the effects of other known and potential drivers of disease incidence such as 159 
changing forest cover, public awareness of tick-borne disease, and health-seeking behavior, 160 
and use a statistical approach that explicitly accounts for unobserved heterogeneity in disease 161 
incidence between counties and years. We then use these modeled, regionally-specific 162 
relationships between climate and Lyme disease burden to ask: How is US Lyme disease 163 
incidence expected to change under future climate scenarios? We report the predicted change 164 
in Lyme disease incidence for individual US regions in 2040 – 2050 and 2090 – 2100 relative to 165 
hindcasted 2010 – 2020 levels under two potential climate scenarios: RCP 8.5, which reflects 166 
the upper range of the literature on emissions, and RCP 4.5, which reflects a moderate 167 
mitigation scenario (Hayhoe et al. 2017). 168 
 169 

Methods 170 
 171 
Lyme disease case data  172 

 173 
We obtained annual, county-level reports of Lyme disease cases spanning 2000 to 2017 174 

from the US Centers for Disease Control and Prevention (CDC) (Supplementary Methods). 175 
These disease case data provide the most spatially-resolved, publicly available surveillance 176 
data in the US. Raw case counts were converted to incidence—the number of cases per 177 
100,000 people—for each year using annual county population sizes from the US Census 178 
Bureau (USCB).  179 
 180 
Climate data 181 
 182 

We calculated the following variables to capture climate conditions relevant for tick-183 
borne disease transmission: average winter temperature lagged one year; average spring 184 
precipitation; the number of hot, dry days in May – July; cumulative average temperature; 185 
cumulative daily precipitation; temperature variance; and precipitation variance (Table 1). 186 
Details about how these variables were calculated and their biological relevance are listed in 187 
Table 1. For past climate conditions, we obtained daily, county-level average temperature and 188 
total precipitation data from the National Oceanic and Atmospheric Administration (NOAA) 189 
weather stations accessed via the CDC’s Wide-ranging Online Data for Epidemiological 190 
Research (WONDER) database.  191 

 To estimate future climate variables, we used CMIP5 modeled temperature and 192 
precipitation data available from NASA Goddard Institute for Space Studies global climate 193 
models (Schmidt et al. 2014). Specifically, we obtained estimates of daily near-surface air 194 
temperature and precipitation through 2100 under the upper climate change scenario (RCP 8.5) 195 
and a moderate climate change scenario (RCP 4.5) (Taylor et al. 2012; van Vuuren et al. 2011). 196 
These climate scenarios are relatively similar in the radiative forcing levels assumed through 197 
2050 but diverge substantially in the latter half of the century. Climate estimates from these two 198 
scenarios are provided at a 2° x 2.5° resolution; values were then ascribed to counties based on 199 
county latitude and longitude (Supplementary Methods). Mean values for hindcasted and 200 
forecasted climate variables for each region are listed in Supplementary Table 1.  201 

 202 
Awareness data 203 
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 204 
We controlled for variation in public awareness of ticks and Lyme disease using data 205 

from Google trends on the frequency of “ticks” as a search term. We obtained data on “ticks” 206 
search frequency, normalized for a given location and year, for 2004 (the first year the data 207 
were available) to 2017. We also initially used “tick bite”, and “Lyme disease” as search terms, 208 
but found that these generated nearly identical coefficient estimates, thus we proceeded to use 209 
only the “ticks” search term as a predictor. Search frequency data were aggregated at the 210 
designated market area (DMA), the smallest spatial scale available. Search frequency values 211 
for a given DMA, which contained an average of 14 counties, were thus applied equally to all 212 
counties therein. We also calculated a 1-year lagged version of the tick search variable, as 213 
awareness of tick-borne disease is likely endogenous to disease reporting, and using 214 
predetermined values reduces endogeneity concerns (Bascle 2008).  215 
 216 
Health-seeking behavior data 217 
 218 

We explicitly controlled for variation in health-seeking behavior, previously posited as a 219 
driver of Lyme disease reporting (Armstrong et al. 2001; Wilking and Stark 2014) by including 220 
the following three variables: diabetes incidence, health insurance coverage, and poverty. 221 
Diabetes was selected as a healthcare-seeking proxy as the behavioral drivers of healthcare 222 
seeking that drive diabetes reporting are likely to be similar to those of Lyme disease. Namely, 223 
the early symptoms of diabetes are often vague (Harris and Eastman 2000) and an individual's 224 
ability and decision to seek healthcare plays a large role in whether their case is recorded, as 225 
reflected in the substantial underreporting of this disease (Anwar et al. 2011; Doshi et al. 2010; 226 
Harris and Eastman 2000). We obtained annual, county-level data for 2004 to 2015 on the 227 
percentage of adults aged 20+ years diagnosed with type 1 or type 2 diabetes from the CDC’s 228 
US Diabetes Surveillance System. To capture variation in healthcare access, we included the 229 
annual percentage of county residents with any form of health insurance coverage using data 230 
for 2005 to 2017 provided by the USCB’s Small Area Health Insurance Estimates (SAHIE) 231 
program. Lastly, we used data from the USCB to include the percentage of county residents 232 
living in poverty as a predictor, as poverty has been significantly negatively associated with 233 
healthcare-seeking behavior (Bourne 2009; Kirby and Kaneda 2005). 234 
 235 
Land cover data 236 
 237 

We included two land cover variables putatively associated with higher tick-borne 238 
disease risk: the percent forest in a given county and year, and the percent mixed development 239 
(Brownstein et al. 2005b; Dister and Fish 1997; Frank et al. 1998; Glass et al. 1995; Killilea et 240 
al. 2008; MacDonald et al. 2019a). We calculated these variables using 30-m resolution land 241 
cover data from the US Geological Survey (USGS) National Land Cover Database (NLCD) 242 
(Yang et al. 2018). Percent forest included any deciduous, evergreen, or mixed forest. Mixed 243 
development was defined as areas with a mixture of constructed materials and vegetation, 244 
including lawn grasses, parks, golf courses, and vegetation planted in developed settings. We 245 
calculated county-level values of these land cover variables for 2001, 2004, 2006, 2008, 2011, 246 
2013, and 2016 as these are the only years the NLCD dataset is currently available. 247 

To estimate future land cover variables, we used USGS land cover projections available 248 
through 2100 (Sohl et al. 2014). We used modeled land cover data from two land-use change 249 
scenarios corresponding to the Intergovernmental Panel on Climate Change (IPCC) Special 250 
Report on Emission Scenarios (SRES). We used scenario B1, which reflects lower urban 251 
development, to align with the moderate climate change scenario (RCP 4.5), and scenario A1B, 252 
which reflects higher urban development and forest clearing, to align with the upper climate 253 
change scenario (RCP 8.5) (Nakicenovic et al. 2000; Rogelj et al. 2012; Sohl et al. 2014). Using 254 
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these data, we again calculated annual, county-level values of percent forest cover and mixed 255 
development. However, as the ‘mixed development’ land cover class was not included in the 256 
projected data, we instead used the ‘mechanically disturbed’ public or private land cover class 257 
(Supplementary Methods). 258 

 259 
Regional divisions 260 
 261 

Given the large variation in climatic conditions across the US, as well as variation in 262 
ecological dynamics of tick-borne disease such as tick species identity, tick densities, tick 263 
questing behavior, and host community composition (Eisen et al. 2016; Kilpatrick et al. 2017; 264 
Ostfeld 1997; Salkeld and Lane 2010), we examined regional differences in climate-disease 265 
relationships. We used the US Fish & Wildlife Service regional boundaries to divide the US into 266 
the following seven regions for analysis: Northeast, Midwest, Mountain Prairie, Pacific, Pacific 267 
Southwest, Southwest, and Southeast (Figure 1). These regional divisions were selected as 268 
they roughly correspond to genetic structuring of I. scapularis and I. pacificus (Humphrey et al. 269 
2010; Kain et al. 1997, 1999) and are likely distinct in environmental conditions and resources 270 
(Ricketts et al. 1999; Smith et al. 2018). Further, each region contains only one vector species: 271 
I. scapularis in the Northeast, Midwest, Southeast, and Southwest, and I. pacificus in the Pacific 272 
and Pacific Southwest (Dennis et al. 1998). As neither species has an established presence in 273 
the Mountain Prairie, this region was removed from the analysis. Regional descriptions, 274 
including the population size (as of 2017), the number of counties, and the average climate 275 
conditions, are provided in Supplementary Table 2.  276 
 277 
Statistical approach 278 
 279 

We used a least squares dummy variable (termed “fixed-effects” in econometrics) 280 
regression approach to estimate changes in Lyme disease incidence using repeated 281 
observations of the same groups (counties) from 2000 – 2017 (Larsen et al. 2019). We included 282 
‘county’ and ‘year’ as dummy variables to control for any unobserved heterogeneity that may 283 
influence reported Lyme disease burden in a particular county across all years (e.g., number of 284 
health care providers), or influence Lyme disease in all counties in a given year (e.g., changes 285 
in disease case definition). All counties (n = 2,232) for which there was complete data on Lyme 286 
disease cases, climate, and other predictors were included.  287 

To account for regional variation in the predictors of tick-borne disease incidence 288 
(Raghavan et al. 2014; Wimberly et al. 2008), we ran separate models for each US region (see 289 
Methods: Regional divisions). We used stepwise variable selection, in which variables were 290 
added if they reduced model Akaike information criterion (AIC) by 2 or more, to identify the 291 
climate, land cover, and non-ecological predictors that best explained Lyme disease incidence 292 
in each region (Yamashita et al. 2007; Zhang 2016). We assessed the multicollinearity of these 293 
models by calculating the variance inflation factor (VIF). No predictors had VIF values greater 294 
than 10 after the stepwise variable selection procedure, thus we did not remove any variables 295 
from the final models due to high collinearity (Hair et al. 2014). 296 

We accounted for spatial autocorrelation of observations by using cluster-robust 297 
standard errors. This nonparametric approach accounts for arbitrary forms of autocorrelation 298 
within a defined “cluster” to avoid misleadingly small standard errors and test statistics 299 
(Cameron and Miller 2015). We specified clusters as US Agricultural Statistics Districts (ASDs) 300 
as these districts contain contiguous counties grouped by similarities in soil type, terrain, and 301 
climate. When reporting on the significance of a predictor, we use standard errors and p-values 302 
calculated using this correction.  303 
  304 
Lyme disease forecasting 305 
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 306 
We forecasted Lyme disease incidence using the climate and land cover variables 307 

included in the best model for each region as well as a county dummy variable. Non-ecological 308 
predictors were not included as projections for these variables are unavailable. Using these 309 
models, we obtained regional estimates for Lyme disease incidence under the upper and 310 
moderate climate change scenarios (RCP 8.5 and RCP 4.5) for 2040 – 2050 and 2090 – 2100. 311 
We calculated county-level changes in Lyme disease incidence by subtracting modeled 312 
incidence for 2010 – 2020 from forecasted incidence generated using the same modeled 313 
climate and land cover data sources. We converted predicted Lyme disease incidence to cases 314 
by assuming county population sizes remained the same as those in 2017. As the USCB 315 
projects a 75% increase in US population size by 2100 (under the most likely scenario regarding 316 
fertility, mortality, immigration, and emigration rates) (U.S. Census Bureau 2000), our estimates 317 
on the number of additional Lyme disease cases are conservative. To generate rough 318 
predictions of Lyme disease case counts under population growth, we provide estimates that 319 
assume a 75% increase in population size relative to 2017 within each county. We report point 320 
estimates and 95% prediction intervals when discussing predicted changes in Lyme disease 321 
case counts. 322 

 323 
Model validation 324 

 325 
We assessed predictive model accuracy by comparing hindcasted Lyme disease 326 

incidence under both emissions scenarios to observed values for 2008 – 2017 (Clark et al. 327 
2001; Judge et al. 1985). We also compared model accuracy under varying model 328 
specifications. In the first specification, each regional model contained the predictors (climate, 329 
land cover, and non-ecological) determined through variable selection (see Methods: Statistical 330 
approach) as well as county and year dummy variables. In the second specification, each 331 
regional model contained all available predictors (7 climate predictors, 2 land cover predictors, 332 
and 4 non-ecological predictors) and the county and year dummy variables. Under the third 333 
specification, regional models contained all available predictors but no dummy variables. Under 334 
each of these specifications, we created models of Lyme disease incidence on a training 335 
dataset containing a randomly selected 75% subset of counties and years and used the 336 
withheld 25% of observations for validation (Caldwell et al. 2016; Hijmans 2012). To evaluate 337 
the performance of each model specification, we calculated the root-mean-square error and 338 
correlation coefficient between predicted and actual Lyme disease incidence for 2006 – 2013 339 
(the years with complete data for all predictors) for each regional model. 340 

To capture any non-linear relationships between climate predictors and Lyme disease 341 
incidence, we also generated models using quadratic versions of the climate predictors where 342 
applicable. Specifically, we used the stepwise variable selection approach starting with 343 
quadratic and linear versions of each climate variable to again determine the best model for 344 
each region. We then used these models to forecast Lyme disease incidence in 2090 - 2100 345 
under both the upper and moderate climate change scenarios.  346 
 347 
 348 
Results:  349 
 350 
Climate and Lyme disease incidence 351 
 352 

At least one climate variable was included in the best model of Lyme disease incidence 353 
for all US regions with vector species present (Table 2). However, the specific climate variables 354 
included in the model varied between regions. Variables capturing precipitation conditions, such 355 
as cumulative precipitation or average spring precipitation, were included in models of Lyme 356 
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disease incidence in the Southwest, Southeast, and Pacific regions. Conversely, only average 357 
winter temperature was predictive of Lyme disease incidence in the Pacific Southwest. In the 358 
Northeast and Midwest, multiple temperature and precipitation variables such as the number of 359 
hot dry days, average spring precipitation, average winter temperature, and temperature 360 
variance were included. Further, cumulative temperature was included in the Northeast model 361 
while cumulative precipitation was included in the Midwest. Where included, average winter 362 
temperature and cumulative temperature were positive predictors of Lyme disease incidence, 363 
while average spring precipitation and precipitation variance were negative predictors. The 364 
effects of cumulative precipitation, temperature variance, and the number of hot, dry days varied 365 
between regions.  366 
 367 
Non-climate predictors and Lyme disease incidence 368 
 369 

For all regions, the best model of Lyme disease incidence included tick awareness, 370 
diabetes incidence, and a land cover variable (Table 2). Specifically, the 1-year lagged tick 371 
search frequency was included rather than the contemporary equivalent as it led to greater 372 
reductions in model AIC. This tick awareness variable was a positive predictor in all regions. 373 
County-level diabetes incidence was a negative predictor in the Northeast, Midwest, and 374 
Southeast, and a positive predictor in the Pacific, Pacific Southwest, and Southwest. The 375 
percent land cover classified as mixed development was included in the best model for the 376 
Northeast (negative predictor), and for the Pacific Southwest and Southwest (positive predictor), 377 
while the percent forest cover was included in the Midwest and Pacific (negative predictor), and 378 
in the Southeast (positive predictor). The other available non-climate predictors—county-level 379 
poverty and health insurance coverage—did not meet the criteria for inclusion in any regional 380 
models (see Methods: Statistical approach).  381 
 The above predictors were included in each regional model of incidence along with 382 
county and year dummy variables. A large portion of the variance in incidence for each region 383 
was explained by the county dummy variable (Table 2), indicating that unobserved county-level 384 
heterogeneity is a large driver of variable Lyme disease incidence. 385 
 386 
Model Validation 387 
 388 

Hindcasted Lyme disease incidence matched the observed values with reasonable 389 
accuracy overall, with greater correlation between estimated and observed values in higher 390 
incidence regions (Northeast and Midwest) than in lower incidence regions (Pacific, Pacific 391 
Southwest, Southwest, and Southeast) (Table 3 and Supplementary Figure 1). For all regions, 392 
total estimated Lyme disease incidence was within 8.9% of the observed total incidence. 393 
Further, the correlation between estimated Lyme disease incidence for a particular county and 394 
year and the observed values were 0.86 and 0.90 for the Northeast and Midwest, respectively. 395 
In the lower incidence regions, the correlation coefficients were 0.51, 0.34, 0.34, and 0.49 for 396 
the Pacific, Pacific Southwest, Southwest, and Southeast, respectively. While the point 397 
estimates for hindcasted Lyme disease incidence tended to closely match the observed values, 398 
the prediction intervals around these estimates were large, particularly for the lower incidence 399 
regions. 400 

Predictive accuracy also varied across the three model specifications evaluated here. As 401 
expected, the model specification without county and year dummy variables had higher root-402 
mean-square error or lower correlation coefficients for nearly all regions, indicating lower 403 
predictive accuracy (Supplementary Table 3). However, the two model specifications with 404 
county and year dummy variables—the main model specification in which predictors were 405 
determined through variable selection, and the alternative model specification containing all 406 
possible predictors—were very similar in their predictive accuracy. The simpler, variable 407 
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selection-based model specification was thus selected for the remaining analysis to minimize 408 
overfitting and decrease transferability concerns (Allen and Fildes 2001; Wenger et al. 2011; 409 
Wenger and Olden 2012), but forecasting results from both model specifications are shown in 410 
Supplementary Table 4. Forecasting results from the alternative model specification with all 411 
ecological predictors suggest smaller changes and higher uncertainty in Lyme disease 412 
incidence for each region, compared to the main model specification.  413 
 Several regional models were improved through replacing linear climate predictors with 414 
quadratic climate predictors. Specifically, after repeating the variable selection approach 415 
including quadratic and linear climate terms, the Northeast incidence model now included 416 
quadratic terms for average spring precipitation and cumulative temperature; the Southwest 417 
models included quadratic terms for cumulative precipitation, average spring precipitation and 418 
precipitation variance; and the Midwest models included quadratic terms for hot dry days, 419 
average winter temperature, average spring precipitation, cumulative precipitation, and 420 
temperature variance. The Pacific, Pacific Southwest, and Southeast incidence models were not 421 
improved through the inclusion of quadratic climate predictors. Forecasting results from models 422 
including these non-linear climate variables are similar to those with linear predictors under the 423 
moderate climate change scenario, although with smaller predicted changes in incidence 424 
(Supplementary Table 5). Forecasting results differ more substantially under the upper climate 425 
change scenario, with non-significant decreases predicted for the Northeast and Southeast 426 
when quadratic climate predictors are included, but significant increases predicted for these 427 
regions under the original model. As the climate predictors used in this study were drawn from 428 
the prior literature on climate and Lyme disease cases (see Table 1), in which linear versions of 429 
climate predictors were used, we use output from the linear models when presenting forecasting 430 
results (but see Supplementary Table 5).  431 
 432 
 433 
Forecasted Lyme disease incidence 434 
 435 

Under the upper climate change scenario (RCP 8.5), the total number of Lyme disease 436 
cases in the US is predicted to increase by 17,672 [-13322, 48666] by 2040 – 2050 and 27,630 437 
[-6468, 61727] by 2090 – 2100 (Figure 2, Table 4). These case changes are relative to 438 
hindcasted 2010 – 2020 case counts and are based on 2017 population sizes. For the moderate 439 
climate change scenario (RCP 4.5), the predicted increases in cases for 2040 – 2050 and 2090 440 
– 2100 were 15,395 [-15493, 46284] and 34,183 [1124, 67243], respectively. These results 441 
indicate that substantial future increases in US Lyme disease burden are likely, although the 442 
prediction intervals around these estimates are large, and overlap zero except under the 443 
moderate climate change scenario for 2090 – 2100. Further, the expected change in incidence 444 
varies strongly by region (Figures 2-3). Significant increases in cases are predicted in the 445 
Northeast by 2090 – 2100 under both climate change scenarios (29,813 [8311, 51315] under 446 
RCP 8.5 and 25,565 [4697, 46434] under RCP 4.5) and for the Southeast under the upper 447 
climate change scenario only (1,248 [252, 2244]). Modest, non-significant increases or 448 
decreases are predicted for the Pacific, Pacific Southwest and Southwest under both scenarios. 449 
For the Midwest, an increase in cases is predicted under the moderate climate change scenario 450 
(8,872 [-66, 17810]) while a decrease is predicted under the upper scenario (-3,432 [-12688, 451 
5823]. While both of these predictions were not statistically distinguishable from zero, these 452 
results suggest there may be nonlinear effects of climate change in this region. 453 

These predicted changes in Lyme disease case counts are likely conservative as 454 
estimates are based on 2017 population sizes. By assuming equal population growth across the 455 
US, at levels predicted by the USCB, we find the total number of Lyme disease cases in the US 456 
may increase by 48,545 [-11365, 108455] by 2100 under the upper climate change scenario 457 
and 60,020 [1974, 118146] under the moderate scenario (Supplementary Table 6). However, as 458 
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the degree of population growth is highly uncertain, and population growth will vary in 459 
magnitude and direction by county, this analysis was largely exploratory. Further, as with the 460 
predictions assuming no population growth, the large prediction intervals around the point 461 
estimates here indicate the future effects of climate change on Lyme disease incidence are 462 
highly uncertain. 463 

 464 
 465 
Discussion 466 
 467 

Vector-borne diseases are inherently sensitive to climatic conditions, making accurately 468 
estimating effects of climate change on disease burden a public health priority. We found that 469 
climate was a key predictor of Lyme disease incidence in all US regions with established vector 470 
species (Northeast, Midwest, Pacific, Pacific Southwest, Southwest, and Southeast) in the past 471 
17 years. However, the specific climate variable(s) predictive of Lyme disease incidence varied 472 
between regions. In general, the climate variables predictive of disease incidence for a given 473 
region tended to reflect climate conditions within the region and known relationships between 474 
tick life cycles and climate (reviewed in Eisen et al. 2016). For instance, in the Southeast and 475 
Southwest regions, which have the warmest and driest conditions during the tick questing 476 
period (Supplementary Tables 1-2), climate variables capturing precipitation conditions (e.g., 477 
cumulative precipitation) were key predictors of Lyme disease incidence. In the colder and more 478 
thermally variable Northeast and Midwest regions, climate variables capturing limiting 479 
temperatures (e.g., average winter temperatures and temperature variance) were predictive of 480 
Lyme disease.  481 

These regionally-specific climate and Lyme disease relationships are consistent with a 482 
large body of literature on the physiology and ecology of the US vectors of Lyme disease, I. 483 
scapularis and I. pacificus. In particular, many prior studies have demonstrated substantial 484 
decreases in tick survival and questing activity under low moisture conditions (Berger et al. 485 
2014b, 2014a; Jones and Kitron 2000; Knülle and Rudolph 1982; Needham and Teel 1991; 486 
Rodgers et al. 2007; Stafford 1994). Thus, variation in precipitation may have a greater impact 487 
on Lyme disease incidence in drier regions, as observed in this study, through changes in tick 488 
abundance and tick-human contact rates. Also consistent with the results of this study, 489 
extensive prior research indicates that cold winter and annual temperatures are associated with 490 
longer development periods and/or higher tick mortality (Brownstein et al. 2003; Estrada-Peña 491 
2002; Leighton et al. 2012; McEnroe 1977; Ogden et al. 2004), reduced host-seeking abilities of 492 
the adult life stage (Carroll and Kramer 2003; Clark 1995; Duffy and Campbell 1994), and 493 
reduced abundance of the white-footed mouse, a key reservoir host species (Wolff 1996). 494 
Similarly, studies have found that warming temperatures at high latitudes contribute to quicker 495 
tick development rates, increased survival, and range expansion (Brownstein et al. 2003; Clow 496 
et al. 2017a; Leighton et al. 2012; Lindsay et al. 1995; Ogden et al. 2004; Rand et al. 2004). 497 
These studies suggest that milder winters would be associated with increasing Lyme disease 498 
incidence, with the largest effects observed in cooler regions, as detected in this study. 499 
 In addition to supporting prior literature on climate and tick ecology, the effects of climate 500 
conditions on Lyme disease incidence were detected while controlling for non-climate predictors 501 
of disease. In particular, we explicitly controlled for variation in human awareness of ticks, land 502 
use, a proxy for health-seeking behavior, and other unobserved heterogeneity between US 503 
counties and years in our modeling approach. Increasing tick awareness, as determined by the 504 
frequency of tick-related Google searches, was generally positively associated with Lyme 505 
disease incidence, while land cover and health-seeking behavior predictors had regionally-506 
variable relationships. By controlling for these effects, we provide strong evidence that the 507 
positive effect of warming temperatures on Lyme disease in colder regions is not simply driven 508 
by increasing human awareness of tick-borne disease, temporal trends, or other concurrent 509 
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changes as has been previously suggested (Morshed et al. 2006; Randolph 2010; Scott and 510 
Scott 2018).  511 
 While our statistical models included both climate and non-climate predictors of Lyme 512 
disease incidence, model accuracy varied widely between regions. Most notably, model 513 
accuracy was substantially greater for endemic regions (Northeast and Midwest), compared to 514 
low incidence regions (Pacific, Pacific Southwest, Southwest, and Southeast) (Ciesielski et al. 515 
1988). The relatively poor predictive accuracy in non-endemic regions may be due to higher 516 
misdiagnosis rates and/or higher travel-associated Lyme disease transmission (Eldin and 517 
Parola 2018; Parola and Paddock 2018) decoupling the relationship between local conditions 518 
and disease. However, evidence suggests that most Lyme disease transmission occurs in the 519 
peri-domestic environment, in which the county of transmission and reporting are likely to be the 520 
same (Connally et al. 2009; Falco and Fish 1988; Jackson et al. 2006; Maupin et al. 1991). The 521 
lower predictive accuracy in these regions more likely reflects a lack of sufficient annual 522 
variation in Lyme disease incidence needed to detect effects of climate in these regions, and/or 523 
weaker effects of climate conditions on Lyme disease transmission relative to confounding 524 
drivers not included in our model such as host movement and community composition. In 525 
contrast, the largest effect of climate on disease transmission is expected at the edges of the 526 
climate suitability for transmission (Githeko et al. 2000). As the Northeast and Midwest are near 527 
the I. scapularis northern range limit, the higher model accuracy here likely indicates stronger 528 
climate-Lyme disease relationships. Supporting this assertion, more climate variables were 529 
included as predictors after variable selection in these regions than in low incidence regions.  530 
 Our Lyme disease forecasts, made using regionally-specific incidence models and 531 
projected climate and land cover data, suggest that climate change may lead to substantial 532 
increases in incidence in coming decades, but that the magnitude of these effects is highly 533 
uncertain and depend on assumptions about the functional form of climate-disease 534 
relationships. Across the US, an estimated additional 34,183 cases [95% PI: 1124, 67243] are 535 
predicted by 2100 under a moderate climate change scenario (RCP 4.5), representing a 92% 536 
increase in Lyme disease burden relative to 2010 – 2020 levels. These estimates are likely to 537 
be conservative as they relied on 2017 county population sizes. Applying predicted US 538 
population growth rates to all counties equally increases this estimate to 60,020 [95% PI: 539 
1974,118146] additional cases by 2100 under the moderate scenario. The overwhelming 540 
majority of this increase would be experienced in the Northeast and Midwest while minimal 541 
changes are expected elsewhere. Under the upper climate change scenario (RCP 8.5), Lyme 542 
disease incidence is predicted to increase in the Northeast and Southeast by 2100, while 543 
changes are not statistically distinguishable from zero in other regions and for the US as a 544 
whole. However, the large prediction intervals suggest high uncertainty in future Lyme disease 545 
incidence, which could include either increases or decreases that could be regionally-specific. 546 
Further, the forecasting results differ, particularly for the upper climate change scenario, when 547 
generated assuming non-linear climate-disease relationships. These results indicate that 548 
climate change will very likely impact future Lyme disease incidence, but that effects will vary 549 
strongly between regions, and will depend on the degree of climate change.  550 
 Our prediction of climate change-induced increases in Lyme disease burden, particularly 551 
at higher latitudes, is consistent with prior studies predicting or observing increasing I. 552 
scapularis habitat suitability and range expansion under climate warming (McPherson et al. 553 
2017; Ogden et al. 2008, 2014b). Similar range expansions have also been predicted and 554 
observed for Ixodes ricinus, the European Lyme disease vector, under climate warming (Gray et 555 
al. 2009; Jaenson and Lindgren 2011; Lindgren et al. 2000; Porretta et al. 2013). Further, our 556 
finding that the predicted changes in incidence depend on the degree of future warming is also 557 
consistent with prior work. I. scapularis range expansion and population growth, and the 558 
proportion of Eastern Canadians at risk for Lyme disease, are predicted to be higher under 559 
upper climate change scenarios than under mitigation scenarios (Leighton et al. 2012; 560 
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McPherson et al. 2017). These results suggest that vector range expansions and future Lyme 561 
disease burdens depend in part on climate policy actions.  562 

More generally, our results are consistent with expectations from vector thermal biology 563 
that suggest that warming temperatures generally increase transmission near the cold edge of a 564 
vector’s range limit, but may decrease or have variable effects elsewhere (Lafferty and 565 
Mordecai 2016; Martens et al. 1995; Mordecai et al. 2019; Ogden and Lindsay 2016). For tick-566 
borne disease, as for other vector-borne diseases, multiple temperature-sensitive traits combine 567 
to influence transmission, including survival, development rates, and host-seeking (questing) 568 
(Ogden et al. 2004; Ogden 2017; Randolph 2004; Randolph et al. 2002). Nonlinear effects of 569 
temperature on these traits typically leads to vector-borne disease transmission peaking at 570 
intermediate temperatures and declining to zero outside of lower and upper thermal limits 571 
(Mordecai et al. 2019). This suggests that climate warming would most strongly increase 572 
transmission near the lower thermal limits, such as in the Northeast and Midwest regions, as 573 
was observed here. This further suggests the effects of climate warming would differ in 574 
magnitude and direction depending on the extent of warming, as seen in the Midwest region 575 
where increases in incidence were predicted under moderate warming (RCP 4.5) and 576 
decreases in incidence were predicted with more severe warming (RCP 8.5). The theoretical 577 
expectations of nonlinear thermal responses therefore help to explain some of the context-578 
dependent effects of temperature found empirically in this study 579 

While our results match expectations from empirical and theoretical vector-borne 580 
disease biology, our Lyme disease forecasts should be interpreted with caution. The large 581 
prediction intervals around our point estimates indicate a wide range of potential disease 582 
outcomes under climate change. While significant increases were predicted for some regions, 583 
many other factors contribute to Lyme disease transmission including host movement and 584 
community composition, and human avoidance behaviors (Berry et al. 2018; Brinkerhoff et al. 585 
2011; Brownstein et al. 2005b; Larsen et al. 2014; MacDonald et al. 2019a; Ogden et al. 2008; 586 
Ostfeld 1997). Accordingly, we found that unobserved county-level heterogeneity, which would 587 
encompass these factors, was a predominant driver of incidence in each of our regional models. 588 
Further, while we examined the effects of two potential climate scenarios, uncertainty in these 589 
climate change projections was not incorporated into our predictive models and would add 590 
additional uncertainty in our Lyme disease predictions. Lastly, as our forecasting models 591 
extrapolate from climate and disease relationships observed in the previous 17 years, we 592 
assume that these relationships can be extended to climate conditions not yet experienced. 593 
That is, we assume the relationship between cumulative temperature, for example, and Lyme 594 
disease incidence in a given region will remain the same even as cumulative temperatures 595 
exceed prior values. This could generate inaccurate predictions for regions near current tick 596 
upper thermal limits such as the Southeast and Southwest as further warming and drought here 597 
may reduce tick survival and host-seeking abilities (Berger et al. 2014a; Randolph and Storey 598 
1999; Schulze et al. 2001; Vail and Smith 1998). Generating more accurate predictions for 599 
these regions would require experiments investigating effects of future temperatures on aspects 600 
of tick-borne disease transmission. 601 

Despite these limitations, our results are consistent with a growing body of evidence 602 
linking increased Lyme disease risk with climate warming (Brownstein et al. 2005a; Burtis et al. 603 
2016; Clow et al. 2017b; Dumic and Severnini 2018; Kilpatrick et al. 2017; Leighton et al. 2012; 604 
Ogden et al. 2008, 2014b; Robinson et al. 2015; Subak 2003; Tuite et al. 2013). We 605 
demonstrate that climate is a key driver of Lyme disease incidence across the US, 606 
independently of other drivers of disease risk. We predict that future climate change could 607 
substantially increase Lyme disease burden, but the predicted effects are highly uncertain and 608 
regionally-specific. The largest changes in incidence are likely to be experienced in the 609 
Northeast and Midwest, where current climate-disease relationships are strongest and Lyme 610 
disease incidence has recently increased most substantially (Rosenberg 2018). Our predictions 611 
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provide an essential first step in determining broad patterns of Lyme disease risk under climate 612 
change, but ongoing surveillance efforts and mechanistic studies linking changes in vector 613 
ecology under climate change to human disease incidence should be conducted to refine these 614 
risk assessments.  615 
 616 
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Tables 993 
 994 
Table 1. Climate variables tested for models of disease incidence by region, along with 995 
descriptions and justification of their relevance to disease transmission. 996 
 997 

Climate Variable Description Biological Relevance 

Lagged winter 
temperature 

Average monthly temperatures for 
Dec - Feb 1.5 years prior. 

Identified by Subak, 2003 as 
significantly positively correlated 
with Lyme disease incidence in 

highly endemic areas. 

Colder winter temperatures are associated with 
reduced host-seeking abilities of the adult tick 
(Duffy and Campbell 1994; Clark 1995; Carroll 
and Kramer 2003) and reduced abundance of 
the white-footed mouse, a highly competent 
reservoir host (Wolff 1996). 

Spring 
precipitation 

Average precipitation in May and 
June. Identified by McCabe and 

Bunnell, 2004 as significantly 
positively correlated with Lyme 

disease incidence in highly 
endemic areas.  

Greater precipitation during the late spring and 
early summer increases the moisture of the leaf 
litter, providing conditions which promote the 
survival and questing activity of the nymphal life 
stage (Knülle and Rudolph 1982; Berger et al. 
2014). 

Hot, dry days 

The number of days with 
temperature > 25°C and 

precipitation = 0 during May – July 
(or May – June for counties with 
Ixodes pacificus). Identified by 

Burtis et al. 2016 as significantly 
negatively correlated with Lyme 

disease incidence in highly 
endemic areas.  

Hot, dry conditions are associated with 
decreased questing activity and questing height 
of ticks (Randolph and Storey 1999; Schulze et 
al. 2001), reducing the likelihood of attachment 
to humans (Arsnoe et al. 2015). The May 
through July, and May through June, time 
periods capture the peak nymphal questing 
periods for I. scapularis and I. pacificus, 
respectively (Eisen et al. 2016). 

Cumulative 
average 

temperature 

The sum of average daily 
temperatures (°F) over the entire 

year 

Cumulative temperature appears to control most 
developmental stages of I. scapularis (Lindsay et 
al. 1995; Rand et al. 2004). Lower cumulative 
temperature is associated with longer 
development periods and/or higher tick mortality 
(McEnroe 1977; Estrada-Peña 2002; Brownstein 
et al. 2003; Ogden et al. 2004; Leighton et al. 
2012). 

Cumulative daily 
precipitation 

The sum of total daily precipitation 
(mm) over the entire year 

Greater precipitation increases the moisture of 
the leaf litter, providing conditions which promote 
tick survival and questing activity (Knülle and 
Rudolph 1982; Jones and Kitron 2000; Berger et 
al. 2014a). 

Temperature 
variance 

The variance in average daily 
temperatures (°F) over the entire 

year 

Frequent temperature variation can decrease tick 
survival, even beyond that of constant cold 
exposure, due to energetic costs associated with 
adapting to changing temperatures (Gigon 1985; 
Herrmann and Gern 2010); however, effects will 
vary based on the average temperature of the 
region. 
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Precipitation 
variance 

The variance in total daily 
precipitation (mm) over the entire 

year 

Both drought and heavy rainfall are associated 
with deceased tick questing activity and survival 
(Randolph 1997; Jones and Kitron 2000; Perret 
et al. 2004). Variation in precipitation, as 
opposed to consistent rainfall supplying 
favorable high relative humidity conditions, may 
thus be detrimental for tick survival, but will 
depend on the average precipitation of the region 
and the magnitude of variation. 

 998 
 999 
  1000 
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Table 2. Effect of climate and non-climate variables on Lyme disease incidence by region. Only 1001 
variables included in the best model, as determined by variable selection, are shown. The 1002 
scaled coefficient estimates (Coef.) shown here reflect the standard deviation change in Lyme 1003 
disease incidence for a one standard deviation change in the climate variable. The coefficients 1004 
are scaled so that the effects of different variables are directly comparable. The standard errors 1005 
(SE) shown are clustered by the agricultural statistics district (see Methods: Statistical 1006 
approach). Statistically significant (p < 0.05) coefficients are denoted with *.   1007 
 1008 

 

Northeast Midwest Pacific 
Pacific 

Southwest Southwest Southeast 
Variable Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE 

Climate variables 
Avg. 
Winter 
Temp. 

0.117 0.145 0.398* 0.168   0.872 0.653     

Avg. Spring 
Precip. 

-0.095 0.053 -0.045 0.042 -0.319 0.178   -0.915 0.644   

Hot, Dry 
Days 

-0.141* 0.071 -0.213* 0.079     0.259 0.181   

Cumulative 
Temp 

0.503 0.364           

Cumulative 
Precip. 

  -0.070 0.076     2.634 1.734 -0.054* 0.024 

Temp. 
Variance 

0.271 0.202 -0.134 0.153         

Precip. 
Variance 

        -0.750 0.469   

Non-climate variables 

Lag 'Ticks' 
Search 

0.211* 0.053 0.008 0.019 0.026 0.025 0.028 0.083 0.11 0.092 -0.01 0.017 

Poverty             

Percent 
Insured 

            

Diabetes -0.025 0.065 -0.026 0.032 0.052 0.132 0.022 0.094 0.062 0.064 -0.041 0.026 

Forest 
Cover 

  -3.323 6.121 -0.769 1.706     0.416 0.404 

Mixed Dev. 
Cover 

-1.608 0.989     4.57 4.516 2.736 3.439   

R2 0.796 0.824 0.417 0.375 0.443 0.356 

Model with only county dummy variable 

R2 0.606 0.331 0.156 0.114 0.090 0.149 

Model with only year dummy variable 

R2 0.045 0.018 0.028 0.139 0.007 0.010 

 1009 
 1010 
  1011 
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Table 3. Observed and estimated total Lyme disease incidence for 2008 – 2017 (i.e. sum of all 1012 
cases within a region across this time period). Hindcasted values were generated using the 1013 
climate and land cover variables included in the best model for each region as well as county 1014 
and year dummy variables. 95% prediction intervals are listed below each estimate. Correlation 1015 
coefficients indicate the similarity between the estimated and observed Lyme disease incidence 1016 
for a given county and year.  1017 
 1018 

  Upper climate change scenario 
(RCP 8.5) 

Moderate climate change scenario 
(RCP 4.5) 

 
Observed Hindcasted 

Correlation 
coefficient 

Hindcasted 
Correlation 
coefficient 

Northeast 205664 
205664 

[99607, 311721] 
0.862 

205664 
[98451, 312877] 

0.859 

Midwest 107110 
107110 

[17494, 196726] 
0.898 

107110 
[17201, 197019] 

0.897 

Pacific 898 
818 

[-404, 2039] 
0.512 

847 
[-438, 2133] 

0.513 

Pacific 
Southwest 

678 
678 

[-1612, 2968] 
0.343 

678 
[-1611, 2967] 

0.344 

Southwest 1598 
1680 

[-5129, 8489] 
0.335 

1602 
[-5229, 8433] 

0.346 

Southeast 4677 
4265 

[-5795, 14505] 
0.494 

4348 
[-6428, 15125] 

0.493 

 1019 
  1020 
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Table 4. Predicted change in the number of Lyme disease cases, relative to hindcasted 2010 – 1021 
2020 levels, for each region under upper and moderate climate change scenarios. Point estimates 1022 
and 95% prediction intervals are shown.  1023 
 1024 

 Upper climate change scenario  
(RCP 8.5) 

Moderate climate change scenario  
(RCP 4.5) 

 2040 - 2050 2090 - 2100 2040 – 2050 2090 - 2100 

Northeast 19625 [-209, 39460] 29813 [8311, 51315] 12915 [-7053, 32884] 25565 [4697, 46434] 

Midwest -2566 [-10597, 5465] -3432 [-12688, 5823] 2554 [-5254, 10362] 8872 [-66, 17810] 

Pacific 27 [-134, 189] 59 [-150, 268] -8 [-162, 146] -18 [-193, 156] 

Pacific 
Southwest 

-13 [-1343, 1317] -25 [-1406, 1357] -42 [-1345, 1260] -164 [-1539, 1211] 

Southwest -16 [-764, 731] -34 [-787, 718] -27 [-778, 723] -56 [-814, 702] 

Southeast 614 [-275, 1504] 1248 [252, 2244] 4 [-900, 909] -15 [-960, 930] 

US Total 17672 [-13322 48666] 27630 [-6468, 61727] 15395 [-15493, 46284] 34183 [1124, 67243] 

 1025 
 1026 
  1027 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.01.31.929380doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929380
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1028 

 1029 
 1030 

Figure 1. a) Regional boundaries designated by US Fish & Wildlife Service. These regions were 1031 
used to analyze spatial variation in the effects of climate conditions on disease outcomes. Map 1032 
recreated from: https://www.fws.gov/endangered/regions/index.html. Dashed black lines denote 1033 
the approximate eastern boundary of Ixodes pacificus and western boundary of Ixodes 1034 
scapularis, respectively, based on distribution maps created by the CDC. b) Regional time 1035 
series of log Lyme disease incidence (the number of cases per 100,000 people in the 1036 
population) from 2000 – 2017. The Mountain Prairie region is not shown here as it was removed 1037 
from the analysis due to low vector presence. 1038 
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 1041 

 1042 
 1043 

Figure 2. Predicted change in Lyme disease cases by region for 2040 – 2050 and 2090 – 2100 1044 
under the a) upper and b) moderate climate change scenarios. Case changes refer to raw case 1045 
counts rather than incidence and indicate the average change in cases for a particular decade 1046 
relative to hindcasted values for 2010 – 2020. Bars represent 95% prediction intervals. Regions 1047 
are defined in Fig. 1. 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
  1054 
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 1055 

 1056 
 1057 
Figure 3. Predicted change in Lyme disease cases for 2100 shown at the county level under 1058 
the a) upper and b) moderate climate change scenarios. Case changes refer to raw case counts 1059 
rather than incidence and are relative to hindcasted values for 2010 – 2020. All counties within 1060 
the Mountain Prairie are shown in gray as this region was not included in the analysis. Other 1061 
counties shown in gray (n = 49) containing missing disease, land cover or climate data.    1062 
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